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Abstract

Parasitic nematodes are highly successful pathogens, inflicting disease on humans, animals

and plants. Despite great differences in their life cycles, host preference and transmission

modes, these parasites share a common capacity to manipulate their host’s immune sys-

tem. This is at least partly achieved through the release of excretory/secretory proteins, the

most well-characterized component of nematode secretomes, that are comprised of func-

tionally diverse molecules. In this work, we analyzed published protein secretomes of para-

sitic nematodes to identify common patterns as well as species-specific traits. The 20

selected organisms span 4 nematode clades, including plant pathogens, animal parasites,

and the free-living species Caenorhabditis elegans. Transthyretin-like proteins were the

only component common to all adult secretomes; many other protein classes overlapped

across multiple datasets. The glycolytic enzymes aldolase and enolase were present in all

parasitic species, but missing from C. elegans. Secretomes from larval stages showed less

overlap between species. Although comparison of secretome composition across species

and life-cycle stages is challenged by the use of different methods and depths of sequencing

among studies, our workflow enabled the identification of conserved protein families and

pinpointed elements that may have evolved as to enable parasitism. This strategy, extended

to more secretomes, may be exploited to prioritize therapeutic targets in the future.

Author summary

Parasitic helminths (worms) cause long-lasting infections. In order to survive in their

hosts, this class of pathogens has developed various strategies; one of them consists of

releasing soluble mediators (e.g., excretory/secretory (ES) proteins), which dampen the

host immune response. Here, we analyzed and compared published ES protein catalogs of

parasitic nematodes to identify common patterns as well as species-specific traits. Many

proteins were common to multiple species, and a few were absent in secretions from the

non-parasitic species Caenorhabditis elegans. This was the case of two glycolytic enzymes,
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aldolase and enolase, for which alternative functions have been proposed by others. A role

in parasitic processes is intriguing. Our workflow enabled the identification of conserved

protein families and pinpointed elements that may have evolved as to enable parasitism.

This may prove useful in the future to identify and prioritize potential targets for thera-

peutic interventions.

1. Introduction

Nematodes are a ubiquitous and highly diverse group of organisms. A parasitic lifestyle has

evolved at least 15 times in this phylum, with multiple species becoming reliant on plant or

animal hosts for survival and reproduction [1].

Parasitic species cause debilitating pathologies and immense economic losses. In 2013, 1.75

billion humans were estimated to be infected with the major parasitic nematode species of the

gastrointestinal (GI) tract (Ascaris lumbricoides, Trichuris trichiura, and the hookworms),

mostly in tropical and subtropical areas of the world [2]. In Western countries, the economic

impact of nematode parasites is huge, especially for livestock industries. GI nematodes alone

cause production losses in up to 50% of ruminant farms analyzed in several European studies

[3]. Plant parasitic nematodes cause projected yield losses of> 12% in crops worldwide, not

only due to direct damage, but also by increasing the plants’ vulnerability to other microorgan-

isms [4].

One peculiarity of nematode and other helminth infections is their typically long-lasting,

chronic nature. In mammalian hosts, adult worms can live for several months to many years.

For instance, filarial nematodes causing lymphatic filariasis (Wuchereria bancrofti and Brugia
spp.) can persist for at least 6–8 years [5]. For Onchocerca volvulus, this can be 10–15 years

(retrieved from https://www.cdc.gov/dpdx/onchocerciasis/index.html). Despite great differ-

ences in life cycles, preferential hosts and transmission modes, parasitic nematodes share a

common capacity to manipulate their host’s immune system. Their immunomodulatory prop-

erties explain at least in part their longevity in mammalian hosts [6]. Hence, understanding

the molecular dialogue between nematodes and their hosts that enables establishment of a

chronic infection has raised great interest in the scientific community. A particularly attractive

reason to understand the biological roles of parasite-derived molecules released into the host is

that this menu may explain the basis for host-parasite specificity. It appears that the immune

responses of mammals, for instance, are typically very capable of preventing establishment of

nematodes following infection. The relatively few nematode species that establish successful

infections in a given host must be able to modulate the immune response through this molecu-

lar language, which can be ‘understood’ by a small subset of potential hosts, but not by the

majority of such species.

Nematode infections typically induce a regulatory, “Th2-type” immune response in mam-

mals, involving CD4+ regulatory T cells, regulatory B cells, alternatively activated macro-

phages, and type 2 cytokines, among other effectors of the innate and adaptive arms of type 2

immunity [7,8]. A hallmark of chronic nematode infections is the achievement of nematode

antigen-specific T cell unresponsiveness [7,8]. This type of immune evasion, called immuno-

modulation, is only achieved by live worms and involves different types of soluble mediators,

released both passively and actively by the worm into its environment [7,9]. These mediators

can be collected from cultivated live worms in vitro, and the so-called excretory/secretory (ES)

products from a number of nematode species have been at least partially characterized bio-

chemically. ES products are described as both substances that are actively secreted by
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helminths and products that are released during physiological processes such as digestion or

egg-laying [9,10]. Hence, the composition of ES products can vary among different life-cycle

stages [10]. ES products consist of different types of biomolecules, including proteins, peptides,

small metabolites and RNA, many examples of which have immunomodulatory properties,

often showing some redundancy in target and function [9,11]. Excretory/secretory proteins

(ESP), termed the secretome, have been the most extensively studied component of nematode

ES products and comprise functionally diverse categories of molecules, including chemokines,

hormones, enzymes, antimicrobial peptides, etc. They are capable of (i) mimicking host mole-

cules (e.g., homologues of mammalian cytokine macrophage migration inhibitory factor, MIF,

which together with IL-4, induce alternative activation (suppressive profile) of macrophages)

[12,13], (ii) inhibiting immunological processes (e.g., protease inhibitors such as cystatins

impair antigen processing by antigen-processing cells and promote an immunosuppressive

cytokine environment) [14], (iii) degrading key host molecules (e.g., acetylcholinesterase from

GI nematodes can degrade the neurotransmitter acetylcholine, involved in fluid and mucus

production in the gut) [9,15], or iv) facilitating entry into, and movement within, the host by

destabilizing structural components (e.g., the plant-cell wall modifying enzymes of plant para-

sitic nematodes) [16].

The attractiveness of the immunomodulatory and anti-inflammatory properties of nema-

tode ESP for drug or vaccine design has been acknowledged for many years. Promising vaccine

candidates destined for use in humans or animals have been taken to early phases of clinical

development [17]. For example, the Human Hookworm Vaccine Initiative has been assessing

the use of recombinant Necator americanus ESP (e.g., Na-ASP-2, Na-GST-1, Na-APR-1),

which have shown different degrees of success [18]. Similarly, the anti-inflammatory proper-

ties of the ES-62 glycoprotein from the filarial parasite Acanthocheilonema viteae, which are

mediated by post-translational modification of this protein with phosphorylcholine, may lead

to treatments for various inflammatory conditions [19–22].

In this study, we gathered published protein secretomes of multiple species of parasitic

nematodes to identify common patterns as well as species-specific protein secretion traits.

These organisms span 4 nematode clades, including 3 plant and 16 animal parasites. Among

parasites of mammals, 12 occupy the GI tract of their hosts, one is located in blood vessels, one

resides in lymph nodes, and 2 inhabit other tissues. They display a wide variety of preferential

hosts and life histories. Finally, we included previously unpublished secretome data from the

non-parasitic free-living nematode Caenorhabditis elegans to highlight ESP components that

may be associated with parasitism.

2. Methods

2.1. C. elegans ES protein characterization by LC-MS/MS

Caenorhabditis elegans N2 strain was maintained under standard conditions on agar plates

with Escherichia coli OP50 as food source [23]. L4 –young adult stage worms from a synchro-

nized culture were recovered from the plates and washed extensively in M9 buffer to eliminate

bacteria and other debris that could interfere with the downstream analysis. The worms were

then incubated in M9 buffer for 4 h and ESP collected by pelleting the worms by centrifugation

at 1150 x g for 2 min. A cocktail of protease inhibitors (Sigma No P8849, St. Louis, MO) was

added to the recovered media, which was then passed through a 0.22 μm filter. Sample concen-

tration and further processing was performed as previously described [24]. ESP mixtures were

separated by SDS-PAGE on a 7–15% gradient acrylamide gel, followed by staining with Coo-

massie Brilliant Blue G. All procedures were performed at Genome Quebec as previously

described, including LC-MS/MS [24]. The entire lane was subjected to automated band
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excision to generate 13 contiguous bands which were subjected to reduction, cysteine-alkyl-

ation, and in-gel tryptic digestion in a MassPrep Workstation (Micromass, Manchester, UK).

Twenty μl of the tryptic digest solution were injected on a Zorbax 300SB-C18 pre-column

(5 × 0.3 mm, 5 μm) equilibrated with water containing acetonitrile (5%) and formic acid

(0.1%) using the Micro Well-plate sampler and the IsoPump modules of an Agilent 1100 Series

Nanoflow HPLC. Following washing for 5 min at 15 μl/min, the pre-column was back-flushed

to a 75 μm i.d. PicoFrit column (New Objective, Woburn, MA) filled with 10 cm BioBasic C18

packing (5 μm, 300 Å) by the acetonitrile gradient supplied by the Agilent series 1100 Nano-

pump to elute the peptides toward the mass spectrometer at a flow rate of 200 ηl/min. Eluted

peptides were analyzed in a Q-TOF micro (Waters Micromass, Manchester, UK) equipped

with a Nanosource modified with a nanospray adapter (New Objective, Woburn, MA). The

MS survey scan was set to 1 s (0.1 s interscan) and recorded from 350 to 1,600 m/z. MS/MS

scans were acquired from 50 to 1,990 m/z, scan time was 1.35 s, and the interscan interval was

0.15 s. Doubly and triply charged ions were selected for fragmentation with collision energies

calculated using a linear curve from reference collision energies.

MS raw data from a single run were acquired on the Data Directed Analysis feature in the

MassLynx (Micromass) software with a 1, 2, 4 duty cycle (1 sec in MS mode, 2 peptides

selected for fragmentation, maximum of 4 sec in MS/MS acquisition mode). MS/MS raw data

were transferred from the Q-TOF Microcomputer to a server and automatically manipulated

for generation of peaklists by employing Distiller version 2.3.2.0 (http://www.matrixscience.

com/distiller.html) with peak picking parameters set at 5 for Signal Noise Ratio (SNR) and at

0.4 for Correlation Threshold (CT). Briefly, MS/MS peak lists (MGF files) generated were ana-

lyzed using Mascot (Matrix Science, London, UK) and X! Tandem (Version: 2007.01.01.1)

[25,26]. Scaffold (version 4.7.3, Proteome Software Inc., Portland, OR) was used to validate

MS/MS based peptide and protein identifications [27]. Peptide identifications were accepted if

established at> 95.0% probability and protein identifications were accepted if established

at> 95.0% probability and contained at least 2 identified peptides. Proteins that contained

similar peptides and could not be differentiated based on MS/MS analysis alone were grouped

to satisfy the principles of parsimony. Searches were performed in a database set consisting of

C. elegans and Escherichia coli proteins in the Uniprot database (Taxon IDs: 6239 and 562,

release 2018_04). To rank the proteins based on absolute abundance, the emPAI spectrum

counting method was employed in Scaffold [28]. Data from the 13 files corresponding to 13

gel pieces were analyzed in Mudpit [29] to generate a single report. The resulting protein list

was further analyzed by Blast2GO [30,31] and SignalP 5.0 [32]. The data was deposited on

Mendeley Data (doi:10.17632/727hjmhwn5.1; https://data.mendeley.com/datasets/

727hjmhwn5/1).

2.2. Selection of nematode protein secretomes

We selected all published parasitic nematode whole ESP catalogues published before May 2020

and produced experimentally by MS (Fig 1 and Table 1) using an arbitrary cutoff of 20 unique

proteins (or sequence descriptions), for which accession numbers were publicly accessible,

and analyzed them between August 2019 and May 2020. To identify reports of nematode

secretomes, we searched PubMed using the following terms: "nematode secreted proteins

proteomic", "nematode secretome", "nematode excretory/secretory". Proteins found in extra-

cellular vesicle (EV) preparations have not been taken into account, as they have been the sub-

ject of a recent review [33]. We identified secretomes from species in all five major clades in

the phylum Nematoda, with several independent transitions from free-living to vertebrate par-

asitism [34,35]. We included secretomes of Haemonchus contortus [36,37], Ancylostoma
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caninum [38,39], Heligmosomoides polygyrus bakeri [24,40], Nippostrongylus brasiliensis [41],

Necator americanus [42], Strongyloides ratti [43], Strongyloides venezuelensis [44], Ascaris
suum [45–47], Dirofilaria immitis [48,49], Brugia malayi [50–52], Onchocerca ochengi [53],

Litomosoides sigmodontis [54], Spirocerca lupi [55], Gnathostoma spinigerum [56], Trichuris
muris [57], and Trichuris suis [58]. Plant parasitic species included Meloidogyne incognita [16],

Bursaphelenchus xylophilus [59,60], and Bursaphelenchus mucronatus [59]. As a non-parasitic

comparator, we included our previously unpublished ES data from Caenorhabditis elegans. As

noted in Table 1, various life-cycle stages of the parasites were included; overall, we analyzed

18 adult secretomes and 12 larval secretomes.

2.3. Data analysis

Comparative secretome analysis among ecologically diverse species may help prioritize pro-

teins that play essential roles in parasitism for functional studies and may contribute to our

understanding of the molecular basis of host-parasite specificity. To do so, protein families

and orthology analyses allowed us to re-analyze all collected data simultaneously with the

same tool, and resulted in a sequence-based clustering, independent of initial annotation.

2.3.1. Analysis of protein families. Description of the proteins based on the Pfam families

and domains was performed using Pfam_scan.pl, a Perl script calling HMMER v3 to search a

FASTA file against a library of Pfam HMMs [63]. The gathering bit score (—cut_ga) threshold

is employed as default parameter. Unique Pfam accessions (counted only once even if it

appeared several times in a dataset) were used to address common and unique features across

Fig 1. Helminth phylogeny. The 20 selected species are placed along the nematode clades containing parasitic species

according to recent phylogenetic analyses [34,61,62]. Trichuris spp. populate clade I (green); clade III (blue) contains

the filarial nematodes, S. lupi, A. suum, and G. spinigerum; clade IV (yellow) contains Strongyloides spp. and the

selected plant parasites; clade V (orange) contains C. elegans and other Rhabditomorpha.

https://doi.org/10.1371/journal.pntd.0009828.g001
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Table 1. Technical properties of the selected studies. Twenty-six studies, covering 20 parasite species, describing ESP analyzed in mass spectrometry experiments were

considered. Methodological details are noted, as well as the number of unique proteins used from each report.

Species Main

definitive

hosts

Source Stage/sex Total

number

of worms

ID or 2D

PAGE?

Spot/band

selections

MS platform Unique

proteins

accessions

available for

the present

work

Reported

proportion

with a signal

peptide

ADULTS

C. elegans - Current

work

L4-young adults

(hermaphrodites)

N/A 1D Whole

lane

Q-TOF micro (Waters

Micromass)

183 93.5%

H. contortus Sheep, goat [36] Mixed sexes N/A 2D 130 spots Voyager DE-STR

MALDI-TOF mass

spectrometer (Applied

Biosystems),

ESI-Q-TOF

(Micromass Ltd)

33 -

H. contortus Sheep, goat [37] Females and males N/A No - Q Exactive Plus mass

spectrometer (Thermo

Scientific)

621 54.1%

A. caninum Canids, felids [38] Mixed sexes N/A OFFGEL

electrophoresis

no micrOTOF-Q

(Bruker)

90 57%

A. caninum Canids, felids [39] Mixed sexes 300 OFFGEL

electrophoresis

18 bands AB SCIEX Triple TOF

+ 5600 mass

spectrometer (Applied

Biosystems)

315 -

H. p. bakeri Rodents [24] Mixed sexes N/A 1D Whole

lane

Q-TOF micro (Waters

Micromass)

20 -

H. p. bakeri Rodents [40] Mixed sexes N/A 1D N/A Hybrid LTQ-Orbitrap

XL instrument

(Thermo Fisher)

361 -

N.

brasiliensis
Rodents [41] Mixed sexes N/A 2D and

OFFGEL

electrophoresis

no AB SCIEX Triple TOF

+ 5600 mass

spectrometer (Applied

Biosystems)

162 43.8% �

N.

americanus
Human

(maintained

in hamsters)

[42] Mixed sexes N/A OFFGEL

electrophoresis

N/A AB SCIEX Triple TOF

+ 5600 mass

spectrometer (Applied

Biosystems)

198 48%

S. ratti Rat [43] Females N/A 1D Whole

lanes

LTQ linear ion trap

mass spectrometer

(Thermo Scientific)

219 27.9%

S.
venezuelensis

Rat [44] Females N/A 1D Whole

lanes

LCMS-IT-TOF mass

spectrometer

(Shimadzu Scientific

Instruments)

154 20.1% �

A. suum Pig [45] Females 10 adult

females

1D Whole

lane

LTQ-Orbitrap Elite

mass spectrometer

(Thermo Fisher)

175 40%

A. suum Pig [46] Mixed adults NA No - Q Exactive mass

spectrometer HF

(Thermo Fisher

Scientific)

101 -

D. immitis Canids, felids [48] Mixed adults 56 worms 1D Whole

lane

LTQ-FT Ultra mass

spectrometer (Thermo

Fisher)

102 20.9%

(Continued)
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Table 1. (Continued)

Species Main

definitive

hosts

Source Stage/sex Total

number

of worms

ID or 2D

PAGE?

Spot/band

selections

MS platform Unique

proteins

accessions

available for

the present

work

Reported

proportion

with a signal

peptide

D. immitis Canids, felids [49] Adult males and

females

40 males,

40

females

No - AB Sciex Triple TOF

+ 5600 mass

spectrometer (Applied

Biosystems)

84 -

B.malayi Human [52] Adult females and

males

N/A 1D Whole

lanes

Q-TOF micro (Waters

Micromass)

194 27.2%

B.malayi Human [50] Adult females and

males

NA No - LIT-FT mass

spectrometer

375 15% �

B.malayi Human [51] Mixed adults 50 worms 2D and no

electrophoresis

23 spots MALDI-ToF/ToF and

LC-MS/MS

(Proteomics Analyzer

4700 (Applied

Biosystems)

77 42.3%

O. ochengi Cattle [53] Adults (from nodule

fluid)

N/A No - LTQ-Orbitrap Velos

and Q-Exactive mass

spectrometers (both

Thermo Fisher

Scientific)

94 50%

L.

sigmodontis
Rodents [54] Adult males, pre-

gravid adult females,

gravid adult females

N/A No - LTQ-Orbitrap Velos

(Thermo Scientific)

297 31.1% �

S. lupi Canids, felids [55] Adult females and

males

N/A No - Q Exactive Plus

(Thermo Scientific)

128 -

T.muris Mouse [57] Mixed adults N/A No - 5600 mass

spectrometer (AB

Sciex)

145 41.9%

T. suis Pig [58] Mixed adults and 28

days old larvae

N/A No - 5600 mass

spectrometer (AB

Sciex)

342 26% �

LARVAL STAGES

H. contortus Sheep, goat [37] L3 and L4 N/A No - Q Exactive Plus mass

spectrometer (Thermo

Scientific)

307 and 527 58.2% (L3),

53.3% (L4)

N.

brasiliensis
Rodents [41] L3 N/A OFFGEL

electrophoresis

no AB Ssciex Triple TOF

+ 5600 mass

spectrometer (Applied

Biosystems)

31 43.8% �

M. incognita Plants [16] Juvenile infective

stage 2

N/A No - linear ion trap tandem

mass spectrometers

(LTQ, Thermo

Electron Corporation,

San Jose, CA)

472 -

S. ratti Rat [43] L3 N/A 1D Whole

lanes

LTQ linear ion trap

mass spectrometer

(Thermo Scientific)

336 22.3%

S.
venezuelensis

Rat [44] L3 N/A 1D Whole

lanes

LCMS-IT-TOF mass

spectrometer

(Shimadzu Scientific

Instruments)

415 20.1% �

A. suum Pig [47] L3- egg, L3-lungs, L4 N/A 1D Whole

lane

ESI-Q-TOF Premier

(Waters)

20, 45, and 58 62% �

(Continued)
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species (reports pooled regardless of the life-cycle stage or methodological differences). ESPs

from adult worms and larval stages were analyzed separately, including B. mucronatus and B.

xylophilus in both analyses, as these datasets comprised mixed stages.

2.3.2. Orthology inference analysis. Protein sequences from each dataset were aligned

against each other (in a blast all-vs-all) using OrthoFinder [64–67] with default parameters.

The program finds orthologs and orthogroups and infers gene and species trees. It was fed

with adult ESP sequences (fasta), pooling data from different studies for each species: A. cani-
num (n = 405), A. suum (n = 277), B. malayi (n = 646), B. mucronatus (n = 326), B. xylophilus
(n = 1996), C. elegans (n = 184), D. immitis (n = 180), H. contortus (n = 653), H. polygyrus
(n = 381), L. sigmodontis (n = 297), N. americanus (n = 198), N. brasiliensis (n = 162), O.

ochengi (n = 94), S. lupi (n = 128), S. ratti (n = 220), S. venezuelensis (n = 154), T. muris
(n = 145), T. suis (n = 342). The workflow comprises a DIAMOND BLAST [68] all-versus-all

to assign proteins to orthogroups. It then produces a distance matrix (using FastME [69]) to

finally generate gene- and species-level trees. ESPs from adult worms and larval stages were

analyzed separately; B. mucronatus and B. xylophilus were included in both analyses, as these

datasets comprised mixed stages. Similarly, the program was run with pooled data from all

available larval stages (and from different studies, excluding microfilariae) for each species: A.

suum (n = 120), B. malayi (n = 27), B. mucronatus (n = 326), B. xylophilus (n = 1996), G. spini-
gerum (n = 21), H. contortus (n = 834), L. sigmodontis (n = 20), M. incognita (n = 472), N. brasi-
liensis (n = 31), S. lupi (n = 248), S. ratti (n = 334), S. venezuelensis (n = 415), T. suis (n = 94).

Table 1. (Continued)

Species Main

definitive

hosts

Source Stage/sex Total

number

of worms

ID or 2D

PAGE?

Spot/band

selections

MS platform Unique

proteins

accessions

available for

the present

work

Reported

proportion

with a signal

peptide

B.malayi Human [50] Advanced (molting)

L3

N/A No - LIT-FT mass

spectrometer

27 15% �

G.

spinigerum
Canids, felids,

(human)

[56] Advanced L3 N/A 1D Whole

lanes

nanoLC-MS/MS;

micrOTOF-Q II

(Bruker)

21 -

L.

sigmodontis
Rodents [54] L3 N/A No - LTQ-Orbitrap Velos

(Thermo Scientific)

20 31.1%

S. lupi Canids, felids [55] L3 and L4 females N/A No - Q Exactive Plus

(Thermo Scientific)

117 and 131 -

T. suis Pig [58] Early larvae (up to

21 days)

N/A No 5600 mass

spectrometer

(ABSciex)

94 26% �

MIXED STAGES

B. xylophilus Plants [60] All stages N/A No - LTQ Velos orbitrap

mass spectrometer

(Thermo Fisher

Scientific)

1501 41.3%

B. xylophilus Plants [59] All stages N/A No - Triple TOF 5600 (AB

Sciex)

495 -

B.

mucronatus
Plants [59] All stages N/A No - Triple TOF 5600 (AB

Sciex)

326 -

N/A: not available

� based on proteins from several stages confounded.

https://doi.org/10.1371/journal.pntd.0009828.t001
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Resulting data were deposited in Mendeley Data (DOI: 10.17632/2skvdrf3rt.1; https://data.

mendeley.com/datasets/2skvdrf3rt/1).

2.3.3. Phylogeny. Protein sequences were aligned using MAFFT [70]. Identical sequences

were removed to leave only a single representative. Positions containing more than 10% gaps

were excluded. A maximum likelihood phylogeny was inferred with branch support evaluated

by SH-like statistics (PhyML [71]). Figures were produced using the iTOL online interface

[72].

3. Results

3.1. C. elegans secretome

MS analysis of C. elegans ESP led to the identification of 184 proteins. Table 2 shows the 10

most abundant proteins; all proteins identified are shown in S1 Table. The 3 most common

biological processes were ‘innate immune response’ (GO:0045087, 43/184 proteins), ‘defense

response to Gram-positive bacterium’ (GO:0050830, 20/184 proteins), and ‘defense response

to Gram-negative bacterium’ (GO:0050829, 19/184 proteins). The 3 most common molecular

functions were ‘carbohydrate binding’ (GO:0030246, 18/184 proteins), ‘aspartic-type endopep-

tidase activity’ (GO:0004190, 10/184 proteins), and ‘serine-type carboxypeptidase activity’

(GO:0004185, 9/184 proteins). Finally, the 3 most common cell compartments were ‘integral

component of membrane’ (GO:0016021, 22/184 proteins), ‘membrane raft’ (GO:0045121, 18/

184 proteins), and ‘extracellular space’ (GO:0005615, 16/184 proteins). The large majority of

C. elegans ESP were predicted to have a signal peptide, with 171 proteins presenting a putative

cleavage site.

3.2. Protein families

Representatives of the transthyretin-like protein family (PF01060.23) were found in ESP from

adult worms of all 18 species included in this analysis, while cyclophilin-type peptidyl-prolyl

cis-trans isomerase (PF00160.21) was present in all adult secretomes except N. americanus.
Stratification by species (upon pooling datasets for the same species) identified 5 Pfam acces-

sions common to all parasitic species examined but absent in C. elegans. Two of them were

enolase (PF03952.16 and PF00113.22); the other 3 were fructose-bisphosphate aldolase

(PF00274.19), C-terminal domain of 1-Cys peroxiredoxin (PF10417.9), and alkyl hydroperox-

ide reductase (AhpC)/thiol specific antioxidant (TSA) family (PF00578.21). Thirty-nine Pfam

accessions were unique to the plant parasites (belonging to the same genus, both describing

ESPs from mixed stages), but no Pfam was specifically associated with animal parasites. No

Table 2. Top 10 proteins identified in the C. elegans secretome. Proteins were ranked by relative abundance using the emPAI values in Scaffold.

Abundance Ranking Uniprot ID Protein Description Quantitative Value (Normalized emPAI)

1 Q9TSVS4 Aspartic protease 1 230

2 Q19698 Invertebrate lysozyme protein 5, isoform a 183

3 P34528 Putative serine protease K12H4.7 109

4 Q20219/ A0A131MBU3 Protein irg-7 (infection response gene 7) 85

5 Q21152 Fatty acid/retinol binding protein 74

6 G5ECR0 Lectin C-type domain protein 41

7 O45444 C-type lectin 38

8 Q19853 Protein irg-7 37

9 O01530 Aspartic protease 6 34

10 Q94246 GEI-4 (Four) interacting protein 30

https://doi.org/10.1371/journal.pntd.0009828.t002
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Pfam was found to be clade-specific, although 2 accessions were unique to T. muris and T. suis
(clade I, same genus): C8 (PF08742.11) and calponin homology (PF18383.1) domains. Simi-

larly, no pattern was discernable with host localization (GI tract vs other tissues). Detailed

Pfam accessions are provided in S2 Table.

Clustering by species yielded 13 datasets for larvae (all larval stages confounded) for com-

parison. No Pfam accession was common to all. Cyclophilin-type peptidyl-prolyl cis-trans

isomerase (PF00160.21) was found in larval secretions from all species except G. spinigerum
(see S2 Table). Forty-seven accessions were common (and unique) to all 3 plant parasites.

Three Pfams were uniquely found in clade IV larvae (B. mucronatus, B. xylophilus, M. incog-
nita, S. ratti and S. venezuelensis): aconitase (PF00330.20), aconitase C-terminal domain

(PF00694.19), and lipocalin (PF00061.23). Apyrase (PF06079.11) was common to larvae of the

two clade V parasites examined (H. contortus and N. brasiliensis).

3.4. Orthology analysis

Using adult ESP, OrthoFinder assigned 5783 genes (85.2% of total) to 905 orthogroups. An

orthogroup is a group of genes descended from a single gene in the last common ancestor of a

group of species and is identified from a blast all-versus-all analysis [64,65]. B. malayi (from 3

individual reports) was the species with the fewest assigned genes (66.3%);� 79% of ESP were

assigned to orthogroups for all other species. A fraction of proteins could not be assigned to

orthogroups, due to i) protein sampling (ESP catalogs and not whole proteomes) and ii) vary-

ing and relatively small dataset sizes. Maximum likelihood phylogenies of 10 highly repre-

sented orthogroups of interest (OG0000000: transthyretin-like family; OG0000006: peptidyl-

prolyl cis-trans isomerase; OG0000025: enolase; OG0000020: aldolase; OG0000010: fatty-acid

and retinol-binding protein 1; OG0000027: peroxiredoxin/AhpC/TSA family; OG0000004:

galectin; OG0000034: 14-3-3 protein; OG0000064: nucleoside diphosphate kinase;

OG0000022: actin) and comparison with the species tree based on the ParaSite database [34]

did not identify any clades inconsistent with the expected species relationship. Figs 2 and 3

show representative phylogenies of the enolase (OG0000025) and aldolase sequences

OG0000020 [34]. Details of resulting orthogroups can be found in Mendeley data (DOI: 10.

17632/2skvdrf3rt.1; https://data.mendeley.com/datasets/2skvdrf3rt/1).

Fig 2. Maximum likelihood phylogeny of enolase protein sequences. Scale bar represents distance. Numbers indicate the SH-like support for each node. The tree is

rooted at the divergence of clade I nematodes. The tree follows the expected divergence based on species. The dataset of origin is indicated in brackets, in case a

homologous species name was used as description in the original reports. The placement of C. elegans Q27527 (sequence from the N. brasiliensis dataset) outside clade V

does not have reliable support in the data (bootstrap = 0.83). D. immitis and S. ratti also showed enolase sequences, which are not depicted in this graph due to sequence

selection described in the methods (2.3.3.).

https://doi.org/10.1371/journal.pntd.0009828.g002
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The orthogroup corresponding to transthyretin-like proteins was found consistently in all

adult ESP (18 species; Table 3). Fructose-bisphosphate aldolase and enolase were represented

in ESP of all parasite species but not in secretions from C. elegans. Peptidyl-prolyl cis-trans

isomerase was found in all datasets except N. americanus, whereas fatty-acid and retinol-bind-

ing protein 1 was missing in both Trichuris spp. (clade I species) only. As many as 19

orthogroups appeared unique to Trichuris spp. (clade I), and only one was found to be unique

to the four clade IV species (OG0000377, which corresponds to a 4-hydroxyphenylpyruvate

dioxygenase upon BLAST search). No orthogroup was unique and specific to clade III or V

nematodes. Plant parasites (Bursaphelenchus spp.) shared 100 unique orthogroups. Localiza-

tion in the host did not reveal further patterns. Orthogroups containing 14-3-3 protein

(OG0000034), peroxiredoxin/AhpC/TSA family (OG0000027), and galectin (OG0000004),

were detected in 16/18 species. Nucleoside diphosphate kinase (OG0000064), actin

(OG0000022), malate dehydrogenase (OG0000041), triosephospate isomerase (OG0000044),

glutathione S-transferase (OG0000009), protein disulfide isomerase (OG0000012), and glycer-

aldehyde 3-phosphate dehydrogenase (OG0000053) were detected in 15/18 species.

Between 1 (D. immitis) and 105 (B. xylophilus) species-specific orthogroups were detected

in all species except B. mucronatus, for which no orthogroup was found to be unique to this

species.

ESP from larval stages were available for 13 species. The number of orthogroups varied

more substantially among larval datasets: only 13 orthogroups were found for G. spinigerum,

but 671 for B. xylophilus. No orthogroup was present in all species. The most common, repre-

sented by cyclophilin-type peptidyl-prolyl cis-trans isomerase, was found in all larval secre-

tomes except G. spinigerum. Common to 11 species were transthyretin-like protein and

galectin. Other commonly represented proteins included actin, aldolase, serpin, nucleoside

Fig 3. Maximum likelihood phylogeny of aldolase protein sequences. Scale bar represents distance. Numbers indicate the SH-like support for each node. The tree is

rooted at the divergence of clade I nematodes. The tree follows the expected divergence based on species. The presence of multiple sequences from a species at different

points in the tree indicates the presence of gene duplication. The aldolase orthogroup is likely represented by two genes, which form two groups; within each group, the

expected phylogeny is respected. B. malayi and S. lupi also showed aldolase sequences, which are not depicted in this graph due to sequence selection described in the

methods (2.3.3.).

https://doi.org/10.1371/journal.pntd.0009828.g003
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diphosphate kinase, and major allergen protein, among others. Larval datasets included three

plant parasites, including M. incognita. Together with the Bursaphelenchus spp., they shared 41

unique orthogroups, of which 41% were ribosomal proteins.

3.5. A closer look at aldolase and enolase

Present in all secretomes except of the nonparasitic C. elegans, we examined our data on aldol-

ase and enolase. OrthoFinder produces resolved gene trees by conducting a duplication-loss-

coalescence analysis and identifies the more parsimonious interpretation of the tree, as well as

putative gene duplication events. As such, 13 and 9 duplication events were detected for

aldoalse and enolase, respectively. The maximum parsimony phylogenies for enolase and

aldolase (computed with a different dataset) are shown in Figs 2 and 3, respectively. Both trees

follow the expected divergence based on species [34]; some gene duplication events are con-

firmed with this method. The aldolase orthogroup is likely represented by two genes, which

form two groups; within each group, the expected phylogeny is respected.

4. Discussion

Nematode parasite ESP are distinct from the set of somatic proteins, in class and/or abundance

[73]. Many of these proteins seem to be involved in nutrient uptake and transport, reflecting

the strategies employed by these parasites to capture and exploit energy sources from the host,

necessary for establishing a chronic infection. Much attention has been paid to their involve-

ment in immune evasion/modulation, preventing elimination and development of host

Table 3. Most common ESPs based on orthology analysis. ESPs were assigned to orthogroups in OrthoFinder. The number of species where at least one protein was

assigned to a given orthogroup is indicated, along with the species where the orthogroup was found to be absent.

Number of species Orthogroup Protein name/function Absent in ES from

18/18 OG0000000 Transthyretins -
17/18 OG0000020 Fructose-bisphosphate aldolase C. elegans

OG0000025 Enolase

OG0000006 Peptidyl-prolyl cis-trans isomerase N. americanus
16/18 OG0000010 Fatty-acid and retinol-binding protein 1 T. muris, T. suis

OG0000027 Peroxiredoxin/AhpC/TSA family C. elegans, S. lupi
OG0000004 Galectin C. elegans, O. ochengi
OG0000034 14-3-3 protein A. suum, N. americanus

15/18 OG0000064 Nucleoside diphosphate kinase N. americanus, O. ochengi and T. muris
OG0000022 Actin C. elegans, O. ochengi, S. lupi
OG0000041 Malate dehydrogenase

OG0000044 Triosephosphate isomerase B. mucronatus, C. elegans, N. americanus
OG0000009 Glutathione S-transferase B. malayi, C. elegans, S. venezelensis
OG0000012 Protein disulfide-isomerase A. suum, C. elegans, O. ochengi
OG0000053 Glyceraldehyde-3-phosphate dehydrogenase A. caninum, N. brasiliensis, S. ratti

14/18 OG0000024 Superoxide dismutase [Cu-Zn] H. polygyrus, O. ochengi, S. venzuelensis, T. muris
OG0000003 Cysteine protease D. immitis, S. ratti, S. venezuelensis, T. muris
OG0000002 Aspartic protease D. immitis, S. lupi, S. venezuelensis, T. suis
OG0000018 Kunitz/Bovine pancreatic trypsin inhibitor domain containing protein D. immitis, S. lupi, S. ratti, T. muris
OG0000013 Major sperm protein C. elegans, N. americanus, S. lupi, S. venezuelensis
OG0000049 Phosphoenolpyruvate carboxykinase B. mucronatus, C. elegans, D. immitis, S. venezuelensis
OG0000032 Chitin binding Peritrophin-A domain protein B. malayi, C. elegans, S. lupi, T. muris
OG0000029 Heat shock 70 kDa protein A. suum, C. elegans, O. ochengi, S. venezuelensis

https://doi.org/10.1371/journal.pntd.0009828.t003
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immunity. Secretomes may provide valuable information on the molecules and pathways

involved in these events. In fact, helminth ES products represent an anti-inflammatory phar-

macopeia that eventually may be exploited to treat autoimmune and inflammatory diseases

[74].

This work presents the first comprehensive comparison of the protein components of nem-

atode ESP from 20 species (18 species for adult secretomes and 12 species for mixed larval

secretomes) based on experimentally-generated samples. Our results are in overall qualitative

agreement with a similar study, based on 31 nematode secretomes predicted in silico [75]. In

this prior study, secreted proteins were slected based on the presence of a signal peptide; how-

ever, many parasite ESP—especially those contained in EVs–lack these sequences. We com-

pared the results of studies that varied in methodology and secretome coverage depth (amount

of protein analyzed and false discovery rate cutoffs); hence, in the number of proteins detected,

which may affect the degree of similarity between datasets. We also acknowledge the chal-

lenges represented by the complex sources of the 18 adult and 12 larval secretomes, sometimes

comprising mixed stages, and representing many anatomical sources of protein secretion,

including uterine fluid, and spanning infective as well as free-living stages. The number of

worms, conditions, and duration of in vitro cultivation used to obtain the preparations ana-

lyzed in this study varied as well. Culture conditions are expected not to reflect accurately the

in vivo situation. Similarly, maintenance of C. elegans on agar plates is an artificial situation;

standardized E. coli cultures do not belong in the nematode’s diet in the wild [76]. Thus, labo-

ratory settings may have an impact on the secretomes analyzed here and elsewhere, but the

extent of it remains unknown. For instance, the fact that C. elegans ESP contribute heavily to

defense mechanisms against Gram-negative bacteria (such as E. coli) might be explained by

culture conditions. A further limitation of this comparative work was only one secretome

from a non-parasitic species fulfilled our selection criteria. Hence, the current analysis of traits

of parasitism is preliminary and will require validation with additional species. Nonetheless,

our work provides a functional dimension (strictly qualitative, ignoring redundancies and

abundance) to these ESP catalogs, and common trends and cluster-specific differences have

emerged.

One reason for performing this analysis is that the complex composition of parasite ESP

(hundreds of proteins in some cases) confounds the ability to identify those related to viru-

lence and hence the success of an infection. Comparative analysis between ecologically diverse

species may help prioritize proteins that play essential roles in parasitism for functional studies

and may contribute to our understanding of the molecular basis of host-parasite specificity.

The orthology analysis allowed to re-analyze all collected data simultaneously with the same

tool, and resulted in a sequence-based clustering, independently of their initial annotation,

reported in individual papers.

A number of classical protein signatures among parasitic nematode secretomes were previ-

ously identified. These include cytokine homologues, C-type lectins and galectins, protease

inhibitors, antioxidants, and venom allergen homologues [9]. In addition, proteins involved in

cell wall degradation, detoxification and giant cell formation, among others, are secreted by

the plant parasite M. incognita [16].

We included the model organism C. elegans, as this highly studied, free-living nematode

has been a powerful model in comparative genomics and proteomics studies [77]. Compara-

tive analyses with a free-living species may reveal mechanisms by which parasitic species have

arisen and evolved [78]. Indeed, our comparative analyses of secretomes has shown some dif-

ferences between parasitic species and C. elegans, which for instance, was not found to secrete

aldolase or enolase, peroxiredoxin/AhpC/TSA family, or galectin.
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Transthyretin-like proteins were identified in all adult secretions by both Pfam and orthol-

ogy analyses, while cyclophilin-type peptidyl-prolyl cis-trans isomerases were absent only

from N. americanus ESP. In vertebrates, transthyretin-related proteins are transporters of thy-

roid hormones and retinoids, while putative functions vary in invertebrates [79]. Transthyretin

was hypothesized to be secreted by M. incognita to regulate host plant cell growth, contribute

to establishment of infection and participate in immune evasion [16]. In the parasitic nema-

tode Ostertagia ostertagi, however, secondary structure predictions do not support the ability

to achieve the conformation of transthyretin-like proteins necessary to transport lipids or thy-

roid hormones, which was confirmed in assays using recombinant protein [80]. Neuronal

expression with functions in the nervous system was suggested for C. elegans, as transthyretin-

like proteins, which show characteristics similar to neuropeptides [81]. Nematodes must

acquire essential compounds such as fatty acids and retinol from their environment, as they

are incapable of their de novo synthesis. Fatty acid and retinol binding (FAR) proteins were

common across the adult secretomes of 16/18 species reviewed here. These highly conserved

proteins may play a critical role in the sequestration of a broad range of essential fatty acids,

retinoids and other nutrients for delivery from the host to the parasite [82]. Many parasites

have limited capacity to synthesize lipids and therefore depend on lipid binding proteins to

acquire essential metabolites from their host [83]. Hydrophobic lipophilic molecules such as

fatty acids, eicosanoids, retinoids and steroids have important functions as energy sources and

in metabolic signaling [83]. Nematode polyprotein antigen represents another class of fatty-

acid binding proteins. In hookworms, it localizes in the subcuticle, suggesting a direct interac-

tion with the host at the attachment site, although its precise role remains obscure [84].

Missing proteins in C. elegans ESP

Absent from C. elegans ESP, several protein families may be specifically associated with para-

sitism, in agreement with the orthology analysis; they include the glycolytic enzymes enolase

and aldolase, a peroxiredoxin, and an alkyl hydroperoxide reductase (AhpC) and thiol specific

antioxidant (TSA). This is in line with recent data on the contents of C. elegans extracellular

vesicles (EVs), in which these proteins were also absent [85], while enolase but not aldolase

were described in EVs of several nematode species [33]. Together with GAPDH, and triose-

phosphate isomerase (TPI), enolase and aldolase from other pathogens can bind plasminogen,

favoring extracellular matrix degradation, a phenomenon that favors host invasion [86,87].

Additional non-metabolic (moonlighting) functions have been attributed to aldolase and eno-

lase [88,89]. For instance, their extracellular presence has been suggested to increase virulence

of various pathogens (reviewed in [89]) by facilitating adherence to cells to invade, modulating

host immune responses (especially by macrophages), interfering with the host hemostatic sys-

tem, and stimulating angiogenesis around parasite structures to increase blood supply, among

other speculative functions. For instance, GAPDH has anti-inflammatory properties, prevent-

ing cytokine storm and mortality in a mouse model of LPS-induced sepsis [90]. In T cells,

GAPDH acts as an energy sensor post-transcriptionally; when glucose levels are low, its inter-

action with transcripts of key genes, including IFN-γ and IL-2, represses translation, restricting

cytokine production under conditions of limiting energy resources [88,91]. In H. contortus,
GAPDH has also been shown to bind to and inhibit the activity of complement C1q and C3,

suggesting a role in host immunomodulation [92,93]. Plant parasitic nematode GAPDH has

protective properties against ROS [16,94]. In humans, α-enolase can be translated as a trun-

cated version called Myc-promoter-binding protein 1 (MBP-1), which represses the pro-pro-

liferative promoter c-myc, governing metabolic reprogramming of T cells [95,96]. MBP-1 also

suppresses inflammation through transcriptional potentiation of a FoxP3 isoform in
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regulatory T cells [90,97]. It is striking that aldolase, enolase and TPI were not detected in the

secretome of C. elegans, while GAPDH is present. To conclude whether the secretion of glyco-

lytic enzymes reflects an adaptation to a parasitic lifestyle will require further evidence based

on secretome analysis from additional non-parasitic species. At this stage, we cannot exclude

the possibility that the absence of these ESP represents a C. elegans-specific trait. In addition,

whether these enzymes are active in the extracellular milieu remains to be determined.

Gene duplication is a major driver of functional diversification of proteins. This is particu-

larly relevant in the context of parasitism, where an evolutionary arms race between host and

parasite is in place, and with events such as host range expansion. In parasitic nematodes, it is

likely that rapid gene family expansions occur frequently, along with switches in secretory

capacity, to facilitate adaptation to specific niches [98]. Consistently, unique modifications of

effectors may be observed in each taxa of closely related species [98]. For helminth proteases, it

was hypothesized that evolution in protease gene families is rather driven by accidental fortu-

itous interactions with off-target substrates, than by gradual evolution. The acquisition of new

functions would then be followed by multiple gene duplication events [98]. Adaptation to host

metabolism has resulted in a loss of metabolic pathways in trematode and cestode parasites,

but not in nematodes. Instead, nematodes have acquired additional enzymes via horizontal

gene transfer, although the general trend in helminths is toward a reduction of auxiliary

metabolism [98]. Upon phylogenetic analysis of the glycolytic enzymes aldolase and enolase,

we found the expected divergence based on species, but also appreciable gene duplication

(especially for aldolase), while the functional consequences of this multiplicity remain to be

studied. Possible functions of ESP may be (at least partially) characterized by examining life

stage-specific production patterns, which was not systematically possible in the present work.

As several of the examined species have independent origins of parasitism, a systematic con-

vergent evolution of an essential gene is unlikely to happen. Rather, some proteins present

across eukaryotes might show similar moonlighting functions, and some organisms might

have lost the ability to release these molecules.

Glycolytic enzymes lacking signal peptides, the mechanisms by which these moelcules are

exported to the extracellular space are not completely resolved. However, they have been

detected in EVs of various origins, also from helminths [33].

Antioxidants and redox proteins

Reactive oxygen species (ROS) and redox signals functionally regulate various aspects of host-

pathogen interactions, from pathogen entry through protein redox switches and redox modifi-

cation, to phagocyte ROS production and control of phagolysosome function (and hence anti-

gen processing) [99]. Parasites must counter the damaging effects of ROS released by

stimulated host immune cells. Accordingly, several major antioxidant proteins were present in

the analyzed secretomes. Although absent in the secretomes from C. elegans, B. malayi, and S.

venezuelensis adults in this comparative analysis, glutathione S-transferase (GST) was

described (although perhaps not secreted) for the free-living nematode in response to oxida-

tive stress in general and nutrient deprivation [100,101], and in filarial parasites including O.

volvulus [102]. In a B. malayi secretome as well, a GST had been reported, which has however

been assigned to another orthogroup in the present analysis; at the time of writing, this

sequence was no longer annotated as a GST, but may have GST-like activity. GST-like proteins

appear to fulfil other functions, including immunomodulation. OvGST2 may protect the para-

site from host-mediated lipid peroxidation, while OvGST1 was shown to generate eicosanoids,

the anti-inflammatory properties of which may influence dendritic cell migration or chemo-

taxis of different cell types [53,103,104]. Similarly, superoxide dismutase appeared in 15 adult

PLOS NEGLECTED TROPICAL DISEASES Mining nematode protein secretomes

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009828 September 29, 2021 15 / 23

https://doi.org/10.1371/journal.pntd.0009828


secretomes, and is likely to be common to parasitic nematodes [105]. Peroxiredoxins were

detected in 16 secretomes and elsewhere in the secretions or tissues from D. immitis, A. ceyla-
nicum, and H. contortus [105–108].

Protein disulfide isomerase (in 15/18 secretomes) belongs to a redox chaperone family with

implications in many cellular processes. It participates in the maintenance of stable protein

conformations. Host-derived protein disulfide isomerase determines the stability of antigen-

MHC class I complexes and their transport to the plasma membrane, inhibits protozoan para-

site uptake by immune cells via redox mechanisms, and modulates their translocation to pha-

gosomes and ROS production by NADPH oxidase [99].

Other common ESP

Peptidyl-prolyl cis-trans-isomerases (also known as cyclophilins), present in 17/18 secretomes

and absent from N. amercicanus, function in extracellular signaling. For instance, some

secreted cyclophilins induce chemotaxis or integrin-mediated immune cell adhesion [109].

Nucleoside diphosphate kinase, in addition to functions in the maintenance of intracellular

nucleotide pools, serves as a mechanism in Mycobacterium tuberculosis to evade the innate

immune system by promoting phagosome maturation arrest in macrophages and by inactivat-

ing small GTPases necessary for the production of ROS [110].

Over 40% of ESP released by plant parasites were ribosomal proteins. If their extracellular

function(s) is/are unclear to date, targeting them by RNAi often results in a significant

decrease in worm viability [111].

Considerations on mechanisms of protein secretion

Reported proportions of ESP containing a signal peptide for classical secretion vary from 15 to

78% among parasitic species, and reached 93.5% in the C. elegans secretome (Table 1).

Hypotheses to explain the perhaps surprisingly low rates in parasites include that the predic-

tion algorithms were trained on mammalian protein sequences [112], or that holocrine secre-

tion may occur [51]. Among known alternative mechanisms of secretion by parasites is the

exosomal pathway; thus, absence of a signal peptide does not accurately predict the secretory

status of a protein. According to the Exocarta database [113], the four glycolytic enzymes pre-

viously mentioned, actin, heat shock proteins, peptidyl-prolyl cis-trans isomerase, 14-3-3 pro-

teins, some galactoside-binding lectins, elongation factors, and peroxiredoxins are among the

100 most often reported exosomal proteins in mammalian exosomes. Because Exocarta is

based on mammalian data, it is not possible to confidently assign nematode proteins to the

exosome compartment based on sequence alone. However, some of the most common pro-

teins in nematode secretomes have been shown to be released via exosomes into the environ-

ment. For instance, in T. muris secretions, transthyretin was found in both “classical” ES and

in the exosome fraction, while superoxide dismutase was found in exosomes only [57]. In hel-

minth parasites, proteins bearing signal peptides are less evolutionarily conserved and and

were proposed to undergo accelerated evolution, either because of loosened functional con-

straints, or as a consequence of a stronger selective pressure from the host immune system

[114].

Conclusions and priorities for further research

The identification of individual secretome components as potentially key determinants that

render a host permissive to infection will expand the list of candidate targets that could be

exploited for therapeutic intervention. Therefore, pinpointing elements that may have evolved

as to enable parasitism is inherently useful.
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Our comparative analysis workflow allowed to identify the most conserved ES proteins and

protein families across 20 nematode secretomes (including 18 adult secretomes). Similarly, we

identified two glycolytic proteins that were absent in the non-parasitic species C. elegans. A

next step will be to validate this result in further non-parasitic nematode species. Defining

potential implications of aldolase and enolase in parasitic processes should be a research prior-

ity. Further in-depth characterization of which moonlighting functions may be fulfilled by

these and by which isoforms may shed light on novel host modulatory mechanisms.

Supporting information

S1 Table. Analyzed C. elegans secretome.

(XLSX)

S2 Table. Pfam accession analysis.

(XLSX)

Author Contributions

Conceptualization: Lucienne Tritten, Cristina Ballesteros, Timothy G. Geary, Yovany

Moreno.

Data curation: Lucienne Tritten, Cristina Ballesteros.

Formal analysis: Lucienne Tritten, Cristina Ballesteros, Robin Beech.

Funding acquisition: Lucienne Tritten, Timothy G. Geary.

Investigation: Yovany Moreno.

Methodology: Lucienne Tritten.

Writing – original draft: Lucienne Tritten, Cristina Ballesteros.

Writing – review & editing: Lucienne Tritten, Cristina Ballesteros, Robin Beech, Timothy G.

Geary, Yovany Moreno.

References

1. Blaxter M, Koutsovoulos G. The evolution of parasitism in Nematoda. Parasitology. 2015; 142 Suppl

1: S26–39. https://doi.org/10.1017/S0031182014000791 PMID: 24963797

2. Herricks JR, Hotez PJ, Wanga V, Coffeng LE, Haagsma JA, Basáñez M-G, et al. The global burden of
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