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Special Topic: Convergent Adaptive Evolution

Adaptive convergence at the genomic level—prevalent, uncommon or
very rare?
Ziwen He†, Shaohua Xu† and Suhua Shi∗

Convergent evolution is one of the cen-
tral topics in evolutionary genetics [1].
While there has been ample evidence
of phenotypic convergence, the issue is
whether each and any of the phenotypic
convergences have an underlying cause
in genic convergence [2,3]. Fortunately,
the torrent of genomic data has made
it possible to address the issue [4–8].
Convergence can happen at multiple
levels of the genetic architecture. For
example, many studies have reached the
conclusion of genic convergence when
the same gene has experienced many
more amino acid (AA) changes than
expected [3,9–11]. Another prominent
example is the TCGA (The Cancer
Genome Atlas) data on the evolution of
tumors, whereby convergence is defined
as the sharing of mutations in the same
genes, rather than the same change at
the same site [12,13]. Many others have
further relaxed the stringency in defining
convergent evolution. For example,
convergence could also mean copy
number or evolutionary rate changes in
the same genes [14,15].

In this perspective, we survey the
literature on systems that fulfill the
most stringent criterion for convergent
molecular evolution—namely, the same
sites of the same gene have indepen-
dently evolved to the same AA. This
definition of molecular convergence
has been more commonly adopted in
the literature [9,16,17] than the various
other criteria with relaxed stringency,
which have mostly been narrowly
applied.

We wish to make two additional
points about molecular convergence.
First, the convergence literature some-
times makes a distinction between
convergent evolution and parallel evolu-
tion. The former term applies when two
species evolve from different ancestral
states (A and B) to the same new state C
whereas the latter refers to the evolution
from the same state A to the same
new state C. This distinction cannot be
applied to the molecular data because
the independent evolution A → C and
B → C is so common that de-noising
would be virtually impossible. Hence,
molecular convergence in this study
means the independent evolution from
the same old state to the same new state.
Second, we refer to adaptive convergence
simply as ‘convergence’ while chance
convergence is referred to as background
convergence (or simply ‘noise’).

By the above definition of AA-site
convergence, there are two classes of con-
vergence studies, to be referred to as
the genic and the genomic approaches,
respectively. In the genic approach, a set
of genes has been pre-determined based
on prior knowledge of the phenotypes
(e.g. lactase persistence [18]). Supple-
mentary Table 1 shows 35 such cases.
With the information on the branch
lengths and amino acid substitution pat-
terns, the expected level of background
convergence can be calculated [9,19].
Because of the small number of genes in-
volved, the probability that any of them
will show signs ofmolecular convergence
by chance is generally quite small; hence,

the use of a control group for comparison
is often unnecessary. By and large, studies
taking the genic approach are uncontro-
versial.

The genic approach is limited by the
known genetic mechanisms underlying
the phenotypes of interest. The avail-
ability of whole genomic data has the
potential to break the limits when the
genetic basis of the phenotype is not
known. Nevertheless, the statistics of
inferring convergence by the genomic
approach is far more challenging because
the large genomes are liable to incur
extensive background convergence (i.e.
noises). In Table 1, we list 14 studies
that report convergence at the genomic
level.Most published studies on genomic
convergence take a theoretical approach
to estimating the amount of background
convergence (i.e. the noise level). For
example, if three taxa have independently
invaded a new habitat (say desert; see
Fig. 1), the simulations may show that,
by chance alone, 1000 AA substitutions
in the entire genomeswould be shared by
the desert taxa. Furthermore, few of these
1000 substitutions are found in the three
non-desert control taxa. If the observed
AA substitutions shared by desert taxa
are 1500 in number, then it is concluded
that 500 AA substitutions occur by
convergence.

The major deficiency of such the-
oretical calculations is the absence of
validation as investigators may often
under-estimate the noise level. In the
hypothetical example above, there might
be 1600, instead of 1000 background AA
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Table 1. Publications on genomic convergence in and before 2019.

Species Kingdom Phenotype Detecting method
No. of

convergent genes Reference

Echolocating bats and whales Animalia Echolocation �SSLS (phylogenetical
clustering)

∼200 Parker et al. [4]

Echolocating bats and whales Animalia Echolocation Convergent substitution
counting

392 Lee et al. [30]

Marine mammals (whale,
walrus, manatee)

Animalia Adaptation to marine
environment

Counting+ Positive selection
(PAML)

8 Foote et al. [5]

Giant and red pandas Animalia Bamboo diet, pseudothumb Exceeding theoretical
estimation+ Positive selection
(PAML)

70 Hu et al. [11]

Flight degeneration birds Animalia Loss of flight Divergence+ Association
mapping

2 Pan et al. [31]

Yak and Tibetan antelope Animalia Adaptation to high altitude Exceeding theoretical
estimation+ Positive selection
(PAML)

1 Wang et al. [10]

Pseudomonas aeruginosa
(intraspecies)

Animalia Host adaptation Exceeding theoretical
estimation

52 Marvig et al. [32]

Crassulacean acid metabolism
(CAM) species

Plantae Crassulacean acid metabolism
(CAM)

Counting+ Phylogenetical
clustering

4 Yang et al. [33]

Extremophile fishes (ecotypes
within species)

Animalia Adaptation to hydrogen sulfide
(H2S)-rich environments

Phylogenetical clustering ∼1.2% of genomic
window

Brown et al. [34]

Lake and stream stickleback Animalia Adaptation to lake or stream
environment

Divergence+ Association
mapping

∼2% of genomic
window

Rennison et al. [35]

Arabidopsis halleri and A.
arenosa

Plantae Adaptation to calamine
metalliferous soils

Divergence+ Association
mapping

24 Preite et al. [36]

Stony corals Animalia Symbiont transmission mode Convergent substitution
counting

403 Dixon and Kenkel [37]

Plateau zokor and naked mole
rat

Animalia Subterranean environments Convergent substitution
counting

787 Shao et al. [38]

Lodgepole pine and interior
spruce

Plantae Spatial variation in temperature Association mapping 47 Yeaman et al. [39]

sites, by chance alone if one uses pa-
rameter values that do not stay constant.
Any variation in nature that is not fac-
tored into the calculation would lead to
an under-estimation of the noise level.
For example, by ignoring the variation of
acceptable amino acids among different
sites and at different genetic distances,
one is likely to underestimate nonadap-
tive convergence [19,20].

By this reasoning, types of ‘empiri-
cal control’ are needed. A simplest form
of the control is the observed conver-
gence among the three non-desert taxa.
If the ‘empirical control’ also yields 1500
convergent AAs, then it would be diffi-
cult to conclude any true convergent sites
among the desert taxa. An important fea-
ture of the phylogeny of Fig. 1 is the sym-
metry between the desert and non-desert
taxa—each focus species is paired with

a control species (see the CCS (conver-
gence at conservative sites) method be-
low). We further note that all statisti-
cal treatments applied to the focus group
should be applied equally to the con-
trol taxa. For example, studies often fil-
ter the genes by algorithms that choose
positively selected genes for analysis as
in studies of pandas, marine mammals
and Tibetan animals [5,10,11]. When
such a procedure is used on the focus
group, it should be used on the em-
pirical control as well, a practice rarely
adopted.

Curiously, only two of the 14
genomic studies in Table 1 have been
tested by an ‘empirical control’. In both
cases, the theoretical inferences are nulli-
fied by the empirical control. These two
studies [4,5], together with the follow-up
analyses [6–8], underlie the main

argument of this perspective: because of
the high likelihood of under-estimating
the background noises in theoretical
models, the empirical control is indis-
pensable for site convergence studies.

Parker et al. [4] studied mammals
with echolocation capabilities (bats and
whales) and identified 200 genes of
adaptive convergence, using a method
referred to as�SSLS.The empirical con-
trols were done by two subsequent stud-
ies. Both Zou andZhang [7] andThomas
and Hahn [6] found that the level of
convergence between non-echolocating
mammals (or between an echolocating
and a non-echolocating species) is the
same as between echolocating mammals.
This may be the very first indication of
the importance of the empirical control.
When applied solely to the focus group
(i.e. echolocatingmammals), the�SSLS
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Figure 1.A symmetric design for detecting con-
vergence among three hypothetical taxa that
colonize the desert habitat independently. Each
focus desert species is paired with a non-desert
control. In such a design, the three non-desert
species provide the empirical control without
requiring parameter inputs in determining the
background level of convergence. In the text,
this design is proposed to be a key step in any
genomic analysis of convergence.

method yieldsmainly false positives.This
is likely true for other one-sided analyses
that only examine the focus group with-
out an empirical control [5,10,11].

In the second study, Foote et al.
[5] analyzed 15 mammalian genomes
for convergent signals in three marine
taxa—killer whale/dolphin, walrus and
manatee. This may be the only genomic
study that incorporates an empirical
control. Foote et al. listed specific adap-
tive amino acid substitutions that have
evolved by convergence but, at the same
time, reported ‘higher levels of conver-
gent amino acid substitutions in a control
set of terrestrial sister taxa to the marine
mammals’. In other words, background
noises appear to overwhelm the signals
of convergence. Foote et al. made an
interesting argument in this context:
although the noise level is high, it does
not necessarily mean that the detected
signals are false. (In particular, the signals
have been selected by using the Phyloge-
netic Analysis by Maximum Likelihood
(PAML) algorithm [21] to identify adap-
tive genes but it is not clear why the same
treatment was not used on the control.)

Following this logic, a method for
detecting convergence by stringently
filtering out noises should be most
useful. The CCS method proposed by
Xu et al. [8] seems a snug fit for this

purpose. The CCS method first builds
a symmetric phylogeny between the
focal and control group, then detects
convergence at the conservative sites
in both groups. The CCS method has a
three-fold advantage in detecting true
adaptive convergence [8]. First, conser-
vatively evolving sites are less afflicted
by random noises. Second, conservative
genes undergoing accelerated evolution
in a new environment often harbor
candidate sites of adaptation [15,22] and
convergent evolution is built on such
newly adaptive changes. Third, because
CCS is a symmetric design as shown
in Fig. 1, the convergence level in the
control group can be used directly on
the focus group as the background noise.
(An additional concern about unequal
evolutionary rates among branches can
be found in Xu et al. [8].)

Xu et al. apply the CCS method to
mangrove trees and report that, even af-
ter reducing background noises to the
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Figure 2. Mammalian species used in the convergence test. O indicates the character state of the
Outgroup 1 (Opossum), Outgroup 2 (Human, Rhesus macaque, Baboon and Marmoset) and Outgroup
3 (Mouse and Rat). Mi and Ni indicate the character state in marine (blue) and inland mammals (red),
respectively. In the CCS method, convergence is inferred only at conservative sites where N1 =
N2 = N3 = O and the other seven inland mammals have either ‘O’ or ‘-’ (missing data, no more than
five species). Convergence is inferred when Mi = Mj �= O. For the control, the same criteria, with
Mi and Ni switched, are applied. The phylogenetic tree is reconstructed using 1000 randomly picked
protein alignments.

possible minimum, one could only infer
the convergence with 50% certainty [8].
Thus, convergence signals are proba-
bilistic in nature and convergent sites
could not be unambiguously pinpointed.
Although CCS method might risk high
false negatives, eliminating false positives
should be the goal at present as false pos-
itives are still overwhelmingly prevalent.
The CCS method has recently been up-
dated to use a non-symmetric design that
substantially increases the power of de-
tecting true convergence [23].

Wenow re-analyze the 13mammalian
genomes (Fig. 2), following the set-up of
Foote et al. [5].This is also the symmetric
design required by Xu et al. [8]. A total of
16 873 orthologous alignments were pro-
vided by Foote et al. [5]. Using the CCS
method, we first define conservative sites
and then identify convergent amino acid
substitutions among them.The conserva-
tive sites are identified if the three inland
controls have the same amino acid state
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Table 2. Convergent and divergent sites detected by the CCS method. Only conservative sites are used in the CCS method. T, C and D represent total,
convergent and divergent site numbers. (The description of divergent sites is given in the Supplementary Data.)

Total
conservative
sites (T)

Divergent
sites (D)

Convergent
sites (C) C/T C/D

Number of genes
with n convergent
sites (n= 1, 2, 3)

Marine mammals 2 302 244 1558 1282 5.6× 10−4 0.823 930: 135: 24 (85%: 12%: 2%)
Inland mammals 2 977 271 2502 1861 6.3× 10−4 0.744 1198: 204: 74 (81%: 14%: 5%)

‘O’ (N1 = N2 = N3 = O) and the other
seven land mammals have either ‘O’ or
missing data. When so defined, the an-
cestral state can be confidently inferred
to be ‘O’, as described in Xu et al. [8].
Given the ancestral state of O, conver-
gence can be defined if two ormore of the
marine mammals share the same derived
state (Mi = Mj �= O). In contrast, diver-
gent sites are those with Mi �= O, Mj �=
O and Mi �= Mj. The same criteria, with
marine mammals and their inland rela-
tives switched, are applied to infer con-
vergence among the control taxa (Fig. 2).

From the analysis presented in
Table 2, 1282 and 1861 convergent
substitutions are detected in the marine
and inland mammals, respectively. As ex-
pected, the proportions of conservative
sites that show convergent substitutions
(the C/T ratio in Table 2) are low, at
5.6 × 10−4 and 6.3 × 10−4. Therefore,
when the background noises are reduced
to the minimum, the marine mammals
still show a lower signal of genome con-
vergence than the inland relatives. The
convergence detected is apparently the
residual noises that could not be further
purged. In the Supplementary Data, we
present a more detailed analysis, which
confirms that, overall, marine mammals
do not yield site-convergence signals.

In detecting molecular convergence,
the choice of taxa from similar, if not
identical, environments should be the
most important. In the case of marine
mammals, walruses are found in the Arc-
tic while manatees exist in tropical wa-
ters [24,25]. Killer whales and dolphins
rangemorewidely in both cold andwarm
waters than the other two taxa [26].
Furthermore, walruses only come into
water for feeding whereas whales and
manatees are obligatorily aquatic. It does
not seem compelling that such dissimilar

selective pressures would lead tothe
same molecular outcome. In such taxa,
weak genomic convergence may not
be surprising. Ideal candidates for ge-
nomic convergence detection should be
taxa adapted to the same environment
(or highly similar ones) for nearly the
same amount of time. The candidates
may include the large collectionofwoody
plants that invade the tropical coasts,
known as mangroves, at a comparable
time [27–29].

In the search for convergence signals,
the best way to estimate the background
noises would not be by simulations or
theoretical calculations. Given the vicis-
situde of sequence evolution, we rec-
ommend the use of empirical controls
that are symmetrically placed.Among the
14 genomic studies of convergence, only
two have such controls, both of which
yield a level of background convergence
that is the same or higher than that of the
focus taxa. It is prudent to suggest that, at
the genomic level, there is so far no ev-
idence of convergence. In the future, it
will be necessary to start the search us-
ing a symmetric model (e.g. CCS) that
can yield a set of candidate genes with a
stronger signal than noise. Further anal-
ysis to identify the genes of true conver-
gence can then be extended from this
basic design.

Finally, all evidence based on se-
quence comparisons can still, in princi-
ple, be false positives. Hence, the clinch-
ing proof will have to be functional tests.
At its most basic level, genomic analysis
is to identify candidate genes, on which
functional tests will be able to provide the
proof of convergent adaptation.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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