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Abstract

Comprehensive understanding of gene regulatory networks (GRNs) is a major challenge in the field of systems biology.
Currently, there are two main approaches in GRN analysis using time-course observation data, namely an ordinary
differential equation (ODE)-based approach and a statistical model-based approach. The ODE-based approach can generate
complex dynamics of GRNs according to biologically validated nonlinear models. However, it cannot be applied to ten or
more genes to simultaneously estimate system dynamics and regulatory relationships due to the computational difficulties.
The statistical model-based approach uses highly abstract models to simply describe biological systems and to infer
relationships among several hundreds of genes from the data. However, the high abstraction generates false regulations
that are not permitted biologically. Thus, when dealing with several tens of genes of which the relationships are partially
known, a method that can infer regulatory relationships based on a model with low abstraction and that can emulate the
dynamics of ODE-based models while incorporating prior knowledge is urgently required. To accomplish this, we propose a
method for inference of GRNs using a state space representation of a vector auto-regressive (VAR) model with L1
regularization. This method can estimate the dynamic behavior of genes based on linear time-series modeling constructed
from an ODE-based model and can infer the regulatory structure among several tens of genes maximizing prediction ability
for the observational data. Furthermore, the method is capable of incorporating various types of existing biological
knowledge, e.g., drug kinetics and literature-recorded pathways. The effectiveness of the proposed method is shown
through a comparison of simulation studies with several previous methods. For an application example, we evaluated
mRNA expression profiles over time upon corticosteroid stimulation in rats, thus incorporating corticosteroid kinetics/
dynamics, literature-recorded pathways and transcription factor (TF) information.

Citation: Hasegawa T, Yamaguchi R, Nagasaki M, Miyano S, Imoto S (2014) Inference of Gene Regulatory Networks Incorporating Multi-Source Biological
Knowledge via a State Space Model with L1 Regularization. PLoS ONE 9(8): e105942. doi:10.1371/journal.pone.0105942

Editor: Frank Emmert-Streib, Queen’s University Belfast, United Kingdom

Received March 27, 2014; Accepted July 25, 2014; Published August 27, 2014

Copyright: � 2014 Hasegawa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All synthetic data are within the paper and its
Supporting Information files. All microarray files are available from the the NCBI Gene Expression Omnibus database (GSE490).

Funding: This work was supported by Grant-in-Aid for JSPS Fellows (24-9639) received by TH (http://www.jsps.go.jp/english/index.html). The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: t-hasegw@kuicr.kyoto-u.ac.jp

Introduction

Transcriptional regulation, which is controlled by several

factors, plays essential roles to sustain complex biological systems

in cells. Thus, identifying the structure and dynamics of such

regulation can facilitate recognition of and control over systems for

many practical purposes, e.g., treatment of diseases. To accom-

plish this, many mathematical methods have been developed for

the analysis of high-throughput biological data, e.g., time-course

microarray data [1–3]. In addition, recent technological advances

have facilitated experimental discoveries, e.g., DNA-protein

interactions and the pharmacogenomics of chemical compounds.

These contributions have allowed the knowledge of GRNs to

accumulate.

For elucidation of GRN dynamics, time-course observational

data have been generally used. Currently, one strategy to elucidate

transcriptional regulation using observational data is to apply an

ordinary differential equation (ODE)-based approach, which can

represent the dynamic behavior of biomolecular reactions based

on biologically reliable models, e.g., the Michaelis-Menten

equation [4] or the S-system [5], which are described by

differential equations. Thus, this approach can recapitulate the

complex dynamic behavior of biological systems [6,7]. In this

approach, several methods have been proposed to infer regulatory

structures [8,9], to reproduce the dynamic behavior of biological

systems recorded in the literature [10–13] and also to improve

literature-recorded pathways so as to be consistent with the data

[14]. However, nonlinearity of the system results in an analytically

intractable problem of estimating the parameter values that

minimize loss function with updating simulated results. Thus,

under this statistically efficient paradigm [15], this approach

cannot be applied to ten or more genes to infer regulatory

structures if the missing information is extensive [10].

In contrast, a statistical model-based approach using highly

abstracted models, e.g., Bayesian networks [16–18] and the state

space model [19–22], has been successfully applied to infer the
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structure of transcriptional regulation from biological observation-

al data. Because these methods simply describe biological systems,

hundreds of genes can be handled computationally with ease.

Whereas methods relying purely on data need to consider all

possibilities of transcriptional regulation, some studies have further

incorporated other information, e.g., protein-protein interaction

networks (PINs), literature-recorded pathways and transcription

factor information [23–27]. Although these methods can infer

relationships among hundreds of genes simultaneously, high levels

of abstraction can also generate false regulations that are difficult

to interpret biologically. Thus, when several tens of genes are

handled with partially understood relationships, highly abstract

models can be insufficient to represent biological systems. In this

case, there is an urgent need for a method that can infer system

dynamics and the structure of GRNs based on a model with a low

abstraction that can emulate the dynamics of ODE-based gene

regulatory models incorporating existing biological knowledge.

We propose a novel method for inference of GRNs based on a

newly developed model that uses a state space representation of a

vector auto-regressive model (VAR-SSM) [21,28,29]. The model

is a type of state space models constructed from a typical gene

regulatory system that is described by differential equations within

a linear Gaussian model. The method can infer the dynamic

behavior of gene expression profiles and the regulatory structure

for several tens of genes by assimilating time-course observational

data. Furthermore, the method is capable of integrating the

existing biological knowledge, e.g., literature-recorded pathways

and intracellular kinetics/dynamics of chemical compounds, and

can deal with even non-equally spaced time-course observational

data. A regulatory structure is inferred by maximization of the L1

regularized likelihood. To this end, we developed a new algorithm

to obtain active sets of parameters and estimate a maximizer of the

L1 regularized likelihood using the EM algorithm.

To demonstrate its effectiveness, we compared this method to a

state space model (SSM) [21], a general VAR model using LARS-

LASSO algorithm [30], GeneNet [31,32] based on an empirical

graphical Gaussian model (GGM), dynamic Bayesian networks

using first order conditional dependencies [33], GLASSO [34]

based on sparse GGM and the mutual information-based network

inference algorithms: ARACNE [3], CLR [35] and MRNET [36]

by implementing artificial simulation models. The first two

observational datasets are generated by two simulation models

representing pharmacogenomic pathways [37,38], including drug

kinetics/dynamics, described by difference and differential equa-

tions, respectively. These pathways are initiated by the drug

stimulation and observational data are obtained as non-equally

spaced time-course data. The next observational dataset is

generated by GeneNetWaver [39,40] using a yeast network that

is a part of DREAM4 (Dialogue for Reverse Engineering

Assessments and Methods) challenge. As an application example,

we applied the proposed method to corticosteroid pharmacoge-

nomics in rat skeletal muscle [37,38,41]. Because this system has

been investigated previously through biological experiments,

corticosteroid kinetics/dynamics and the related genes are already

partly elucidated. Therefore, we incorporated time-course mRNA

expression data (observational data), candidate genes/pathways

related to corticosteroids, intracellular corticosteroid kinetics/

dynamics and, additionally, TF information from ITFP (Integrat-

ed Transcription Factor Platform) [42]. As in the simulation

experiment, the observational data were obtained as non-equally

spaced time-course data (GSE490) after stimulating rat skeletal

muscle with corticosteroid. Consequently, we propose candidate

pathways for extensions of corticosteroid-related pathways and

their simulation dynamics in the presence of corticosteroid.

Methods

Linear Description of Biological Systems from ODE-based
Models

For gene regulatory systems, we postulate a general hill

function-based model of transcriptional control, in which each

gene has a synthesis process (regulated by other factors) and a

degradation process, described by a differential equation [43,44].

Let xn(t) be a time-dependent function representing the abun-

dance of the nth (n~1, . . . ,N) mRNA in a cell, where t means

time. Further, we consider subsets of f1, . . . ,Ng, N 1 and N 2

(N 1+N 2~f1, . . . ,Ng), whose regulatory functions are described

by two different forms [38,45,46]. Then, the time-evolution of

xn(t) is represented by

d

dt
xn(t)~P

N

k~1
f1zwn,k(xk(t))g:un{xn(t):dn, n [ N 1, ð1Þ

d

dt
xn(t)~f1z

XN

k~1

wn,k(xk(t))g:un{xn(t):dn, n [ N 2, ð2Þ

where wn,k represents the regulatory effect of the kth gene on the

nth gene as a hill-function, unw0 and dnw0 are the synthesis and

degradation rates of the mRNA, respectively. For example, in a

previous pharmacogenomic study [38], wn,k(xk(t)) was represent-

ed by

wn,k(xk(t))~
an,k

:xk(t)cn,k

b
cn,k
n,k zxk(t)cn,k

, ð3Þ

where an,k, bn,k and cn,k are tuning parameters.

In inferring the regulatory structure of GRNs consisting of

several tens of genes, hill-function based differential equations,

e.g., Eqs. (1) and (2), become intractable. Therefore, we consider

discretization and linearization of gene regulatory systems [8,19–

22,27,29,44]. Here, linear functions are substituted for hill-

functions and higher than quadratic terms are neglected.

Furthermore, we assume that biological processes should include

the effects by noise [47]. Let xt~(xt,1, . . . , xt,n, . . . ,xt,N )’ be a

series of N dimensional vectors containing expression levels of N
genes at the tth time point. Then, we consider a gene regulatory

system represented by

xtzDt,n{xt,n~f(1z a’n xt)un{xt,n
:dnzvt,ngDt, ð4Þ

where an~(an,1, . . . ,an,N )’ is an N-dimensional vector including

regulatory effects on the nth gene by other genes, vt,n is the effects

by noise at the tth time point, and Dt indicates a minute

displacement. Then, a VAR model for GRNs simulation can be

constructed.

In constructing gene regulatory models, we make an assumption

that observational data are measured with observational noise.

Under this assumption, to separately handle a system model (i.e.,
Eq. (4)) and biological observational data, we utilize a state space

representation [13,21,24,29,48]. Here, a minimum observational

time step and Dt are usually handled as 1 for reducing

computational cost, however, we can set any value for Dt less

than a minimum observational time step. Therefore, we evaluated

the influence of changing Dt in the results section and describe the

case of Dt~1 in the following for simplicity. Consequently, we

GRNs Inference Using VAR-SSM with L1 Regularization
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consider a model described by

xt~Axt{1z u z d t{1z vt, ð5Þ

yt~ xtz wt, ð6Þ

d t~ ((1{d1):xt,1, . . . ,(1{dN ):xt,N )’, ð7Þ

where A~(a1, . . . , aN )’ is an N | N matrix representing

regulation among genes, xt is an N-dimensional hidden state

variable, u~(u1, . . . ,uN )’ is an N-dimensional vector including

synthesis rates, yt [ RN is a series of vectors containing observed

expression levels of N genes at the tth time point and wt [RN is

observational noise. Here, we define a set of all points of time T
(t [ T ), consisting of the observed time set T obs (T obs 5 T ). We

set system noise vt * NN (0N ,Q) and observation noise wt *
NN (0N ,R), where Q and R are N6N diagonal matrices. The

initial state vector x0 is assumed to be a Gaussian random vector

with mean vector m0 and covariance matrix S0, i.e., x0 *
NN (m0,S0). Note that u and d must be dense vectors; nevertheless,

A should be a sparse matrix, and activation and repression

correspond to positive and negative values of an,k, respectively,

because hill-functions are monotonic.

Contrary to the derivation of Eq. (5), in previous linear state

space models for GRN analysis [21,29], a simulation model was

constructed as

xt~Fxt{1zvt, ð8Þ

where F is an N|N matrix in which the nth row and kth column

element is represented by

fn,k~
1{dnzan,k (n~k)

an,k (n=k)

�
: ð9Þ

In this model, u is removed by shifting the average of the observed

time-course data for each element to 0, i.e.,
P

t[T obs
yt,n~0 for

n~1, . . . ,N, where yt,n is the nth row element of yt, as a

normalization procedure. However, this model may cause marked

difficulty in estimating gene regulatory relationships if the observed

time-course includes a steady state. Fig. 1 exemplifies such a

situation.

Fig. 1 shows a small pathway consisting of three genes (left panel

in Fig. 1 (a)) and the averages of the observed time-course data for

each element are shifted to 0 (Fig. 1(b)). By applying Eq. (8) to the

observed data, we expect to obtain three false edges added to the

true pathway (right panel in Fig. 1(a)) because nodes must retain a

constant steady state regardless of their negative steady state values

and positive regulation from negative nodes. In some cases, such

additional false regulation possibly hide true regulation. The above

result encourages us to use a model explicitly implementing terms

to represent a steady state of gene expressions to estimate gene

regulatory relationships precisely. Furthermore, in using Eq. (8),

when elements of F are regularized to be selected non-zero

elements, even 1{dn is regularized and fn,n can be zero. To

penalize the regulatory effect an,k only, A and d are separately

described in our proposed model.

Incorporation of Biomolecules Affecting Biological
Systems

When simulating the dynamic behavior of GRNs including

biomolecules that cannot be represented by xt and can affect

biological systems, e.g., corticosteroids in corticosteroid-stimulated

GRNs, we should consider the concentration of such biomole-

cules. For these cases, we remodel Eq. (5) to add a term

representing the concentration of such biomolecules as

xt~A xt{1z u z dt{1zGz t{1 z vt, ð10Þ

where z t is an M-dimensional vector containing the concentration

1 N

n n,1 n,M )’ is an M-dimensional

vector representing their regulatory effects on the nth gene. We

consider the case that the concentration is known or can be

Figure 1. The problem of deleting a term representing a synthesis rate. A toy model indicating the problem of deleting a synthesis rate u by
shifting an average of observed time-course data for each element to 0, i.e.,

P
t[T obs

yt,n~0 for n~1, . . . ,N as a normalization procedure. The true

network and the adjusted data are illustrated in the left panel in (a) and (b), respectively. As shown in the right panel in (a), some false positive edges
are possibly estimated in comparison to the true relationships.
doi:10.1371/journal.pone.0105942.g001
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simulated. In the results section, for an application example, we

deal with corticosteroid drug pathways that have been well studied

previously [37,38,41]; z t is given the concentration of the intra-

nuclear corticosteroid-receptor complex employed in Yao et al.
[38].

State Space Model and Kalman Filter for Estimating the
Hidden State

Recently, many types of state space models have been proposed

and applied in the context of systems biology [13,19–21,23,48,49].

They are roughly divided into two major classes, i.e., linear and

nonlinear models. In using linear state space models, posterior

probability densities of the hidden state can be obtained as

Gaussian distributions and the optimal mean and covariance

matrices can be analytically calculated by the Kalman filter

algorithm [50,51]. In contrast, for nonlinear state space models,

because the analytical form can be intractable, several extensions

of the Kalman filter algorithm, e.g., extended Kalman filter [52],

unscented Kalman filter [53,54] and particle filter [55], which

utilize approximation techniques, have been applied to obtain

posterior probability densities of hidden state and parameters

[13,24,48,49,56]. In using linear state space models [19–22], the

main concern is to infer causal relationships among genes, for

which regulatory structure is assumed to be sparse, i.e., genes are

regulated by only a few specific regulators. Imposing such a sparse

constraint to regression approaches is a general problem, but for

state space models to simultaneously estimate optimal hidden state

and parameter values (including penalization parameters), it is not

a trivial problem [27–30,57]. Then, for example, a sparse

regulatory structure was extracted by statistical tests after

estimating parameter values [21]. In this article, under the

framework of a state space representation of a VAR model, we

intend to infer the parameter values and the hidden state

maximizing prediction ability for observational data with a sparse

regulatory structure. For this purpose, we apply the EM algorithm

[58] in the next subsection and the conditional expectations of

hidden state are given by using the Kalman filter algorithm.

Kalman Filter Algorithm for VAR-SSM
Let Ut be the sum of u and Gz t. For simplicity, we here use F in

Eq. (8) rather than A. The prediction, filtering, and smoothing of

the Kalman filter are calculated by the following formulas:

N Prediction:

xtDt{1 ~F xt{1Dt{1z U t{1, ð11Þ

StDt{1~FSt{1Dt{1F ’zQ, ð12Þ

N Filtering:

xtDt~ xtDt{1zStDtR
{1(yt{ xtDt{1), ð13Þ

StDt~(R{1zS{1
tDt{1){1, ð14Þ

N Smoothing

xtDT~xtDtzJt(xtz1DT{xtz1Dt), ð15Þ

StDT~StDtzJt(Stz1DT{Stz1Dt)J ’t, ð16Þ

St,t{1DT~StDtJ ’t{1
zJt(Stz1,tDT{FStDt)J ’t{1

, ð17Þ

Jt~StDtF ’S{1
tz1Dt, ð18Þ

ST ,T{1DT~(I{ST DT R{1)FST{1DT{1, ð19Þ

where E½xt� given y1, . . . , ys is represented by xtDs and Var½xt�
given y1, . . . , ys is represented by S tDs. To calculate an inverse of

the N | N matrix, we use a matrix inversion theorem [29].

Maximum Likelihood Estimation Using the EM Algorithm
with L1 Regularization

In biological systems, most genes are regulated by a few specific

genes, i.e., A and G can be sparse matrices. Thus, we applied L1

regularization to select effective sets of elements for A and G. Let

fYT ,XTg be the complete data set, where YT~f y1, � � � , yTg is

the set of observed data and XT~fx0, � � � , xTg is the set of state

variables. Furthermore, let the probability densities P(x0),
P(xtDxt{1) and P(ytDxt) be the N-dimensional Gaussian distribu-

tions N(m0,S0), N(Ft{1 x t{1zUt{1,Q) and N(xt,R), respective-

ly. Then joint likelihood for the complete data set is given by

P(YT ,XT ; h)~P(x0)P
tET

P(xtDxt{1) P
tETobs

P(ytDxt), ð20Þ

0g. In this study, we used the EM

algorithm [58] to search for the parameter vector h that

maximizes P(YT ; h) under L1 regularization. The L1 regularized

log-likelihood is given by

log

ð
P(x0)P

tET
P(xtDxt{1) P

tETobs

P(ytDxt)d x0 . . . d xT

{
XN

n~1

XN

k~1

lnDAn,k D{
XN

n~1

XM
k~1

lnDGn,k D,

ð21Þ

where ln is the L1 regularization term for the nth row. In the EM

algorithm, the conditional expectation of the joint log-likelihood of

the complete data set

q(hDhi)~E½log P(YT ,XT Dh)DYT ,hi�, ð22Þ

is iteratively maximized with respect to h until convergence, where

hi is the parameter vector obtained at the ith (previous) iteration.

The detailed solution for estimating parameter values using the

EM algorithm for VAR-SSM with L1 regularization can be found

in Method S1.

GRNs Inference Using VAR-SSM with L1 Regularization
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Parameter Optimization Algorithm with L1 Regularization
Because of the combination of the regularization terms and a

state space representation, updating an element of

l~(l1, . . . ,lN )’ influences the other active sets. Thus, it is

difficult to select the optimal active sets A and G, the values of h
and l at the same time. Therefore, we proposed a novel algorithm

to separately update h and l in each row as follows. In this

algorithm, we consider candidates of active sets for An and Gn as
~AAn and ~GGn, respectively. In the EM algorithm in Method S1, we

constraint that the active sets An and Gn can be selected from ~AAn

and ~GGn, respectively, i.e., An5¼
~AAn and Gn5¼ ~GGn

Algorithm

-Initial Settings

1. Set l~0 and recursively update h to obtain

xtDT (t~1, . . . ,T) using the EM algorithm until convergence

is attained. In this step, active sets An and Gn (n~1, . . . ,N)
consist of all elements, i.e., A and G become dense matrices,

since the regularization terms can be neglected. Thus, the

solution of the EM algorithm is directly obtained from Eqs.

(SI–11)–(SI–17) in Method S1.

2. Set the maximum number of iterations to be imax, the

maximum number of regulatory edges for each gene to be kmax

Figure 2. The conceptual view of the proposed algorithm. This figure illustrates a conceptual view of the proposed algorithm. The notations
‘Step’ correspond to those of the proposed algorithm. Solid, dashed and chain lines represent flowchart of the algorithm, setting the parameter
values and active sets, and setting candidates of active sets used for selecting active sets.
doi:10.1371/journal.pone.0105942.g002
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and l to be sufficiently high to allow all elements of A and G to

become 0, and ~AAn and ~GGn to be full. Alternatively, imax can be

set as a value when the Bayesian information criterion (BIC)

[59–61], which are used to select the best model in this

algorithms, is not updated through iterations and kmax can be

set a sufficiently high value, e.g.,
N

2
. The BIC score in this

algorithm is defined as

BICVARSSM~{2logL(YN D h )zdf(l, h )logn, ð23Þ

L(YN D h )~

ð
P(x0)P

t[T
P(xtDxt{1) P

t[Tobs

P(ytDxt)d x0 . . . d xT , ð24Þ

where df(l , h ) is the degree of freedom, i.e., the number of

active parameters [61], and n is the number of samples.

3. Set i~1 and recursively update fl ,A,G, ~AA~f ~AA1, . . . , ~AANg,
~GG~f ~GG1, . . . , ~GGNg, hg as follows. Note that, at i~1, we fix xtDT

as the values obtained at Step 1, except for the updating

elements indicated as nupd in the next step. Thus, we only

update the values of the parameters for the nupd th row at i~1.

N-Main Routine

4. For nupd~ 1, . . . ,N

(a) Set ~AAnupd
and ~GGnupd

full and lnupd
sufficiently high to allow

all elements of anupd
and gnupd

become 0. Through the

following steps, fixing ln (n=nupd ), lnupd
is gradually

Table 1. Algorithm 1: A pseudo code of Main Routine (step 4 and 5) in the proposed algorithm.

1: BICmin/z?;

2: for i~1 to imax do

3: for nupd~1 to N do

4: ~AAnupd
/full; ~GGnupd

/full; lnupd
/ a sufficiently high value;

5: while DAnupd
DzDGnupd

Dƒkmax do

6: while convergence criterion is not satisfied do

7: Update XT and parameter values using the Kalman filter and the EM-algorithm;

8: end while

9: if BICminwBICcurrent ; then

10: BICmin/BICcurrent ; Store the current parameter values;

11: where BICcurrent is the BIC score of the current parameter values

12: end if

13: Decrease lnupd
;

14: end while

15: Set the stored parameter values as the current parameter values;

16: subA/ the set of all subsets of the current Anupd
;

17: subG/ the set of all subsets of the current Gnupd
;

18: for all sA [ subA do

19: ~AAnupd
/sA ;

20: for all sG [ subG do

21: ~GGnupd
/sG ;

22: while convergence criterion is not satisfied do

23: Update XT and parameter values using the Kalman filter and the EM-algorithm;

24: end while

25: if BICminwBICcurrent then

26: BICmin/BICcurrent ; Store the current parameter values;

27: end if

28: end for

29: end for

30: Set the stored parameter values as the current parameter values;

31: end for

32: end for

doi:10.1371/journal.pone.0105942.t001

-
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decreased to find an optimum lnupd
for which the BIC score

is minimized.

(b) Calculate conditional expectations using the Kalman

filter.

(c) Update A, G, and h by Eqs. (SI–11)–(SI–19) in Method

S1. Here, An and Gn of Eqs. (SI–18)–(SI–19) in Method S1

can be constructed from ~AAn and ~GGn, respectively.

(d) Calculate the BIC score and decrease lnupd
if the

regularized log-likelihood of Eq. (21) is converged. Then,

repeat from step (b) until the sum total of Anupd
and Gnupd

becomes kmax.

(e) Set fl ,A,G, hg as the value with the lowest BIC score

obtained through the above described steps. Furthermore,

set ~AA/A and ~GG/G.

(f) Consider the set of all subsets of Anupd
and Gnupd

as subA

and subG , respectively. For all sA [ subA and sG [ subG,

setting ~AAnupd
/sA and ~GGnupd

/sG , repeat steps 4(b) and (c),

and then obtain the BIC scores of converged log-likelihood.

(g) Set fA,G, hg as the value with the lowest BIC score.

Furthermore, ~AA/A and ~GG/G.

5. Set i?iz1 and repeat from step 4 until i becomes imax.

A conceptual view and a pseudo code of the algorithm are

shown in Figure 2 and Algorithm 1 in Table 1, respectively. We

should note that, since the active sets A and G obtained at step 4(e)

may not be the optimal ones for the selected l, i.e., there can exist

better ones having lower BIC scores for the selected l, the

proposed algorithm further explores such better ones by evaluating

subsets of the obtained active sets at step 4(e) through steps 4(f) and

(g).

Weighting Known Regulations
To weight parameters of known regulations, e.g., as recorded in

the literature, we derive the weighted regularization [62]. For the

nth row, we define the weight vectors va
n~(va

n,1, . . . , va
n,N )’ and

vg
n~(vg

n,1, . . . , vg
n,M )’. The elements of these vectors for known

regulations are set to less than 1 or, otherwise set to 1. Then, in the

Figure 3. A pharmacogenomic pathway of the artificial simulation model. The figure illustrates the pathway of the artificial simulation
model used for datasets (i) and (ii). Each regulation is represented by (i) a linear and (ii) a nonlinear function, such as Eq. (3). For dataset (ii),
descriptions on edges as linear or h(c~1,2,3 or 4) means a linear function and a hill function, described in Eq. (3) when cn,k~c, respectively. The
system is stable at first (tv0) and undergoes stimulation by a drug at t~0. The concentration of the drug is gradually decreased according to the
drug kinetics. A solid arrow and a dotted arrow mean activation and repression, respectively.
doi:10.1371/journal.pone.0105942.g003
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Figure 4. The simulation expression profiles of genes of the artificial simulation model. This illustrates the simulation expression profiles
of genes of the artificial simulation model used for dataset (ii). The simulated data for datasets (i) and (ii) have both dynamic and steady state, and
stimulated by the drug at t~0. Observational time-course data is obtained with Gaussian noise from the simulation expression at the time points that
are indicated on the bottom axis. The observational data, parameter values and simulation models are available at Models S1 and S2.
doi:10.1371/journal.pone.0105942.g004

Figure 5. The results of the structure inference using dataset (i) of a pharmacogenomic pathway by the proposed method. This
figure illustrates the results of the structure inference after applying the proposed method to dataset (i) for each simulation time interval Dt. The

histogram represents the number of true positive (TP), false positive (FP), and false negative (FN) findings for each
1

Dt
~(1,2 , � � � ,15) as red, blue, and

green bars, respectively. Black lines with circles and crosses represent ‘precision rate (PR =
TP

TPzFP
)’ and ‘recall rate (RR =

TP

TPzFN
)’, respectively. The

values of the histogram and lines correspond to the left and right axes, respectively.
doi:10.1371/journal.pone.0105942.g005
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M step of the EM algorithm and the regularized log-likelihood,

regularization terms are handled as

XN

k~1

lnDan,k D?
XN

k~1

va
n,klnDan,k D, ð25Þ

XM
k~1

lnDgn,kD?
XM
k~1

vg
n,klnDgn,k D: ð26Þ

In practice, the purpose of the weight is to select known

regulation in the instance where multiple candidates are highly

Figure 6. The results of the structure inference using dataset (ii) of a pharmacogenomic pathway by the proposed method. This
figure illustrates the results of the structure inference after applying the proposed method to dataset (ii) for each simulation time interval Dt. The

histogram represents the number of true positive (TP), false positive (FP), and false negative (FN) findings for each
1

Dt
~(1,2 , � � � ,15) as red, blue, and

green bars, respectively. Black lines with circles and crosses represent ‘precision rate (PR =
TP

TPzFP
)’ and ‘recall rate (RR =

TP

TPzFN
)’, respectively. The

values of the histogram and lines correspond to the left and right axes, respectively.
doi:10.1371/journal.pone.0105942.g006

Figure 7. The result of the BIC scores and SPE for each simulation time interval using dataset (i). This illustrates the BIC scores and SPE

(t~6,8,12) for
1

Dt
~(1,2 , � � � ,15) for dataset (i). The values of the BIC scores and SPE correspond to the left and right axes, respectively.

doi: 10.1371/journal.pone.0105942.g007
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correlated with the same gene. Thus, when the correlation of a

known regulation is still a low value, the regulation should not be

selected as an active regulation. For example, weights for

literature-recorded pathways and regulations by TFs are set as
1

20
and

1

10
in the real data experiment, respectively. The

effectiveness of the weighted regularization is demonstrated in

the results section.

Results

Comparison Results
To show the effectiveness of the proposed method, we

compared it with other GRN inference methods, i.e., a state

space model (SSM) [21,63], a general VAR model using the

LARS-LASSO algorithm [30,61], GeneNet [31,32] based on an

empirical graphical Gaussian model (GGM), dynamic Bayesian

networks using first order conditional dependencies (G1DBN)

[33], GLASSO [34] based on sparse GGM and the mutual

information-based network inference algorithms: ARACNE [3],

CLR [35] and MRNET [36]. We applied these inference methods

by using R-package (‘GeneNet’, ‘G1DBN’, ‘glasso’ and ‘parmi-

gene’) and implementing the others. The comparison analysis was

performed using three artificial data, which were generated based

on pharmacogenomic pathways that we assumed and a yeast

network that was produced as a part of the DREAM4 (Dialogue

for Reverse Engineering Assessments and Methods) challenge. We

should note that, because ARACNE, CLR and MRNET are

intended to infer static relationships between genes, we considered

time-course observational data as static data utilizing a time-lag

matrix, in which the tth row vector consists of ytz1{yt, according

to Shimamura et al. [57]. Note that the Jar file of the proposed

method is available at: http://sunflower.kuicr.kyoto-u.ac.jp.

Comparison Using Pharmacogenomic Pathways
For the comparison, we first generated two time-courses from (i)

linear difference equations as Eq. (4) and (ii) nonlinear differential

equations as Eqs. (1)–(3) representing pharmacogenomic pathways

(e.g., Yao et al. [38]) using Cell Illustrator 5.0 (http://www.

cellillustrator.com/home). The details of the artificial simulation

models are as follows.

Figure 8. The result of the BIC scores and SPE for each simulation time interval using dataset (ii). This illustrates the BIC scores and SPE

(t~6,8,12) for
1

Dt
~(1,2 , � � � ,15) for dataset (ii). The values of the BIC scores and SPE correspond to the left and right axes, respectively.

doi: 10.1371/journal.pone.0105942.g008

Table 2. Comparison of the proposed method and the existing methods using dataset (i).

PR RR TP FP TN FN

(a)VARSSM(BIC) 0.467 0.634 14 16 286 8

(b)VARSSM(SPE) 0.600 0.818 18 12 290 4

(c)SSM 0.308 0.182 4 9 293 18

(d)VAR 0.150 0.773 17 97 205 5

(e)Genenet 0.280 0.667 14 36 114 7

(f)G1DBN 0.314 0.500 11 24 278 11

(g)GLASSO 0.094 0.286 6 58 92 15

(h)ARACNE 0.131 0.524 11 71 79 10

(i)CLR 0.135 0.619 13 83 67 8

(j)MRNET 0.121 0.571 12 87 63 9

doi:10.1371/journal.pone.0105942.t002
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-Dataset(i)

1. The number of genes is 18.

2. Each gene undergoes synthesis and degradation processes,

and genes are mutually regulated as shown in Fig 3 (The

details of the figure are explained below).

3. A drug is added at t~0 and its concentration gradually

decreases according to one compartment model, i.e.,
d

dt
z(t)~fz(t), where z(t) is the concentration of the drug

as a function of time t and f is the degradation rate. The

simulated expression profiles of the genes are initiated by

the drug at t~0 and gradually converge to their steady

states as illustrated in Fig. 4.

4. The expression data is observed at T obs = (0, 1, 2, 3, 4, 6,
8, 12, 16, 24, 32, 48, 52, 96, 128, 160, 192, 224, 256 and

288) with Gaussian observation noise of mean 0 and a

variance that is proportional to the intensity.

5. The number of replicated observations with different

observational noise for each time point is three.

6. The simulated expression is updated according to the

linear difference equations represented by Eq. (4) at

Dt~
1

5
.

Table 3. Comparison of the proposed method and the existing methods using dataset (ii).

PR RR TP FP TN FN

(a)VARSSM(BIC) 0.563 0.818 18 14 288 4

(b)VARSSM(SPE) 0.613 0.864 19 12 290 3

(c)SSM 0.234 0.318 7 23 279 15

(d)VAR 0.206 1.000 22 84 236 0

(e)Genenet 0.278 0.714 15 39 111 6

(f)G1DBN 0.647 0.500 11 6 296 11

(g)GLASSO 0.052 0.143 3 55 95 18

(h)ARACNE 0.191 0.429 9 38 112 12

(i)CLR 0.156 0.667 14 76 74 7

(j)MRNET 0.156 0.667 14 76 74 7

doi:10.1371/journal.pone.0105942.t003

Figure 9. The performance of using prior knowledge as the weighted regularization. This figure illustrates the effectiveness of the

weighted regularization (prior knowledge) at simulation time interval
1

Dt
~9 using dataset (ii). The histogram represents the number of true positive

(TP), false positive (FP), and false negative (FN) findings for each
1

wn,k

~(1,1:5,2,3,, � � � ,20) as red, blue, and green bars, respectively. Black lines with

circles and crosses represent ‘precision rate (PR~
TP

TPzFP
)’ and ‘recall rate (RR~

TP

TPzFN
)’, respectively. The values of the histogram and lines

correspond to the left and right axes, respectively.
doi:10.1371/journal.pone.0105942.g009
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7. The observational data and the values of the parameters

are available at Model S1.

-Dataset(ii)

1 to 5 of dataset (i) are also satisfied in dataset (ii).

6. The simulated expression is updated according to the

differential equations. Regulatory relationships are the

same as in (i) but the regulatory effects are represented by

hill functions, such as Eqs. (1)–(3), or linear functions, as

illustrated in Fig 3. In this figure, h(c) indicates that the

regulation is described by Eq. (3) when cn,k~c.

7. The observational data and the csml (cell system markup

language) file are available at Model S2.

A true positive (TP), false positive (FP), false negative (FN),

precision rate (PR =
TP

TPzFP
), and recall rate (RR =

TP

TPzFN
)

were used to measure the performance. At first, in applying the

proposed method to the data, we changed the simulation time

interval of Eq. (4) to
1

Dt
~(1,2, . . . ,15), and estimated active sets of

regulation (A and G) and the values of the parameters for each
1

Dt
for each dataset. The results for datasets (i) and (ii) are illustrated in

Figs. 5 and 6, respectively. The precision and recall rates in Figs. 5

and 6 show that the performance of the structure inference

gradually increases from
1

Dt
~1 and is optimal at

1

Dt
~10 for (i)

and
1

Dt
~9 for (ii). This indicates that the simulation time interval

Dt can influence the performance of structure inference and we

should carefully design Dt for biological simulations. In order to

determine Dt, we measured the BIC scores and the sum of squared

prediction errors (SPE) at three time points (t~6, 8 and 12) for

each
1

Dt
using (i) and (ii), as represented in Fig. 7 and Fig. 8,

respectively. Here, we measured the prediction errors for each

time point by optimizing the values of the estimated parameters

without using the observational data at the corresponding time

point (t~6, 8, 12).

For dataset (i), although the PR and RR values peak at
1

Dt
~10,

the BIC scores become lowest at
1

Dt
~2. Similarly, the BIC score

becomes lowest at
1

Dt
~7 but peaks at

1

Dt
~9 for dataset (ii). SPE

gradually converges when
1

Dt
becomes large and has the lowest

value at
1

Dt
~11 and

1

Dt
~9 for datasets (i) and (ii), respectively.

Therefore, SPE can be an indicator for determining the best time

interval for this hill function-based system of pharmacogenomics.

Note that the measured time points for the prediction errors

should be the points that are not steady state values.

Next, we compared the results of (a) the proposed VAR-SSM

with the lowest BIC and (b) the proposed VAR-SSM with the

lowest SPE to (c) SSM [21,63] (permutation tests were utilized to

select regulations), (d) VAR model with L1 regularization using the

LARS-LASSO algorithm [30,61] (the BIC score is used to

determine the value of the regularization parameters), GeneNet

[31,32], G1DBN [33], GLASSO [34], ARACNE [3], CLR [35]

and MRNET [36]. The comparison results for datasets (i) and (ii)

are listed in Tables 2 and 3, respectively. In these comparisons, we

added the drug profiles to the observational data and did not count

regulations in response to drugs and self-regulation. For the

methods inferring undirected regulations, i.e., GeneNet,

GLASSO, ARACNE, CLR and MRNET, we considered the

true network (directed network) as an undirected network and then

measured the performance by comparing this undirected network

to the inferred networks. Additionally, for GeneNet, G1DBN and

mutual information-based methods (ARACNE, CLR and

MRNET), which are required to set a threshold value to

determine the existence of regulation, we checked the results of

setting the threshold q-value (GeneNet) and posterior probability

(G1DBN) to (0:01,0:05,0:1,0:2, . . . , and 0:5) and a cut-off value

Figure 10. The ROC and PR curves using dataset (iii). The left and the right figures illustrate the ROC and PR curves for dataset (iii), respectively.
In the left figure, the vertical axis and horizontal axis correspond to TP rate and FP rate, respectively. In the right figure, the vertical axis and horizontal
axis correspond to PR and RR, respectively. AUROC and AUPR are represented at the right side of the inference methods.
doi:10.1371/journal.pone.0105942.g010
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(ARACNE, CLR and MRNET) to (0,0:01,0:05,0:1,0:2, . . . , and

0:8), and adopted the best thresholds with respect to F-

measure~
2:PR:RR

PRzRR
. We should note that the simulation time

interval of SSM is set Dt~1 (no other choice is available) due to

the implementation of Tamada et al. [63]. It is hard to make the

simulation time interval short; hence, the simulated expression

profiles often oscillated in such situations.

Consequently, the proposed method achieved a low false

positive rate while maintaining a high true positive rate. These

results may be acceptable because the system model of the

proposed method is the same as or similar to the artificial

simulation models. Thus, it is conceivable that the proposed

method is highly capable of inferring the regulatory structure of

the assumed hill-function based model. Furthermore, we demon-

strated the effectiveness of the weighted regularization for known

prior information using dataset (ii). To evaluate the performance,

we adapted a simulation time interval of
1

Dt
~9. Setting weights

for true regulations as
1

wn,k
~(1:5,2,3, � � �, 20), PR and RR were

evaluated as illustrated in Fig. 9. The correct weights reduced the

FP and FN edges, and the performance was gradually improved

according to the increase in the weight coefficient. In contrast,

several FP edges still exist even when the weight coefficients take

on high values. It can be considered that the simplification of the

true regulatory system using the proposed model generates these

false edges to effectively predict the data.

Comparison Using Yeast Network of a Part of the
DREAM4 Challenge

In contrast to the previous comparisons, for which the data were

based on the assumed models as Eqs. (1)–(4), we next prepared

data generated by GeneNetWaver [39,40] using a 10-node yeast

network (yeast 1) of a part of the DREAM4 challenge (in silico

network challenge). To measure the performance of the proposed

method, in this comparison, we generated dataset (iii), which was a

set of 100 time-course observational data, in which the measured

time points were t~(0,1, . . . ,30).

According to the original setting, three genes, which were

randomly selected for each time-course, were perturbed among

t~0 to 15. Here, since we intended to consider the case that

observational data have a steady state, the number of time points

was to be set larger than those of the original setting

t~(0,1, . . . ,20). The dataset (iii) is available at Model S3.

We applied the methods (a)–(j) to dataset (iii); however, since

SSM [21,63] requires large computational costs to perform

permutation tests for each time-course, we neglected SSM for

this comparison. The time points to calculate SPE for the

proposed method are t~(16,17,18), which are the time points

shortly after removal of perturbations. For each method, we

summed the existence of the estimated regulation on the ith gene

by jth gene as esti,j and considered the values
esti,j

100
as the

confidence level for the regulation. Then, TP rate

(TPR =
TP

TPzFN
), FP rate (FPR =

FP

FPzTN
), precision rate

(PR =
TP

TPzFP
) and recall rate (RR =

TP

TPzFN
) were calculated

to draw ROC and PR curves. Using these curves, we measured

the performance with respect to the AUROC (area under the

ROC curve) and AUPR (area under the PR curve). These

comparison results are illustrated in Fig. 10. Note that, similarly toT
a
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the previous experiments, we selected the best threshold values

with respect to AUROC for the methods (e), (f) and (h)–(j).

As a result, although the simulation model for dataset (iii) is

different from the models that we assumed, the proposed method

using SPE outperformed the other methods in terms of both

AUROC and AUPR. The number of selected simulation time

intervals Dt is shown in Table 4. These results indicate that the

proposed method has good ability for inferring the regulatory

relationships using time-course observational data for which

regulations are not based on the model that we assumed.

Furthermore, we can consider the SPE as a good indicator for

determining the simulation time interval.

Figure 11. The result of the BIC scores and SPE for each simulation time interval using the real data. This illustrates the BIC scores and

SPE (t~1,2,4) for each time interval
1

Dt
~f1,2, . . . ,9g. The values of these indicators corresponds to the left and right axes, respectively.

doi: 10.1371/journal.pone.0105942.g011

Figure 12. The estimated network with weighting literature-recorded pathways. This figure illustrates the inferred gene regulatory
network with weights for literature-recorded pathways. Corticosteroid and genes of TFs are drawn as a red circle and green circles, respectively.
Estimated edges with weights are illustrated as orange. Further, on some genes, simulation expression profiles are attached as examples. Red and
blue profiles are roughly distinguished to up-regulated and down-regulated genes, respectively.
doi:10.1371/journal.pone.0105942.g012
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Application to Corticosteroid Pathways in Rats
As an application example, we analyzed microarray time-course

gene expression data from rat skeletal muscle [37,38], which is

assumed to have the same system used in simulation studies. The

microarray data were downloaded from the GEO database

(GSE490). The time-course gene expression was measured at 0,

0.25, 0.5, 0.75, 1, 2, 4, 5, 5.5, 7, 8, 12, 18, 30, 48, and 72 [h] (16

time points) after the glucocorticoid was applied. The data at time

0 represent controls (untreated). There were two, three, or four

replicated observations for each time point.

Because corticosteroid pharmacokinetics/dynamics in skeletal

muscle have been modeled based on differential equations [38] as

shown in Model S4, the time-dependent concentration of

corticosteroid in rat skeletal muscle can be obtained as z t.

Furthermore, corticosteroid catabolic/anabolic processes in rat

skeletal muscle have been partly established [41]; thus, these

regulatory relationships can also be used. Given this information,

we included Mtor, Anxa3, Bnip3, Bcat2, Foxo1, Trim63, Akt1,

Akt2, Akt3, Rheb, Igf1, Igf1r, Pik3c3, Pik3cd, Pik3cb, Pik3c2g,

Slc2a4, and Mstn. Note that the microarray (GSE490) does not

include three genes in the original pathway [41], Redd1, Bcaa and

Klf15. In addition, we employed the genes, Irs1, Srebf1, Rxrg,

Scarb1, Gpam, Scd, Gpd2, Mapk6, Ace, Ptpn1, Ptprf, Edn1,

Agtr1a, Ppard, Hmgcs2, Serpine1, Cebpb, Cebpd, Il6r, Mapk14,

Ucp3, and Pdk4, which have been suggested to be corticosteroid-

induced genes [37]. In summary, we applied the method to these

40 genes with weights for the established pathway and the

concentration of corticosteroid.

First, to determine the simulation time interval from
1

Dt
~f1,2, . . . ,9g, we evaluated the BIC scores and SPE

(t~1,2,4). The results are shown in Fig. 11. Interestingly, even

for the observational data, we obtained the same tendency for both

indicators. Therefore, we obtained
1

Dt
~4 for the lowest SPE.

Next, we analyzed the result of
1

Dt
~4. The inferred structure with

some simulated expression profiles are illustrated in Fig. 12. From

the figure, we can capture the propagation of gene expression

stimulated by corticosteroid and hub genes regulating other genes.

However, these results may be difficult to biologically interpret

because some mRNAs are not considered to regulate other genes.

Therefore, to exploit biological meaning correctly and demon-

strate the effectiveness of incorporating prior information in the

case of real biological data, we finally performed an experiment

using TF information from ITFP (Integrated Transcription Factor

Platform) [42]. Then, weights for regulations by TFs, Trim63,

Akt1, Akt2, Mstn, Irs1, Srebf1, Gpam, Cebpb, and Cebpd, were set
1

wn,k

~10. The inferred structure at
1

Dt
~4 using the TF

information is illustrated in Fig. 13.

In Figs. 12 and 13, there are some interesting observations. At

first, some genes are directly regulated by corticosteroids, which

are included in the model as z . Thus, other models that do not

include the drug terms cannot estimate such regulation. Second,

only weighted regulations, i.e., literature-recorded pathways and

regulation by TFs, were inferred in contrast to the non-weighted

network in Fig. 12. Thus, we could successfully incorporate prior

knowledge, and further candidates may extend our understanding

of regulation not yet reported in literature. Additionally, some

weighted genes, Cebpb, Mstn, Cebpd, and Trim63, were also

selected as hub genes with no weight in Fig. 12. Third, Cebpb,

Figure 13. The estimated network with weighting literature-recorded pathways and regulations by TFs. This figure illustrates the
inferred gene regulatory network with weights for literature-recorded pathways and regulations by TFs. Corticosteroid and genes of TFs are drawn as
a red circle and green circles, respectively. Estimated edges with weights for literature derived regulations are illustrated as orange. Red and blue
simulation profiles are roughly distinguished to up-regulated and down-regulated genes, respectively.
doi:10.1371/journal.pone.0105942.g013
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which is known as a transcription factor related to immune and

inflammatory responses, is indicated as a hub gene (illustrated as a

green circle). Cebpd and Cebpb are assumed to be candidate genes

for insulin-related transcription factors [64]. This finding may

confirm the findings of previous studies [37,38] indicating that

corticosteroid stimulation of skeletal muscle can induce the

expression of insulin.

Finally, we applied the other methods, i.e., GeneNet and

G1DBN, to the pharmacogenomic data and attached significance

levels (q-val and posterior probability for GeneNet and G1DBN,

respectively) for the regulations inferred by the proposed method.

The results are presented in Table 5. Interestingly, some

regulations have very high significance levels but others do not.

For example, regulations of Srebf1, Agtr1a, Cebpb and Cepbd by a

Table 5. The confidence levels of estimated pharmacogenomic regulations using GeneNet and G1DBN.

Regulator Target q–val post–prob.

Corticosteroid Srebf1 0.101 0.000

Corticosteroid Agtr1a 0.864 0.002

Corticosteroid Cebpd 0.021 0.003

Corticosteroid Cebpb 0.747 0.003

Trim63 Serpine1 0.375 0.005

Corticosteroid Mstn 0.198 0.012

Trim63 Irs1 0.385 0.065

Corticosteroid Scd 0.905 0.068

Akt2 Mtor 0.881 0.069

Cebpb Il6r 0.836 0.102

Trim63 Ppard 0.395 0.105

Trim63 Slc2a4 0.915 0.189

Corticosteroid Ucp3 0.663 0.195

Trim63 Bnip3 0.629 0.217

Trim63 Mstn 0.935 0.273

Mstn Cebpd 0.413 0.280

Irs1 Ptprf 0.928 0.452

Igf1 Pik3cd 0.897 0.457

Trim63 Mapk14 0.909 0.503

Irs1 Anxa3 0.107 0.632

Irs1 Gpd2 0.853 0.749

Corticosteroid Edn1 0.833 0.799

Corticosteroid Pik3c2g 0.929 0.821

Cebpb Trim63 0.864 0.991

Irs1 Akt3 0.396 1.000

Srebf1 Mapk6 0.453 1.000

Corticosteroid Scarb1 0.651 1.000

Cebpb Rxrg 0.734 1.000

Corticosteroid Ptpn1 0.827 1.000

Srebf1 Irs1 0.832 1.000

Akt2 Cebpb 0.863 1.000

Corticosteroid Pdk4 0.871 1.000

Cebpd Pik3c2g 0.888 1.000

Irs1 Foxo1 0.894 1.000

Cebpb Hmgcs2 0.897 1.000

Corticosteroid Igf1 0.908 1.000

Trim63 Akt3 0.913 1.000

Cebpd Igf1 0.924 1.000

Irs1 Bnip3 0.925 1.000

Cebpd Rheb 0.935 1.000

Trim63 Ace 0.936 1.000

doi:10.1371/journal.pone.0105942.t005
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corticosteroid are quite probable. In contrast, some regulations

were not significant when using these methods. We can suppose,

for example, that differences between the models, the prior weights

for TF candidates and literature derived pathways, steady state

gene expression profiles and corticosteroid drug dynamics in the

proposed model may have caused the results. Although some

inferred regulations had low significance levels in other approach-

es, we believe that these regulations can be candidates for true

regulation in corticosteroid pharmacogenomic pathways because

the proposed method outperformed the other methods through

the comparison using synthetic pharmacogenomic pathways.

Although we actually used 40 genes, only 35 genes were found

to be regulated because the expression of residual genes did not

vary through the time-course. Hence the expression of these genes

can represent only synthesis and degradation processes, for which

regulation was not estimated.

Discussion

In this study, we proposed a novel method for inference of gene

regulatory networks incorporating existing biological knowledge

and time-course observation data. The properties of the method

are as follows; (i) the dynamics of the gene expression profiles can

be estimated based on the proposed linear model with a hidden

state, (ii) L1 regularized log-likelihood is maximized to infer the

active sets of regulation, (iii) the dynamics of other biomolecules

can be included in the model, (iv) existing biological knowledge,

e.g., literature-recorded pathways and TF information, can be

integrated. Furthermore, we proposed an indicator for selecting a

simulation time interval for the inference.

To show the effectiveness of the proposed method, we

compared it to the previously reported GRNs inference methods

using hill function-based pharmacogenomic pathways [38] and a

yeast network that is a part of the DREAM4 challenge [39,40].

Since the artificial simulation models were described by differential

equations or difference equations, in which the time intervals were

smaller than the measurement interval, to reproduce a realistic

biological system, the simulated expressions was updated in detail.

In this situation, we assumed that the simulation time interval for

the method is crucial for inference. As we expected, the results

demonstrated that inference of the regulatory structure depends

greatly on the simulation time interval. This indicates that we

should carefully design the simulation time interval even for

analysis of real observational data. For this purpose, we introduced

indicators to determine the simulation time interval and measured

their validity. Here, since the tendency of the indicator for the

simulation time interval depends on the analyzed biological

system, it is recommended to check the tendency by using

simulation models. Upon comparison of the inferred structures,

the proposed method using the indicator showed the highest

performance in terms of precision and recall rates for all three data

types. The fact that the proposed method outperformed the other

methods in using synthetic datasets, which includes the model we

do not assume, indicates the adaptability of our proposed method.

For an application example, we applied the proposed method to

a corticosteroid-stimulated pathway in rat skeletal muscle. Because

pathways and genes related to corticosteroids have been widely

investigated, we were able to obtain the concentration of the drug

as a function of time from the corticosteroid kinetics/dynamics

and the literature-recorded pathways. By incorporating time-

course mRNA expression data, corticosteroid kinetics/dynamics,

literature-recorded pathways and TF information, we inferred the

regulatory relationships among 40 genes that are candidate or

known corticosteroid-related genes. The tendency of the BIC

scores and the SPE for the simulated time intervals were the same

as in the simulation studies, in which the regulatory systems were

based on the previous corticosteroid pharmacogenomic studies,

and interesting findings for corticosteroid regulation were

obtained. For example, genes that are suggested to be significant

factors in corticosteroid pharmacogenomics were predicted to be

hub genes regulating other genes in the results both with and

without prior information. Furthermore, we found that the

properties of the proposed method, i.e., the weighted regulariza-

tion and inclusion of a term for other biomolecules, influenced the

results of selecting potential regulators and introducing drug effects

to genes, respectively. Finally, these inferred regulations were

evaluated by GeneNet and G1DBN, and some of the regulations

had high significance. Since our approach imposed prior weights

for reliable regulations and included drug terms to explicitly

represent their dynamics, not only these regulations but also

regulations that are evaluated as non-significant could be

candidate regulations for corticosteroid pharmacogenomics. These

results indicate that the proposed method can help to elucidate

candidates that will allow extension of GRNs in which the

regulation among genes is partly understood by incorporating

multi-source biological knowledge.
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