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Abstract

Protein interaction networks have become a tool to study biological processes, either for predicting molecular functions or
for designing proper new drugs to regulate the main biological interactions. Furthermore, such networks are known to be
organized in sub-networks of proteins contributing to the same cellular function. However, the protein function prediction
is not accurate and each protein has traditionally been assigned to only one function by the network formalism. By
considering the network of the physical interactions between proteins of the yeast together with a manual and single
functional classification scheme, we introduce a method able to reveal important information on protein function, at both
micro- and macro-scale. In particular, the inspection of the properties of oscillatory dynamics on top of the protein
interaction network leads to the identification of misclassification problems in protein function assignments, as well as to
unveil correct identification of protein functions. We also demonstrate that our approach can give a network representation
of the meta-organization of biological processes by unraveling the interactions between different functional classes.
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Introduction

The rapid improvements in sequencing technologies are adding

new sequences to the databases faster than the pace at which

insights into their function could be gained. As a consequence, the

vast majority of known genes and proteins have not been

characterized experimentally, and their function is yet unknown

[1]. Moreover, biological functions are not, in general, realized by

individual proteins, but, rather, by networks of intricate interac-

tions between numerous genes. The understanding of biological

processes requires, therefore, a better knowledge of the functional

organization of such networks. Indeed, the study of biological

processes increasingly relies on the analysis of biological networks

(BN), which has been used to tackle different levels of the

functional organization of the cell. On the level of individual

proteins, BN are often used to help to elucidate the molecular

function of specific proteins [2,3]. On the systems level, they are

studied to reveal modules and functional sub-networks [4,5].

An issue that has hardly been faced is that of the meta-

organization of different functions in a single, integrated, network.

Yook et al. [6] have concluded that most functional classes appear

as segregated sub-networks of the full protein interaction network

(PIN). Like most of the studies of BN, the results of Ref. [6] are

based on parsing the static network, and do not allow the

exploration of the meta-organization and the interactions of the

sub-networks. We here, instead, give evidence that a dynamical

approach to the analysis of BN based on their meta-organization

not only enhances the prediction of the function of individual

proteins, but also can reveal information on the network macro-

scale of interactions between different biological functions.

As for predicting the function of individual proteins, two main

strategies have been followed so far. The first relies on the analysis

of the protein itself: e.g. its similarity to already annotated proteins,

its structure, or its biophysical features [1,7,8]. The second one is,

instead, based on high-throughput technologies providing data

that may highlight the context in which the protein acts such as its

sub-cellular localization, interactions with other proteins, and the

conditions under which it is expressed (or the genes that are co-

expressed with it) [2,3]. High-throughput protein-protein interac-

tions detection experiments allow nowadays a representation of

the global cell functioning in terms of a network, with nodes

representing proteins and edges representing the detected mutual

interactions, with the goal of exploiting the properties of these

networks for prediction purposes on the function of specific

proteins. Notwithstanding the accomplishments of these analyses it

is important to highlight that most high-throughput methods can

suffer from high false positive and false negative rates [9] and,

therefore, functional assignments that are based on these tools may

lead to misclassifications.

Several past studies attempted already to determine to what

extent the function of a protein depends on the way it is interacting

with the others in the PIN. However, the use of such network

representation for prediction requires the determination of the

specific scale of the PIN that one has to consider for unveiling the
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individual protein’s function. And, in this latter framework, the

current state of the art includes, again, two types of approaches.

From one side, several direct annotation schemes have been

devised [10–14], with the common inspiration of analyzing the

local scale features of the PIN, i.e. either basing the function

prediction on the information that can be directly extracted from

the protein neighborhood, or statistically assessing a probability for

a protein to be assigned to a given function, depending on the

actual number of its neighbors that are (or are not) pertinent to the

same function. From the other side, more recent module assisted

techniques [15–17] have attempted to make use of the extra

knowledge arising from the meso-scale of clustered structures of

the PIN, with first identifying dense agglomerates in the network

that are loosely connected to other areas of the graph, and then to

use this topological information for predictions on the protein

specific function.

The approach we lay out constitutes a third, novel, strategy. We

provide evidence that an alternative source of information is, in

fact, the one arising from the analysis of how the modular PIN

structure actually organizes the synchronization dynamics of an

ensemble of oscillators. In particular, we show how the

combination of synchronization features emerging in the PIN

structure with a rudimentary classification of proteins based on

expert manual assignment, allows, indeed, to gather information

on misclassification problems, as well as to offer a more accurate

function assignment that is consistent with more recent (and better

refined) manual annotation of these proteins’ function. Not less

important is the ability of the approach we introduce to assess the

coupling of different functional categories, to determine how

closely associated they are, and which proteins participate in both

of them.

Materials and Methods

Data
For our research we have used a typical and important network

with rudimentary functional assignments derived from a Saccha-

romyces cerevisiae PIN, as reported in [18]. The data set is based on

the work by von Mering et al. [9] who scored the reliability of

80,000 reported protein-protein interactions in the yeast. These

were based on high-throughput interaction detection methods,

such as i) yeast two-hybrid systems [19,20], ii) protein complex

purification techniques using mass spectrometry [21,22], iii)

correlated messenger RNA expression profiles [23,24], iv) genetic

interaction data [25,26], and v) ‘‘in silico’’ interaction predictions

derived from gene context analysis. From this set, Bu et al. [18]

focused on 11,855 interactions (those featuring high and medium

confidence levels) among 2,617 proteins. We here focus on the

giant connected component of the PIN given in Bu et al. [18],

consisting of N~2,375 proteins and L~11,693 interactions.

As for the modular structure of the PIN, we initially refer to the

partition in 13 functional categories given by the yeast protein

catalog at the Munich Information Center for Protein Sequences

(MIPS) [26]. Particularly, we use the data set in which each given

protein is assigned to one of the functional categories (with

proteins in multiple categories manually assigned by Bu et al. [18]

to only one).

In order to test the validity of our findings, we will use the

classification provided by the Gene Ontology consortium (GO)

[27]. While MIPS attempts to provide a simple hierarchy with

intuitive category structure that allows for manual browsing, GO

aims at representing a fine granular description of proteins that

provides annotation with a wealth of detailed information. Thus,

MIPS gives a very rough division into a couple of dozens of

categories and several hundreds of subcategories, whereas GO

includes 29,983 different functional terms (as of March 2010). GO

also provides a reduced version of its ontology (GOslim) that

allows one to trace the detailed terms into more coarse-grained

categories. In our analysis, we start with the single MIPS

classification for each protein, and use the dynamical overlap

method for identifying those proteins that are likely to be involved

in more than one of the functional categories in our data (those

ones forming the overlapping structures). As a validation, we refer

to the classification of these proteins in GOslim, Namely, by

manually mapping each GOslim term to one of the 13 MIPS

categories, one is able to verify whether or not the assignment of

the second function (provided by our method for each one of the

proteins in the overlapping sets) is consistent with the functional

annotation in GO.

Dynamical Overlap Formalism
The method is based on the inspection of how oscillators

organize in a modular network of dynamical interactions [28], by

forming synchronization interfaces and overlapping communities

[29,30]. Here, we will consider a network of phase oscillators on

top of the PIN. Thus, the transfer of function between neighboring

proteins is performed through the synchronization of coupled

oscillators. In order to explain how the method works, let us

assume the PIN of the yeast is topologically divided into two main

modules, M1 and M2, each one of them associated to a specific

protein function. Every node (protein) in the network is an

oscillator whose frequency vi is set to v1 (v2) whenever the node i
belongs to M1 (M2), with v1wv2. The phase dynamics of this

network of N coupled oscillators can be described by

_wwi~viz
d

Ki

XN

j~1

aij sin (wj{wi) ð1Þ

where dot denotes temporal derivative, wi(t) is the phase of the i-th
oscillator, Ki is the number of interactions that the i-th protein has

with the rest of proteins, d is some coupling strength, and (aij) are

the elements of the adjacency matrix representing the PIN [28],

with (aij)~1 if there is an interaction between proteins i and j, and

(aij~0) otherwise.

In the extreme case of fully separated modules the network

dynamics would eventually (at large coupling strength d) result in

the clusters M1 and M2 oscillating synchronously at a constant,

different, frequency. If, however, there are just a few interactions

between proteins of the two modules, the onset of a synchronization

interface overlapping the two modules occurs, made of all those

nodes displaying an instantaneous frequency that are actually

oscillating in time around the mean value of the two frequencies

characterizing the clusters [29]. The rest of nodes, out of the

synchronization interface, oscillate at the frequency of the module

they belong to. To quantify this behavior, we monitor the

instantaneous frequency of each oscillator and we calculate the

indicator Ci,

Ci : ~sgn½min
t
f _wwi(t){�vvg�min

t
fj _wwi(t){�vvjg ð2Þ

which accounts for how close in time the frequency associated to

protein i is to the average frequency �vv of the two clusters, v1 and

v2. By fixing a confidence threshold 0ve%v1{v2, those

proteins belonging to module M1 (M2) have Ciwe (Civ{e) as

they were assigned initially the frequency v1 (v2), while jCijve is

the signature of a protein whose module membership is not clear,
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belonging to the synchronization interface between M1 and M2.

This behavior is graphically sketched in Fig. 1. There, a small

graph composed of 8 nodes (Fig. 1A) clearly has two densely

connected modules that do not coincide with the given functional

classification denoted by the color of the nodes. Actually, node 8

does not have any link within its functional module, the yellow

one, while node 4 is classified within the blue functional module

but shares the same number of links with the other functional

module. After solving Eq. (1) by assigning vi~v1 to nodes 1–3

and 8 (functional module M1), and vi~v2 to nodes 4–7

(functional module M2), the corresponding Ci values extracted

from Eq. (2) indicate that nodes 1–3 really belong to module M1

(as Ciwe), nodes 5–7 belong to module M2 (as Civ{e), while

nodes 4 and 8, whose jCijve, are the ones candidates to be

overlapping between M1 and M2. To solve this uncertainty, nodes

4 and 8 are reassigned to M2 (blue) and M1 (yellow) respectively

(Fig. 1B) and we observe that whereas C8 falls now within the area

of module M2, increasing the cohesion of the functional module,

node 4 still lies within the synchronization interface (jC4jve)

overlapping between both modules.

For the real situation of a PIN with 13 different functional

modules (M1,M2, . . . ,Mn), this can be done by integrating n~13
times the network dynamics described by Eq.(1). In each trial, the

k-th module (k~1, . . . ,n) is assigned to the cluster frequency v1,

whereas the rest of the PIN is given the second cluster frequency

v2, resulting in a series of Ci(Mk) values. This time all those

proteins initially assigned to Mk whose Ci(Mk)we, actually belong

to module Mk, while if Ci(Mk)v{e belong to another module

different from Mk. All those nodes whose jCi(Mk)jve are labeled

as belonging to the Sk synchronization interface between module

k and the rest of the network. Then, a node is identified as an

overlapping node between modules Mk and Ml if, being a node

from either Mk or Ml , is in both Sk and Sl , that is

Skl : ~(Mk|Ml)\(Sk\Sl):

Finally, the set of nodes of module k overlapping with module l,
with k=l, is

Rkl : ~Mk\(Sk\Sl), ð3Þ

which has two implications: i) while Skl is symmetric in the

indexes, Rkl is not, and ii) Skl~Rkl|Rlk and, since

Rkl\Rlk~1, jSkl j~jRkl jzjRlkj.
Eventually, the degree of overlapping between two modules is

then given by:

Okl : ~
jSkl j

jMkjzjMl j
~
jRkl jzjRlkj
jMkjzjMl j

, ð4Þ

which, therefore, provides a measure of how many nodes out of

the clusters k and l are forming the corresponding overlapping

structure.

The main result of our method is, therefore, an index Ci(Mk)
accounted by Eq.(2), that, for each protein i, measures its degree of

membership to module Mk (i.e. a protein function). A value

Ci(Mk)v{e indicates that the protein exhibits a dynamical

behavior different from that of the majority of proteins in Mk, thus

clearly belonging to other module. On the other hand, Ci(Mk)we
occurs when the protein performs as the rest of proteins assigned

to the same module Mk, and this confirms that it is certainly

member of Mk. Finally, a value of Ci(Mk) close to zero is the

signature of a protein whose module membership requires further

analysis as it could be the case of a protein belonging to two or

more functional modules. Therefore, we are introducing an index

that allows to check the accuracy of the initial functional

assignment as well as predicting a second (or more) function of a

protein.

Results and Discussion

The application of the method given by Eq. (1) to the PIN and

modular classification with N~2,375, v1~0:8, v2~0:2, and

d~0:3, as described in the Materials and Methods section leads to

13 different series for Ci(Mk) (being k~1, . . . ,13 the functional

module index and i~1, . . . ,2,375 the protein index). In order to

proceed with the full analysis of this data, we have to consider all

possible combinations of these series to check whether a protein

belongs to the functional module initially assigned or whether it is

involved in more than one functional module. This can be done

efficiently, as shown in the Figure S1, but, to illustrate the

principles underlying the method, we will just focus on a single

pair of functions.

Figure 2A shows the values of the indexes Ci(M4) and Ci(M8),
being M4 and M8 the Cellular fate/organization and Genome

maintenance functional modules. We plot proteins initially assigned

to M4 (M8) in blue (red), while the rest of proteins are plotted in

black. Notice that most of the black points are concentrated

around ({0:3,{0:3), as the corresponding proteins neither

belong to M4 nor M8. The majority of proteins in M4 (blue)

and M8 (red) are located close to (0:3,{0:3) and ({0:3,0:3),

Figure 1. Graphical description of the dynamical overlap
method. (A) A two module small graph composed of 8 nodes colored
according to their membership to the functional module M1 (yellow) or
M2 (blue), and corresponding Ci values after solving Eq. (1) with
vi~v1~0:8 for M1 and vi~v2~0:2 for M2 . Nodes 4 and 8 have
Ci*0 with this functional classification. (B) Same as in (A) but nodes 4
and 8 has been reassigned to modules M2 and M1 respectively. Now,
node 8, behaves as a node truly from M2 while node 4 behaves as an
overlapping node between M1 and M2 as Ci is again close to zero. All
the network representations in this manuscript were produced with
Cytoscape.
doi:10.1371/journal.pone.0017679.g001
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respectively. The blue points inside the ellipse correspond to

proteins initially classified as M4 that are not belonging to M8 (as

Ci(M8)v0), but for the very same to M4 is under question

(Ci(M4)*0). When examining the indexes for the rest of modules,

one finds out Ci(Ml)v0 Vl=4. Therefore, we infer that these

proteins do, indeed, belong to M4 although weakly. The same

arguments apply for the red points lying within the other ellipse:

they are proteins weakly ascribed to M8. A completely different

situation is that of those points distributed around (0,0) (inside the

circle, mostly of the points superimposed). They correspond to 15

proteins whose unique membership to M4 and M8 cannot be

asserted. When checking the rest of Ci values, one finds that none

of these proteins can be assigned to modules other than M4 and

M8, thus again they are weakly associated to both functions M4

and M8 (one of them being the initially assigned function, and the

other the predicted one). The novelty here is that there is a twofold

assignation, which could be considered as the trace of multi-

functional proteins.

Before claiming for multi-functionality, it is mandatory to check

if such a multi-assignment holds when the initial modular structure

changes. This is tantamount to reassign each one of these proteins

to the predicted function and check whether the corresponding

protein is still located around (0,0), otherwise the multi-

functionality is simply an artifact. The new Ci values for the 15

proteins (after reclassification) are shown in Fig. 2A as circles

bordered with the color of the predicted function. The remarkable

result is that the emerging dynamics behavior agrees with the new

classification, as the 15 proteins are no longer overlapping and

move now to the areas corresponding to the predicted function. If

we take into account the number of connections a given protein is

forming with elements belonging to any one of the other modules

in the graph, Kout
i , the emerging dynamics is reflecting the fact that

the original and predicted assignments correspond, respectively to

Kout
i ~Ki and Kout

i ~0, that is, the predicted classification makes

the functional module more cohesive (see Fig. S2B). For the sake of

visualization, Fig. 2B shows the backbone of the original PIN

made of the 15 proteins and all their neighboring proteins. While

the original function assignment classified the proteins in modules

in which they do not have physical interactions, the reclassification

is able to unveil the participation of the proteins to the correct

module. For example, according to GO, YHR172W is not

involved in Cellular fate/organization but in Genome mainte-

nance (see Table S1), which is in agreement with the classification

pointed by our method.

Notice that, in the full analysis, the number of proteins featuring

an overlapping behavior is 418 (see the full list L1 in Table S1 and

Fig. S2) out of which 103 proteins have no functional annotation

in GO and 200 had two or more different function annotations in

GOslim. For these latter ones, a comparison with the functions

assigned by GO reveals that in 87 cases the predicted function is in

agreement with one of the GO assignments. The expected average

number of matching of the proteins in L1 for a random function

assignment is 25. The p-value for the significance of this result is

0.0001, and it can be established by performing 1,000 random

reshuffles of function assignment, and verifying the average

number of matches (which in this case was 25). The highest

number of random matches was 50 (in 1/1,000 cases), well below

the observed 87. As a result, one can claim an original

misclassification and, consequently, the method can be used to

cure errors in a given protein function classification.

With the guidance of the information obtained so far, we have

reclassified all proteins of L1 to the corresponding predicted

functions, and extracted the subgraph of the original PIN for

which each functional module corresponds to a connected

component (i.e. we pruned out all those other proteins that were

assigned a given function in the MIPS classification, but did not

have any interaction with other elements of the same function).

The result is a new interaction network made of 2,049 nodes and

Figure 2. Identification of misclassified proteins. (A) Ci(M4) and Ci(M8) values for all proteins in the PIN of the yeast. The color indicates the
functional module initially assigned to each protein (blue for M4 , red for M8 and black for the rest). The method identifies 15 proteins (within the
circle) with a twofold assignation (the initial and the predicted one). After re-assignation to the predicted function, the new Ci values of the 15
proteins are depicted as circles bordered with the color of that function, and lie together with those other proteins of the same function, indicating
an original misclassification. (B) Visualization of the network backbone, made of the 15 misclassified proteins and their neighbors. Same color code as
for (A).
doi:10.1371/journal.pone.0017679.g002
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9,941 links, that we take for a new set of numerical trials, resulting

in a second list L2 of 211 potentially multi-functional proteins

(reported in Table S2). The situation, is now radically different: at

variance with the results of Fig. 2, Fig. 3 shows that the multi-

functional nature of the 30 proteins inside the circle (the subset of

L2 obtained when comparing M1 (Transcription) and M6

(Translation), is indeed genuine, as the final outcome does not

depend on whether the proteins are classified according to the

assigned or predicted functional modules (see Fig. S3A). This is

further confirmed by the simultaneous reclassification of each one

of the proteins of L2 into the predicted function, and by

monitoring the change in the out-degree, Kout
i , calculated with

the predicted and the original classification (shown in Fig. S3B).

An independent test of the validity of that assignment is to assess

the multi-functionality character of the proteins in L2 by

comparison with the more accurate GO classification scheme.

One can count the number of different GO annotations for each

of the proteins in L2, and the corresponding distribution of multiple

assignments in the rest of the data. The difference between the two

distributions (see Figure 4) is significant (p-valuev0:01, as for

conventional t-test). Namely, the average number of different

function assignments in L2 is 6.7, with mode 4, while in the other

proteins one finds 4.9 and 3 respectively. Moreover, the standard

deviation of the distribution of functions in L2 is significantly greater

than that of the other proteins. This confirms that the proteins in L2

come from a population with higher multi-functionality with respect

to the population of other proteins.

Finally, the method allows also to assess a coarse-grain

representation of the PIN, showing the way each biological

function is interacting with the others. In Figure 5, each specific

cell function is represented by a node whose size is proportional to

the total number of proteins participating in that function. The

width of each link is proportional to the number of multi-

functional proteins provided by our method (Equation (4)). The

resulting network representation of the full cell functioning

suggests numerous insights about the organization and control of

biological functions. As one might expect, there is a strong link

between Transcription, Translation and Transcriptional control.

But these functions have almost no common proteins to functions

like Genome maintenance, Cellular organization or Metabolism.

Interestingly, the results show that there are no shared proteins

between Amino-acid metabolism and Protein fate, suggesting that

even though these two processes may seem related there are no

known common mechanisms that control both functions.

We have then given evidence that a proper inspection on the

meso-scale interactions of a generated network of dynamical

systems can provide useful information on the micro- and macro-

scale processes through which biological processes are organized in

a cell. The method is not only able to predict and reassign the

function of a given protein, but also to describe qualitatively the

main functional interactions that lead to the global functioning of

the organism. It is worth highlighting that the present application

only focused on unveiling proteins with double functionality, while

the method can be easily applied to gather information also on

proteins bridging among more than two different biological

functions (such an evidence will be reported elsewhere). The core

of the presented results gives insights on how molecular functions

are networking at different scales, as well as on how to design (or

engineer) proper drugs, or mechanisms to control (or regulate) the

Figure 3. Identification of multi-functional proteins. (A) Ci(M1) and Ci(M6) values for the 2,049 proteins in the PIN of the yeast after curation.
The color indicates the functional module initially assigned to each protein (orange for M1, green for M6 and black for the rest). The 30 proteins
located inside the circle remain there after re-assignation to the predicted function, and are depicted as circles bordered with the color of that
function. (B) Visualization of the network backbone made of 6 (out of 30) of the multi-functional proteins in (A).
doi:10.1371/journal.pone.0017679.g003

 

 

Figure 4. Statistical assessment of protein multi-functionality.
Probability density function of the number of different GO annotations
(see Materials and Methods section) of the 211 overlapping proteins in
L2 (blue diamonds), as compared to the probability of other proteins in
the rest of the data (red squares). Continuous lines are shape-preserving
interpolations.
doi:10.1371/journal.pone.0017679.g004
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biological interactions responsible for the functioning, or malfunc-

tioning, of a cell.

Supporting Information

Figure S1 Identification of misclassified proteins. The

proposed tool is providing the behavior of each protein in the PIN

through the indicator Ci(Mk), that crucially depends on its

original functional classification. Each panel corresponds to the

competition trial between module Mk at frequency v1 (in black

symbols) and the rest of modules Ml=k at frequency v2 (in

different symbols and colors). The size of each module is written

between brackets. Nodes belonging to the corresponding synchro-

nization interface (jCi(Mk)jv0:05, gray band) are marked in full

face. Those nodes corresponding to overlapping proteins (those

appearing in two synchronization interfaces, jCi(Mk)jv0:05 and

jCi(Ml)jv0:05) are encircled with the color of the corresponding

overlapping function. Parameters used in Equation (1): N~2,375,

v1~0:8, v2~0:2 and d~0:2 (A), d~0:3 (B). M1 (Transcription),

M2 (Other metabolism), M3 (Uncharacterized), M4 (Cellular fate/

organization), M5 (Protein fate), M6 (Translation), M7 (Amino-

acid metabolism), M8 (Genome maintenance), M9 (Cellular

organization), M9 (Energy production), M10 (Stress and defence),

M11 (Transcriptional control), M12 (Transport and sensing), and

M13 (Transport and sensing).

(EPS)

Figure S2 Identification of misclassified proteins. (A)

Dynamical behavior of the 418 overlapping nodes. In blue when

the modules are defined according to the original classification

(MIPS). Given that the overlapping node i[Rkl is simultaneously

in Sk and Sl , we represent with a circle its Ci value in Sk and with

a square its Ci value in Sl . In red we represent the same values as

before but when the modules are modified to take into account the

function predicted by our method for the overlapping nodes. Same

parameters as in Fig. S1B. (B) Topological behavior.

D(Kout
i )=Ki:½(Kout

i )predicted{(Kout
i )original �=Ki, change in the ratio

between out-degree (Kout
i , number of connections a given protein

is forming with elements belonging to any one of the other

modules in the graph, and the underscores predicted/original stay

for the calculation of Kout
i in the corresponding annotation) and

total degree (Ki, degree of the protein, independent on the specific

classification of the protein) of the proteins in L1 (green dots) and

the rest of the proteins (black dots) when reassigning the function

given by MIPS to the predicted one. The results show that, while

all non overlapping proteins (black points) are grouped around

D(Kout
i )=Ki~0 (i.e. they do not substantially change their in-out

connections due to the change in the classification of the

overlapping proteins), the members of L1 (green points) appear

grouped around D(Kout
i )=Ki~{1, thus reflecting the fact that the

original and predicted assignments correspond, respectively to

Kout
i ~Ki and Kout

i ~0. This indicates that in the original

classification of the proteins in L1 they did not have interactions

with other elements of the original functional module, whereas the

predicted classification assigns them to the proper functional class.

(EPS)

Figure S3 Identification of multi-functional proteins.
(A) Dynamical behavior of the new set L2 of overlapping proteins.

In blue, Ci values of the set of overlapping proteins between

modules Mk and Ml with the new cured classification (same as in

Fig. 3). As in Fig. S2, we plot the Ci value of the overlapping node

i[Rkl with circles when is in Sk and with squares when in Sl . In

red we represent the same values as before but when the modules

are modified to take into account the function predicted by our

method for the overlapping nodes. (B) Topological properties of

the cured PIN. Change in the ratio between out-degree (Kout
i ) and

total degree (Ki) of the proteins in L2 (green dots) and the rest of

the proteins (black dots) when reassigning the function given by

MIPS to the predicted one. Parameters used in Eq. (1): N~2,049,

v1~0:8, v2~0:2 and d~0:7.

(EPS)

Table S1 List L1 of proteins. Full list L1 with the 418

overlapping proteins resulting from the first iteration of the

dynamical overlap method for the PIN of the yeast (see Materials

and Methods and Fig. 2). For each protein, we provide the OLN

(Ordered Locus Names), the MIPS classification, whether or not

this function is annotated in GOslim, the predicted function and

whether or not this predicted function is also provided by GOslim.

The first 87 proteins correspond to cases in which the predicted

function is in agreement with one of the GO assignments.

(PS)

Table S2 List L2 of proteins. Full list L2 with the 211

overlapping proteins resulting from the second iteration of the

dynamical overlap method for the curated PIN of the yeast (see

Text and Fig. 3). The curation of the PIN consists in exchanging

the annotated function by MIPS of the 418 proteins from L1 with

the function predicted by the overlap and removing those proteins

that become isolated within the functional module. Again, for each

protein, we provide the OLN (Ordered Locus Names), the MIPS

classification and the predicted function.

(PS)

Table S3 Multifunctional distribution of proteins in L2.
�Module index. {Number of proteins within the k-module.
{Overlapping nodes belonging to Mk. }Number of proteins

belonging to the k-module overlapping with module l.

(PS)

Figure 5. Coarse grained representation of the PIN in terms of
cell functioning and coordination. The size of nodes is proportional
to the total number of proteins participating to the corresponding
function, the width of the links is proportional to the size of the
corresponding overlapping interface. The full picture of the structure of
these overlaps is reported in the Table S3.
doi:10.1371/journal.pone.0017679.g005
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