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Abstract: To effectively improve the energy density and reduce the self-discharging rate of micro-
supercapacitors, an advanced strategy is required. In this study, we developed a hydroquinone
(HQ)-based polymer-gel electrolyte (HQ-gel) for micro-supercapacitors. The introduced HQ redox
mediators (HQ-RMs) in the gel electrolyte composites underwent additional Faradaic redox reactions
and synergistically increased the overall energy density of the micro-supercapacitors. Moreover,
the HQ-RMs in the gel electrolyte weakened the self-discharging behavior by providing a strong
binding attachment of charged ions on the porous graphitized carbon electrodes after the redox
reactions. The micro-supercapacitors with HQ gel (HQ-MSCs) showed excellent energy storage
performance, including a high energy volumetric capacitance of 255 mF cm−3 at a current of 1 µA,
which is 2.7 times higher than the micro-supercapacitors based on bare-gel electrolyte composites
without HQ-RMs (b-MSCs). The HQ-MSCs showed comparatively low self-discharging behavior
with an open circuit potential drop of 37% compared to the b-MSCs with an open circuit potential
drop of 60% after 2000 s. The assembled HQ-MSCs exhibited high mechanical flexibility over the
applied external tensile and compressive strains. Additionally, the HQ-MSCs show the adequate
circuit compatibility within series and parallel connections and the good cycling performance of
capacitance retention of 95% after 3000 cycles.

Keywords: hydroquinone-based polymer-gel electrolyte; micro-supercapacitors; Faradaic redox
reactions; energy storage

1. Introduction

Recent studies have demonstrated the potential of flexible micro-supercapacitors
for supplying energy and electricity to future flexible and wearable electronics such as
rollable displays, human-implanted devices, and high-end robotics [1–3]. The micro-
supercapacitors are highly significant as future energy storage devices because they can
be integrated with small-sized applications, operate under fast charge/discharge condi-
tions, and have a long lifetime [4]. Moreover, developing an effective method to fabricate
electrode structures on flexible substrates and depositing electrode materials on small
areas is crucial for the successful utilization of micro-supercapacitors. As a result, tremen-
dous efforts have been directed to develop carbon-based micro-supercapacitor electrode
materials [5].
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Carbon materials can be easily handled on flexible substrates, and their electrical and
chemical properties are well tailored by a simple post-treatment process, inducing high
electrochemical energy storage performance [6,7]. For example, the gold and nitrogen
doping on the carbon electrode sample can increase the conductivity and wettability of
the carbon electrode, inducing the improved electrochemical performance [8]. Moreover,
Peng et al. reported that the boron doped laser-induced graphene has highly improved
electrochemical performance, greater than the pure laser-induced graphene [9]. However,
carbon-based micro-supercapacitors inevitably have a lower energy density than other
energy storage systems because of their electrostatic/physical-only charge-storing kinet-
ics [10,11]. In general, the energy density of carbon-based electrodes based on electric
double layer capacitor (EDLC) lies in the range of 0.1~3 Wh kg−1 [12], but in a range of
over 100 Wh kg−1 for Li ion batteries. There is also another type of supercapacitor (pseu-
docapacitors, with an energy density of about 10 Wh kg−1), but they store charges through
Faradaic redox reactions on the surface of electrodes [13]. Moreover, carbon materials for
flexible micro-supercapacitors based on EDLC suffer from a high self-discharging rate
owing to the weak attachment of electrolyte ions on the carbon electrodes. Additionally,
the polymer-gel electrolyte is another essential component to develop flexible and wearable
micro-supercapacitors [14,15]. In general, the classic liquid-type electrolyte has critical
issues to apply the flexible and wearable supercapacitors due not only to their electrolyte
leakage but also to their high manufacturing costs, such as difficult packaging to fabricate
flexible supercapacitors [16,17]. However, the pure polymer-gel electrolyte has the low
ionic conductivity of the polymer medium [18,19]. Therefore, enhancing the energy storage
performance and minimizing the self-discharging behavior are critical issues that must be
resolved for carbon-based flexible micro-supercapacitors.

The prevalent carbon materials used in micro-supercapacitors are graphite-based
2D planar materials because of their outstanding electrical conductivity, highly tunable
surface area, chemical stability, and mechanical behavior [20,21]. Therefore, many scientists
have studied tailoring the three-dimensional morphology and surface functionalization of
graphite materials to enhance their electrochemical properties [22,23]. Another strategy
being investigated is the use of redox mediators (RMs) in gel electrolytes [24–26]. Especially,
RMs can show high flexibility and mechanical/chemical stability when they are mixed
with a gel electrolyte, as well as provide easy diffusion in the gel electrolyte. The addition
of RMs plays pivotal roles in enhancing the performance of supercapacitors due to the
induced electrochemical Faradaic redox reactions on the surface of electrodes, which can
store more electron charges compared to double-layer capacitance [27,28]. Thus, the total
capacitance of supercapacitors with redox mediators can store energy by both electric
double layer capacitance and the pseudocapacitance working in parallel. Additionally,
interestingly, RMs play key roles in minimizing the self-discharging behavior. In particular,
Faradaic redox reactions of RMs result in a high binding attachment level of charged ions
on carbon-based electrodes, and RMs increase the ionic conductivity of the gel electrolyte,
inducing a low self-discharging rate. Therefore, introducing gel electrolyte composites with
proper redox mediators might be crucial to further maximize the performance of carbon-
based micro-supercapacitors. Especially, among various RMs, hydroquinone compounds
can be regarded as one of the most promising redox-active mediators due to its small size
and high electrochemical reversibility.

In this study, inspired by the highly interactive hydroquinone redox mediators (HQ-
RMs), we systematically engineered composite mixtures with hydroquinone (HQ) as a
redox mediator, polyvinyl alcohol (PVA) as a polymer-gel medium, and phosphoric acid as
an acidic electrolyte (HQ-gel). The interdigitated graphite electrodes were fabricated by
carbonization of polyimide (PI) sheets using a laser scribing method. The laser scribing
method can be operated with a simple step process on polymer films (fast processing
time) with good reproducibility by the systematic control of laser beams. Additionally,
continuous fabrication on the polymer sheets is available. Finally, the carbon electrode ma-
terials can be simply deposited on the interdigitated structure by the induced carbonization
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from the polymer films. The assembled micro-supercapacitors with HQ-gel (HQ-MSCs)
exhibit superior electrochemical performance, including a high volumetric capacitance of
255 mF cm−3, low self-discharge rate of an open circuit potential drop of 37% after 2000 s,
and over 95% capacitance retention over 3000 charge/discharge cycles compared to the
MSCs without the HQ-RMs (a volumetric capacitance of 94 mF cm−3

, self-discharging rate
of an open circuit potential drop of 50% after 2000 s, and 90% capacitance retention over
3000 charge/discharge cycles). This enhancement might be attributed to the Faradaic redox
reactions by the HQ-RMs and the strengthened adsorption of charged electrolyte ions on
the carbon-based electrode. These findings demonstrate that the novel HQ-based gel elec-
trolyte composites can be used to guarantee flexible carbon-based micro-supercapacitors
with promising electrochemical energy storage performance for future wearable energy
storage applications.

2. Materials and Methods
2.1. Fabrications of HQ-MSCs

For the HQ-MSCs, interdigitated carbon-based electrodes were directly fabricated by
carbonization on PI films using a laser scribing method. The interdigitated carbon-based
electrodes have seven fingers, and each electrode serves as both a working electrode and a
current collector. This system does not require any separator because the interdigitated
carbon-based electrodes are already separated on the PI film substrate with a length
of 0.5 mm. For the electrolyte coating method, we prepared HQ-based polymer–gel
electrolyte composites consisting of HQ (0.6 g, Sigma-Aldrich, Saint Louis, MO, USA)
as a redox mediator, poly(vinyl alcohol) (PVA, Mw: 89,000–98,000, Sigma-Aldrich, Saint
Louis, MO, USA), phosphoric acid (H3PO4, Sigma-Aldrich, Saint Louis, MO, USA), and
deionized water (20 mL). The prepared HQ-based polymer–gel electrolyte was coated onto
the interdigitated carbon-based electrodes and then dried overnight for stabilization.

2.2. Characterization and Electrochemical Tests of HQ-MSCs

We carried out powder XRD (Miniflex 600, Rigaku), Raman spectroscopy (iXR ra-
man in Nexsa XPS system, Thermo Scientific, Korea Basic Science Institute-Jeonju Center),
XPS (Nexsa XPS system, Thermo Scientific, Korea Basic Science Institute-Jeonju Center),
and field-emission scanning electron microscopy (FE-SEM, Gemini SEM 300, ZEISS, Jena,
Germany) analyses. In addition, the BET surface area of the samples was measured using ni-
trogen adsorption/desorption measurements (Belsorp mini X, MicrotracBEL Corp., Osaka,
Japan). To confirm the deposition of the HQ-RMs, we performed Fourier transform in-
frared spectroscopy (FT-IR, TENSOR27, Bruker, NCIRF, Seoul National University-National
Center for Inter-University Research Facilities, Billerica, MA, USA) analysis. The electro-
chemical capacitive behavior of the as-prepared MSCs was estimated using a potentiostat
(PGSTAT302N, Metrohm, Autolab). The specific capacitance of the carbon electrodes was
calculated by the GCD discharge curves. The specific areal capacitance was calculated by
the discharge time and current density (mA/unit area), and the calculated specific areal
capacitance was divided by the electrode thickness to evaluate the specific volumetric
capacitance of the samples.

3. Results and Discussion

As shown in Figure 1a, the interdigitated carbon-based electrodes were fabricated
using a stepwise direct laser scribing method on polyimide (PI) sheets. With direct laser
irradiation, carbonization of the PI sheets immediately occurs using a pulsed laser and
forms carbon-based electrodes. The interdigitated carbon-based electrodes were scribed
on the PI sheets. After the laser-carbonization process, the HQ-gel composites were
drop-coated onto the interdigitated carbon-based electrodes. Finally, the interdigitated
carbon-based micro-supercapacitors with HQ-gel (HQ-MSCs) were dried overnight to
stabilize the gel electrolyte. The interdigitated electrode structure used in the micro-
supercapacitors is shown schematically in Figure 1b,c. Each finger has been designed by
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the fixed two-dimensional interdigitated structure (length of 7.5 mm and finger width of
1 mm). The gap distance between neighboring finger electrodes is ~0.5 mm. According
to the cross-sectional SEM images (Figure S1), the electrodes show a thickness of 12 µm
and the electrolyte layers have a thickness of 14 µm. Figure 1d shows the optical images
of the fabricated HQ-MSCs on the PI sheets. Owing to the high flexibility of the PI sheets,
the HQ-MSCs can sustain their original interdigitated MSC structure even when the PI
substrates are strongly subjected to external bending forces. A cross-sectional schematic of
the HQ-MSCs is shown in Figure 1e. On the PI substrates, two unconnected carbon-based
electrodes were assigned to the symmetric anode and cathode electrodes. Both electrodes
were covered by the HQ-gel composites. During the charge and discharge processes, the
existence of the HQ-RMs in the polymer–gel electrolyte induces additional Faradaic redox
reactions and delivers a high energy density compared to the micro-supercapacitors with
the bare-gel electrolyte.
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redox behaviors of HQ in HQ-MSCs.

To evaluate the carbonization process by the crystallographic phase, X-ray diffraction
(XRD) spectra of the pure PI films and carbon-based electrodes from the PI films were
analyzed (Figure 2a). The clear XRD peaks at 15◦ and 27◦, as well as broad intensity areas
near 22.5◦, were well matched with the crystal phase of PI [29]. After laser irradiation,
new peaks at 23◦ were ascribed to the graphite-like carbon crystals after the carbonization
process. The XRD spectrum of the graphite-like carbon-based electrodes (GCEs) exhibited
a slight negative shift compared to that of the intrinsic graphite index. The peak shift
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can be attributed to the expanded d-spacing value of the GCEs resulting from the partial
formation of the oxygen-containing functional group on the graphite layers during the
laser carbonization process [30,31]. Figure 2b shows the Raman spectrum of the GCEs
with three strong peaks at 1346 cm−1 (D-band), 1584 cm−1 (G-band), and 2689 cm−1 (2D-
band) [32,33]. In general, the high ratio of I2D/IG indicates the typical features of graphene.
As the number of graphene layers increases, the ratio of I2D/IG decreases. Thus, the I2D/IG
of graphite is commonly lower than that of graphene, which is less than 1 [34–36]. In
this work, the I2D/IG of GCEs is approximately 0.746, which demonstrates that the PI
films were converted to graphite composites with two-dimensional layered structures.
The existence of strong 2D-band peaks demonstrates that the PI films were converted to
graphite composites with two-dimensional layered structures.
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Figure 2. (a) X-ray diffraction (XRD) patterns of graphite-like carbon-based electrodes (GCEs) and pure polyimide (PI)
film. (b) Raman spectrum and (c) X-rya photoelectron spectroscopy (XPS) C1s spectrum of GCEs. (d) Scanning electron
microscopy (SEM) image of GCEs. (e) Nitrogen adsorption/desorption isotherm curves of GCEs and pure PI film. (f)
Fourier transform infrared spectroscopy (FT-IR) spectra of HQ-MSCs and b-MSCs.

We also carried out X-ray photoelectron spectroscopy (XPS) measurements to de-
termine the surface properties of the GCEs (Figure 2c). The GCEs exhibited a common
graphite characteristic with a strong C-C peak clearly observed at 284.6 eV, which indi-
cates a high degree of formation of layered graphite structures [37–39]. In addition, as
shown in Figure 2d, the as-prepared GCEs showed a highly porous structure based on a
three-dimensional network, owing to the rapid formation of gaseous species produced
during laser irradiation. To further evaluate the specific surface area of the GCEs, Brunauer–
Emmett–Teller (BET) measurements were carried out. As shown in Figure 2e, the GCEs
exhibited typical adsorption/desorption curves of type II [40], and the calculated BET
surface areas of the GCEs were observed to be 74.15 m2 g−1, which is higher than that of
pure PI (0.08 m2 g−1). After the laser patterning process, the PI substrates were successfully
converted to layered GCEs with large surface sites and good electrical conductivity, which
are favorable for electrochemical energy storage. The measured electrical resistance of the
GCEs by using the 2-probe method is approximately 55.6 Ω, whereas the resistance of the
pure PI films was not measured due to the insulating properties (Figure S2).

In addition, the existence of the HQ-RMs in the polymer-gel electrolyte was investi-
gated by Fourier transform infrared spectroscopy (FT-IR) spectra (Figure 2f). The HQ-MSCs
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showed two dominant peaks in the FT-IR spectrum, which corresponded to the phenyl ring
stretching (1512 cm−1) and -C-OH in-plane bending (1465 cm−1) of HQ compared to MSCs
without HQ-RMs (b-MSCs) [41]. These two clear peaks are the main signs that the HQ-RMs
are well mixed in the gel electrolyte composites and are deposited on the GCEs. Thus, it is
expected that the HQ-MSCs will exhibit improved energy-storing properties owing to their
unique structural/electrochemical features as follows: (1) the well-designed graphite-like
carbon-based interdigitated electrodes with good electrical conductivity, which supports
the fast electron pathway; (2) the large surface area by porous structures, which provide
large electrolyte contact areas; and (3) the induction of additional Faradaic redox reac-
tions using HQ-RMs, which induce improved energy storage properties, as shown in
Figure 1e. There is synergistic electrochemical contribution on the surface of the carbon
electrodes (both electrical double-layer capacitance and Faradaic redox reactions by the
HQ-RMs) [42–44].

The electrochemical properties of the HQ-MSCs were evaluated using a two-electrode
system. Figure 3a shows the cyclic voltammetry (CV) curves of the HQ-MSCs and b-MSCs
at a scan rate of 100 mV s−1. The area surrounded by the CV curve of the HQ-MSCs was
larger than that of the B-MSCs, demonstrating a higher energy storage performance of
the HQ-RMs. The CV of the HQ-MSCs exhibited a pair of peaks at 0.15 V, which is a
significant characteristic of the electrochemical multiple Faradaic redox reaction of the
HQ-RMs during the charge/discharge cycles. The expected redox reactions of the HQ-RMs
during the charge/discharge cycles are as follows (Figure 3b) [23,41,43,45]:

hydroquinone (HQ)→ benzoquinone (BQ) 2H+ + 2e− (charge process)
benzoquinone (BQ) 2H+ + 2e− → hydroquinone (HQ) (discharge process)
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charged state.

Furthermore, the CV curves of the HQ-MSCs showed similar shapes with increasing
scan rates from 10 to 100 mV s−1, indicating that the HQ-MSCs have good energy-storing
kinetics and reversible capacitive behavior (Figure 3c). Especially, as indicated in Figure S3,
at slow scan rates, all the possible ion adsorption and electrochemical reactions are maxi-
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mized on the surface within the given sweeping window (the clear redox pairs are detected).
However, at the fast scan rates, the relatively broad redox peaks can be observed as shown
in Figures 3c and S3, which are the normally recognized CV response of Faradaic redox
materials. Furthermore, we carried out the CV tests to confirm the effects of the concentra-
tion of HQ in the MSCs. As shown in Figure S4, the HQ-MSCs with a HQ concentration of
0.135 M showed the low energy storing performance, which is 8.1 times lower than that of
HQ-MSCs with the HQ concentration of 0.27 M. Furthermore, the enclosed CV areas of
HQ-MSCs with an HQ concentration of 0.54 M (the maximum aqueous solubility) is also
smaller than that of HQ-MSCs with an HQ concentration of 0.27 M. The excess amount of
HQ-RMs in the electrolyte can decrease the overall electrochemical performance due to the
low ionic conductivity and ion permeability through the gel electrolyte [44].

The galvanic charge/discharge graph (GCD) of the HQ-MSCs presented a longer
discharge time than that of the b-MSCs (Figure 3d,e). The calculated area capacitance of
the HQ-MSCs (2.58 mF cm−2) was approximately 2.7 times higher than that of the B-MSCs
(0.95 mF cm−2) and other previously reported studies (summarized in Figure S5a). In
addition, the volumetric capacitance of HQ-MSCs is 255 mF cm−3. The improved energy
storage properties of HQ-MSCs were attributed to the additional Faradaic redox reactions
of the HQ-RMs compared to those of the bare-gel electrolyte composites. In addition,
as mentioned in the introduction, self-discharge in carbon-based micro-supercapacitors
is another important issue that must be addressed to develop high-performance MSCs.
To compare the self-discharging rate between HQ-MSCs and b-MSCs, we measured the
voltage drop based on the rest time from the fully charged state of MSCs. As shown in
Figure 3f, the HQ-MSCs exhibited a low self-discharge rate. The open circuit voltage
drop rate of the HQ-MSCs was 37% after 2000s, which was lower than that of b-MSCs
(50%) and other previously reported studies (summarized in Figure S5b). The charged
ions formed by the electrochemical Faradaic redox reaction of the HQ-RMs were strongly
adsorbed on the electrodes and had a low free diffusion rate into the bulk electrolyte under
the polymer-gel electrolyte; therefore, the HQ-MSCs can exhibit low self-discharge rate
behavior. Previous studies reported that a polymer–gel electrolyte with limited moisture
exhibited a superiorly suppressed self-discharge rate compared to aqueous electrolytes
because the limited moisture condition decreased the level of ion mobility from the surface
of the electrode to the bulk electrolyte solution [46–50]. In addition, the charged species
of the HQ-RMs formed during electrochemical capacitive behavior were adsorbed on
the electrode surface, thereby suppressing the self-discharge process [49]. When the self-
discharge rate of the MCSs was tested under the aqueous electrolyte solution with HQ, the
open circuit voltage drop rate of the HQ-MSCs exhibited a rapid voltage drop within 200 s,
as shown in Figure S6.

Furthermore, the mechanical flexibility and stability of the HQ-MSCs were estimated
under different external strain levels (measured radius of curvature). The levels of external
strains were normalized by the radius of curvature from 5 to 10 mm (Figure 4a,b). Figure 4c
presents the CV curves of the HQ-MSCs when different levels of external strains were
applied at a scan rate of 500 mV s−1. The CV curves did not show any significant changes
during the strain tests, indicating its superior mechanical flexibility and stability against
external strains. Furthermore, the HQ-MSCs exhibited a superior mechanical stability with
a capacitance retention of 99.1% during the 1000 bending cycles (Figure S7). In addition,
the mechanical stability of the HQ-MSCs against the tensile and compressive strains (at a
radius of curvature of 5 mm) was analyzed (Figure 4d). Optical images of the HQ-MSCs
under tensile and compressive strains are shown in Figure 4e. The CV curves at a scan
rate of 500 mV s−1 under the tensile and compressive strains also have a similar shape to
the CV curves without any significant curve distortion. After the diverse external strain
tests, it can be clearly confirmed that the HQ-MSCs can be successfully applied to wearable
devices owing to their high flexibility and performance stability against external forces.
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To evaluate the circuit applicability of the HQ-MSCs, four different HQ-MSCs were
assembled in series and parallel (Figure 5a). With the series or parallel connection, the
operating cell voltage or capacitance is expected to increase proportionally according to the
number of connected HQ-MSCs. Figure 5b shows the CV curves when the HQ-MSCs were
connected in a series circuit. The voltage windows of 1 cell to 4 cells in series increased
from 1 to 4 V, respectively. In addition, the CV currents increased proportionally based
on the currents from 0.17 to 0.63 mA at 0.4 V when the HQ-MSCs were connected in
parallel (Figure 5c). These CV results in the series and parallel circuits demonstrated great
circuit operation of the HQ-MSCs when they were utilized as potential future energy-
storing devices. Moreover, as shown in Figure 5d, HQ-MSCs show great reproducibility in
energy-storing performance owing to their programmed fabrication process based on the
laser scribing method of MSCs. The HQ-MSCs exhibited a promising capacitive retention
behavior of 95% after 3000 cycles (Figure 5e).
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4. Conclusions

In this study, we fabricated carbon-based micro-supercapacitors with an HQ-RM gel
electrolyte using the laser scribing method for electrode patterning and drop-coating for
MSC assembly. The carbon-based interdigitated electrodes formed using the laser scribing
method show graphitic carbon crystalline features with high electrical conductivity and a
porous structure. In terms of electrochemical features, HQ-MSCs have a high volumetric
capacitance of 255 mF cm−3 at a current of 1 µA, which is 2.7 times higher than that of
the b-MSCs, as well as a low self-discharge rate with an open circuit potential drop of
37% after 2000 s. The corresponding results are highly relevant for performing additional
Faradaic redox reactions of the HQ-RMs and synergistically improve the overall energy
storage performance. Moreover, the HQ-RMs in the gel electrolyte decrease the self-
charging rate by providing a strong binding attachment of electrolyte ions on the surface
of the electrodes. Furthermore, the HQ-MSCs displayed remarkably excellent mechanical
features under various external mechanical stresses. Additionally, the HQ-MSCs exhibited
a high reproducibility and a long-term cyclability with a high cycling capacitance retention
of 95% after 3000 cycles. Therefore, the introduction of HQ redox mediators in micro-
supercapacitor systems is a promising gel electrolyte additive for flexible high-performance
energy storage applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11113027/s1, Figure S1: Cross-section SEM images of the fabricated MSCs, Figure S2:
Photograph images of the measured two-probe electrical resistance: (left) the GCEs region and (right)
the pure PI film for the patterned MSCs, Figure S3: CV curves of HQ-MSCs with different scan rates
from 0.1 V s−1 and to 1.0 V s−1, Figure S4: CV curves of HQ-MSCs with different HQ concentrations
of (a) 0.27 M and (b) 0.54 M at a scan rate of 1.0 V s−1, respectively, Figure S5: Comparison of the areal
capacitance and self-discharge rate of the fabricated MSCs compared to other previously reported
literatures, Figure S6: Comparison of self-discharging test of MSCs under gel electrolyte and aqueous
electrolyte with HQ after fully charged state, Figure S7. Capacitance retention of HQ-MSCs for
1000 bending cycles (inset indicates the CV curves of HQ-MSCs).
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