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Rapid and sensitive detection of 
early esophageal squamous cell 
carcinoma with fluorescence probe 
targeting dipeptidylpeptidase IV
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Kazuhiko Mori8, Hiroharu Yamashita1, Mitsuhiro Fujishiro6, Sachiyo Nomura1, 
Nobuyuki Shimizu9, Masashi Fukayama5, Kazuhiko Koike6, Yasuteru Urano2,4,10  
&  Yasuyuki Seto1

Early detection of esophageal squamous cell carcinoma (ESCC) is an important prognosticator, 
but is difficult to achieve by conventional endoscopy. Conventional lugol chromoendoscopy and 
equipment-based image-enhanced endoscopy, such as narrow-band imaging (NBI), have various 
practical limitations. Since fluorescence-based visualization is considered a promising approach, we 
aimed to develop an activatable fluorescence probe to visualize ESCCs. First, based on the fact that 
various aminopeptidase activities are elevated in cancer, we screened freshly resected specimens from 
patients with a series of aminopeptidase-activatable fluorescence probes. The results indicated that 
dipeptidylpeptidase IV (DPP-IV) is specifically activated in ESCCs, and would be a suitable molecular 
target for detection of esophageal cancer. Therefore, we designed, synthesized and characterized 
a series of DPP-IV-activatable fluorescence probes. When the selected probe was topically sprayed 
onto endoscopic submucosal dissection (ESD) or surgical specimens, tumors were visualized within 
5 min, and when the probe was sprayed on biopsy samples, the sensitivity, specificity and accuracy 
reached 96.9%, 85.7% and 90.5%. We believe that DPP-IV-targeted activatable fluorescence probes 
are practically translatable as convenient tools for clinical application to enable rapid and accurate 
diagnosis of early esophageal cancer during endoscopic or surgical procedures.

Esophageal cancer is the eighth most frequently diagnosed cancer worldwide and the sixth most common cause 
of cancer-related death; in particular, esophageal squamous cell carcinomas (ESCCs) are lifestyle-related, and risk 
factors include smoking and drinking alcohol1. Due to the asymptomatic nature of the disease in the early stages, 
esophageal cancer is often found at an advanced stage. Consequently, the overall prognosis of esophageal cancer 
is quite poor, with a five-year survival rate (5YSR) of around 14%1. However, when esophageal cancer is found at 
an early stage, there is a better chance of recovery; for instance, the 5YSR of esophageal cancer at stage 0 is more 
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than 95%1. In addition, early detection enables minimally invasive curative treatment (e.g. endoscopic resection), 
which is much safer and less disruptive to patients2–5 compared to surgery, which involves a risk of postoperative 
complications, such as pneumonia, hoarseness from vocal cord nerve injury, leakage from the anastomosis and 
infection. Therefore, early detection of esophageal cancer is crucial for improvement of the survival rate and the 
health-related quality of life of patients.

In order to detect early-stage ESCCs in the absence of signs or symptoms, endoscopic screening of the eso-
phagus is usually conducted with the aid of lugol chromoendoscopy or image-enhanced endoscopy, such as 
narrow-band imaging (NBI)6,7, since early-stage ESCCs are difficult to see in conventional endoscopy owing 
to the poor visual contrast between cancer and normal tissues under white light. However, instillation of lugol 
solution into the esophagus sometimes leads to complications (hypersensitivity to iodine, laryngitis, heartburn), 
and is not applicable repeatedly over a short period since it induces acute mucosal damage8–10. In contrast, NBI 
allows non-invasive observation, but it requires specialized expertise and training11,12, and the diagnostic yield 
requires further improvement.

On the other hand, fluorescence-guided detection has recently been investigated as an aid to optically 
guided endoscopy, because of its advantages of high sensitivity, low cost, and real-time capability13,14. We have 
already reported an activatable fluorescence imaging probe targeting γ​-glutamyltranspeptidase (GGT), which 
is a membrane-bound protein known to be overexpressed in many types of cancer15. We recently confirmed the 
suitability of this probe, γ​-glutamyl hydroxymethylrhodamine green (gGlu-HMRG), for detecting human breast 
cancer in resected tissue from patients16. However, we found that this probe is unsuitable for detecting ESCCs in 
clinical specimens, and we considered that a target other than GGT would be required for fluorescence-guided 
detection of esophageal cancers.

In the present work, we firstly employed a screening strategy to identify a suitable target aminopep-
tidase for visualizing esophageal cancer, using freshly resected specimens from patients and a series of 
aminopeptidase-activatable fluorescence probes. We identified dipeptidylpeptidase IV (DPP-IV) as a suitable 
target. We then designed, synthesized and characterized a series of HMRG-based fluorescent probes targeting 
DPP-IV. We confirmed that the selected probe could rapidly visualize tumors in freshly resected endoscopic 
submucosal dissection (ESD) specimens and surgical specimens with high sensitivity, specificity and accuracy.

Results
Screening of aminopeptidase activities of esophageal squamous cell carcinoma in human 
biopsy samples.  In order to find an aminopeptidase activity that is specific for ESCCs, and to ensure that 
the findings would be directly translatable to clinical application, we carried out screening using fresh biopsy 
samples taken from cancer-positive and negative sites during preoperative upper gastrointestinal endoscopic 
examination of patients. The biopsy samples were incubated with a series of HMRG-based activatable probes 
targeted to various candidate aminopeptidases. These probes exist in colorless, non-fluorescent spirocyclic forms, 
but are converted to a colored, highly fluorescent hydrolysis product HMRG, which emits green fluorescence, 
upon reaction with the targeted aminopeptidase (Fig. 1a). Since these biopsy samples were fresh, we expected 
that in vivo differences in enzymatic activities between cancer-positive and negative sites would be retained 
(Fig. 1b). The screening probes were targeted to γ​-glutamyltranspeptidase (gGlu-HMRG), dipeptidylpeptidase 
IV (GP-HMRG), fibroblast activation protein (AcGP-HMRG), cathepsin H (Arg-HMRG), and other candidate 
peptidases (Ile-HMRG, Phe-HMRG, Tyr-HMRG). Among them, GP-HMRG showed a rapid, significant and 
specific fluorescence increase in tumor-positive samples, while the others did not (Fig. 1c).

Next, we set out to confirm the target enzyme of GP-HMRG. Based on a previous report that dipeptide GP 
(GlyPro) is cleaved by DPP-IV17, we first confirmed that GP-HMRG can be activated by DPP-IV in vitro (Fig. 2a). 
Next, since there are only a few papers reporting up-regulation of DPP-IV in ESCCs18–20, we performed live-cell 
imaging of cultured esophageal cancer cells to confirm the reactivity of GP-HMRG and its specificity for DPP-IV. 
We observed fluorescence activation of GP-HMRG in human esophageal squamous cell carcinoma KYSE270 cells 
(Fig. 2b). In the presence of a DPP-IV inhibitor, this fluorescence activation was blocked. Similarly, we observed 
a significant decrease in the fluorescence signal in cells pre-transfected with DPP-IV siRNAs, compared to cells 
transfected with control siRNA (Fig. 2c,d). These results confirm that DPP-IV is responsible for the activation of 
GP-HMRG in fresh biopsy samples.

Synthesis of a series of fluorescence probes for DPP-IV.  The penultimate proline is indispensable for 
the substrate recognition by DPP-IV17, so we synthesized a series of candidate probes, EP-HMRG, KP-HMRG, 
YP-HMRG, LP-HMRG, and PP-HMRG, for further evaluation. We confirmed that all these probes exist in 
non-fluorescent spirocyclic form, but are converted to a highly fluorescent hydrolysis product, HMRG, upon 
reaction with DPP-IV (Supplementary Figs 1–4, Supplementary Table 1). Among these derivatives, EP-HMRG 
exhibited the lowest Michaelis constant (Km), showing the highest affinity for DPP-IV (Supplementary Table 2). 
Therefore, we selected EP-HMRG for further application.

Ex vivo validation of DPP-IV-activatable probe EP-HMRG for detecting esophageal squamous 
cell carcinoma in biopsy samples.  In order to validate EP-HMRG, we measured the fluorescence increase 
when it was applied to 74 biopsy samples, consisting of 32 samples diagnosed as positive for ESCCs and 42 neg-
ative samples. Significant fluorescence increases were observed with the cancer-positive samples, but not the 
cancer-negative samples, and the tumors were visualized with sufficient tumor-to-normal (T/N) fluorescence 
intensity ratios after 5 min (Fig. 3, Supplementary Table 3). Subsequent ROC analysis of the diagnostic perfor-
mance of EP-HMRG for detecting ESCCs (Supplementary Fig. 5) gave sensitivity, specificity and accuracy values 
of 96.9%, 85.7% and 90.5%, respectively (Table 1). It is noteworthy that these values are comparable with or even 
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Figure 1.  Screening of HMRG-based aminopeptidase-reactive fluorescent probes. (a) Activation 
of fluorescence of HMRG-based probes upon enzymatic reaction. (b) Fluorescence imaging of cancer-
positive biopsy samples and cancer-negative biopsy samples. White-light image before spraying probe (left). 
Fluorescence images after spraying fluorescent probe under blue light (middle). Fluorescence images at 540 nm 
after spraying fluorescent probe; ROI are outlined in red (right). Tyr-HMRG was used as the fluorescent probe 
in these images. Scale bars, 5 mm. (c) Screening of aminopeptidase activity using human cancer-positive (SCC, 
solid line) and cancer-negative (N, dotted line) biopsy samples. Biopsy samples from the same patient are shown 
in the same color. F.I. (a.u.): fluorescence intensity (arbitrary units).
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better than those of conventional methods (Supplementary Table 4). These results clearly demonstrate the poten-
tial of EP-HMRG for clinical application.

Fluorescence detection of human esophageal squamous cell carcinoma in resected specimens 
with EP-HMRG.  We next investigated whether tumor-specific fluorescence imaging could be achieved sim-
ply by spraying EP-HMRG onto freshly resected specimens obtained from esophageal cancer patients during 
endoscopic submucosal dissection (ESD) or at surgical operation. A total of 44 specimens (30 surgical specimens 
and 14 ESD specimens) were obtained and examined (Figs 4 and 5).

Figure 4 shows an example of a specimen resected at operation: a 0-I +​ IIc lesion of 85 mm in size, located 
in the middle esophagus, was histologically diagnosed as well-differentiated squamous cell carcinoma (SCC), 

Figure 2.  Fluorescence imaging of human esophageal squamous cell carcinoma cell line KYSE270 with 
GP-HMRG. (a) In vitro changes in absorption (left) and fluorescence (middle) spectra of GP-HMRG before and 
after addition of DPP-IV. (b) Confocal fluorescence images at 5 and 60 min after incubation with GP-HMRG 
(10 μ​M) in the absence and presence of inhibitor (100 μ​M). Drastic fluorescence activation of GP-HMRG was 
observed, and was significantly suppressed by the inhibitor. Scale bars, 100 μ​m. (c) Confocal fluorescence 
images of KYSE270 cells which had been pretransfected with siRNAs, followed by application of GP-HMRG 
(10 μ​M). Scale bars, 100 μ​m. (d) Change of fluorescence intensity in KYSE270 cells in (b). Data are mean 
fluorescence intensities (a.u.) ±​ SEM.
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pT1b. After spraying of EP-HMRG, the tumor could be clearly detected within a few minutes. The pattern of 
the observed fluorescence signal closely matched that of lugol voiding lesions (Fig. 4a,b). We also immunohisto-
chemically confirmed expression of DPP-IV in the SCC (Fig. 4c). Pathological findings were also consistent with 
the real-time fluorescence detection of the tumor by fluorescence endoscopy (Supplementary Video 1). Further, 
co-incubation with a DPP-IV inhibitor (DPP-IV Inhibitor IV) blocked the fluorescence increase in another 
resected specimen obtained at operation (Supplementary Fig. 6: a 0-IIc lesion 30 mm in size, located in the middle 
esophagus, was histologically diagnosed as SCC, pT1a). These results demonstrated that EP-HMRG is cleaved by 
DPP-IV expressed in the tumor in resected specimens, thereby generating a fluorescence signal.

Figure 5 shows an example of early ESCCs removed by ESD: a 0-IIb lesion 33 mm in size, located in the mid-
dle esophagus, which was histologically diagnosed as SCC, pT1a. Since this lesion was flat and slightly red, it 
was difficult to detect by white light imaging (WLI), but was highlighted in NBI or by lugol staining (Fig. 5a,b). 
Just 5 min after spraying EP-HMRG onto this resected specimen, the tumor lesion was clearly and specifically 
visualized (Fig. 5c). Indeed, the fluorescence signal was sufficiently strong to be seen with the naked eye. The 
fluorescence-positive site matched well with the lugol voiding lesions and with the pathologically identified 
cancer-positive site (Fig. 5d). Furthermore, the SCC showed strong immunostaining of DPP-IV.

Discussion
In this report, we adopted a screening strategy to find ESCC-specific enzymatic activities, using freshly resected 
specimens from patients and a series of activatable aminopeptidase-targeting fluorescence probes, and we iden-
tified DPP-IV, a serine protease that cleaves penultimate L-proline at the N-terminus of polypeptides21), as a 
suitable candidate. It has been reported that DPP-IV is overexpressed in several kinds of cancer tissue, includ-
ing prostate carcinomas, thyroid carcinomas, and ESCCs18–20,22,23, but the present work is the first to show that 
DPP-IV can be utilized for visualizing esophageal cancer.

Detecting ESCCs at an early stage is critical for preventing development of advanced cancer and for enabling 
minimally invasive, curative treatment2–5. Several techniques have been established to detect early-stage ESCCs 
through endoscopic screening, but they have various limitations. Lugol chromoendoscopy has sensitivity, speci-
ficity, and diagnostic accuracy values of 94.2%, 64.0% and 68.0%, respectively (Supplementary Table 4). However, 
discomfort (esophageal burning sensation) has frequently been reported after lugol chromoendoscopy, and aller-
gic reaction to iodine can sometimes occur8–10. Further, instillation of lugol dye close to the upper esophagus 
must be avoided due to the risk of bronchospasm or aspiration, and accurate diagnosis is difficult because of the 
wide variation in staining patterns24,25, which might lead to unnecessary biopsies. On the other hand, NBI offers 
non-invasive observation with sensitivity, specificity, and diagnostic accuracy values of 88.3%, 75.2% and 77.0%, 
respectively. However, especially in the case of magnifying NBI, these values may vary substantially depending 

Figure 3.  Fluorescence analysis of freshly resected biopsy samples of ESCCs from patients. Time-dependent 
changes in fluorescence intensity in biopsy samples after application of EP-HMRG (50 μ​M) (32 cancer-positive 
biopsy samples, red line; 42 cancer-negative biopsy samples, blue line). Mean fluorescence intensities (horizontal 
line within box), interquartile range (box) and range (error bars) are shown.

5 min 10 min 30 min

AUC 0.93 0.93 0.95

Cut off 0.37 0.67 1.77

Sensitivity 96.9% (31/32) 96.9% (31/32) 96.9% (31/32)

Specificity 85.7% (36/42) 83.3% (35/42) 90.5% (38/42)

Accuracy 90.5% (67/74) 89.2% (66/74) 93.2% (69/74)

PPV* 83.8% (31/37) 81.6% (31/38) 88.6% (31/35)

NPV** 97.3% (36/37) 97.2% (35/36) 97.4% (38/39)

Table 1.   Diagnostic performance of EP-HMRG for detection of esophageal cancer. The values are positive 
rate. *PPV, positive predictive value. **NPV, negative predictive value.
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upon the skill and experience of endoscopists (Supplementary Table 4). Our simple and convenient method 
using an activatable fluorescence probe, EP-HMRG, provided sensitivity, specificity and accuracy values of 96.9%, 
85.7% and 90.5% at just 5 min after topical spraying of the probe. These values are comparable to or even better 
than those of lugol chromoendoscopy and NBI.

Several successful applications of fluorescent probes for in vivo cancer imaging in patients have been 
reported13,14. However, in all cases, the probes have to be intravenously injected, so that thorough safety studies 

Figure 4.  Fluorescence and histological analysis of freshly resected human ESCC specimen obtained at 
operation. (a) White-light image (WLI) and lugol dye staining: the pathological diagnosis was 0-I +​ IIc, 85 mm 
in size, pT1b. Scale bar, 20 mm. (b) Fluorescence images after spraying EP-HMRG (50 μ​M) under blue light: 
a rapid fluorescence increase was observed at the tumor lesion. Scale bar, 20 mm. (c) Histological analysis of 
boxed regions with strong fluorescence activation (pink box) or with no fluorescence activation (blue box). 
H&E (upper) and IHC staining for DPP-IV (bottom) revealed that the pink box region consisted of SCCs with 
strong DPP-IV expression (middle) and the blue box region was normal (right). Magnification ×400. Scale bar, 
100 μ​m.
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Figure 5.  Fluorescence and histological analysis of freshly resected ESD specimen. (a) Endoscopic 
appearance. White light imaging (WLI) shows flat appearance and slight redness (left). Narrow band imaging 
(NBI) shows a brownish area (middle). Lugol dye shows a well-demarcated unstained area (right). (b) WLI and 
lugol staining: the pathological diagnosis was 0-IIb, 33 mm in size, pT1a. Scale bar, 10 mm. (c) Fluorescence 
images after spraying EP-HMRG (50 μ​M) under blue light: a rapid fluorescent increase was observed in the 
tumor lesion. Scale bar, 10 mm. (d) Red lines on histological mapping show SCCs and blue lines show no 
tumor (left). Histological analysis of boxed regions with strong fluorescence activation (pink box) or with no 
fluorescence activation (blue box). H&E (upper) and IHC staining for DPP-IV (bottom) revealed the pink box 
region was SCCs (middle) and the blue box region was normal (right). Magnification ×400. Scale bar, 100 μ​m.
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are mandatory before pilot studies in humans can be carried out. Also, relatively large amounts of the probes 
(0.1–0.3 mg/kg) were used, compared to our topically sprayed probe (0.5 mg/one patient), and quite long detec-
tion periods were required after probe administration (2–8 hrs). These factors have made it difficult to accumu-
late sufficient numbers of patients to properly evaluate the sensitivity and specificity of these novel techniques 
in humans. In contrast, the topical application of our probe at a substantially lower dose and its rapid reaction 
would be favorable for routine clinical application during endoscopic examination, including screening checks 
for ESCCs. The rapid and dramatic fluorescence activation would enable easy incorporation of this technique 
into surgical or endoscopic resection procedures, e.g., for evaluation of the surgical margin during endoscopic 
submucosal dissection (ESD) and surgical operation.

A unique feature of our strategy is that the selected imaging probe is directly translatable to clinical applica-
tion. Previous approaches to identify cancer-related biomarkers, such as a specific receptor, protein or metabolic 
product, by means of biochemical and omics analysis of cancer model cells, animal models, or patient’s sample, 
often require prolonged research and may nevertheless be unsuccessful. In contrast, our strategy of using acti-
vatable, aminopeptidase-targeted fluorescence probes to visualize cancers in fresh human specimens is directly 
translatable to the clinical context, because we can observe and compare a specific enzymatic activity at cancer 
sites as compared to normal sites in the same sample in detail. This provides basic information that would be 
helpful in designing individualized treatment regimens to improve the outcome for patients.

The fluorescence signal obtained with EP-HMRG corresponded well with pathologically cancer-positive 
lesions, but we have noticed that the fluorescence signal is not uniform within cancer-positive lesions. One possi-
ble reason for this would be differences of histological type. According to Goscinski et al.18,19, and Augoff et al.20, 
the expression level of DPP-IV varies depending on the differentiation status of ESCC cell lines. Other possible 
reasons would be differences of grade of malignancy or depth of tumor invasion. In immunohistochemistry, 
strong immunostaining of DPP-IV was observed in SCC, whereas DPP-IV expression was confined to the basal 
and parabasal layers in normal regions. Based on this, we speculate that the difference in DPP-IV localization 
between ESCCs and normal esophageal epithelium contributes to the high T/N ratio; DPP-IV in the normal 
epithelium tends to be sequestered to basal cells that are not easily accessed by the probe, while DPP-IV in ESCCs 
tends to be over-expressed or exposed near or at the surface of the epithelium, so that the probe can be easily 
hydrolyzed to the fluorescent product. Therefore, it will be of interest to investigate the relationship between 
fluorescence intensity and histological type, grade of malignancy or depth of tumor invasion in future studies.

To our knowledge, this is the first report to describe the strategy of screening activatable probes with fresh 
human clinical specimens to find suitable molecular targets for cancer-specific fluorescence imaging. Our newly 
developed probe for DPP-IV, EP-HMRG, is a good candidate for clinical application, not only for the diagnosis of 
early ESCCs under the endoscope, but also for evaluation of the surgical margin during ESD and surgical opera-
tion. Further studies to evaluate the safety and biokinetics of this probe are in progress.

Methods
Patients and lesions.  This study was conducted with the approval of the Research Ethics Committee of the 
University of Tokyo and registered in the UMIN Clinical Trials Registry (registration number: UMIN000012645; 
http://www.umin.ac.jp/ctr/index.htm). All experiments were performed in accordance with guidelines and reg-
ulations approved by the Research Ethics Committee of the University of Tokyo. Informed consent was obtained 
from all patients. Esophageal cancer patients examined or treated at the University of Tokyo Hospital in Tokyo, 
Japan, were prospectively included in this study. Patients with ESCCs were included, but patients with esophageal 
adenocarcinoma or esophago-gastric junctional cancer were excluded.

Materials.  General chemicals were of the best grade available, supplied by Tokyo Chemical Industries, Wako 
Pure Chemical or Aldrich Chemical Company, and were used without further purification. Dimethyl sulfoxide 
(DMSO, fluorometric grade) used for the spectrometric measurements and for preparing stock solutions was 
purchased from Dojindo. DPP-IV was purchased from Sigma-Aldrich Japan K.K. (D4943: Tokyo, Japan), and 
K579 (DPP-IV inhibitor) was purchased from CalbioChem.

Instruments.  1H NMR spectra were recorded on a JNM-LA300 (JEOL) instrument (300 MHz for 1H 
NMR) or JNM-LA400 instrument (400 MHz for 1H NMR). Mass spectra (MS, ESI-TOF) were measured with 
a JMS-T100LC AccuTOF (JEOL). Absorption spectra were obtained with a UV-1650PC UV/Vis spectrometer 
(Shimadzu), and fluorescence spectra were obtained with a F4500 fluorescence spectrometer (Hitachi). LC-MS 
analysis were performed on a reverse-phase column (Inertsil C18, GL Sciences (Tokyo, Japan)), fitted on an 
Agilent Technologies 1200 series/6130 Quadrupole (LC/MS) system, using a linear gradient of eluent A (0.1% 
formic acid in H2O) and eluent B (0.1% formic acid in 80% acetonitrile, 20% H2O) (A/B: 95/5 to 5/95 in 17.5 min). 
Detected at 490 nm. All experiments were carried out at 298 K, unless otherwise specified.

Cell lines and culture.  The established cell line KYSE270, originated from well-differentiated human eso-
phageal squamous cell carcinoma, was provided by Y. Shimada, Kyoto University, Japan26. KYSE270 cells were 
grown in a 1-to-1 mixture of Ham’s F12 medium and RPMI1640 medium containing 2% fetal bovine serum 
(FBS), penicillin (100 U/ml) and streptomycin (100 μ​g/ml) at 37 °C in an atmosphere of 5% CO2 in air.

RNA interference.  KYSE270 cells were seeded on 8-well μ​-slides (ibidi) and transfected with 10 nM 
DPP-IV-targeted siRNA (CD26 siRNA (h), Santa Cruz, SC-42762) or control siRNA (BannoNegacon, RNAi Inc.) 
using Lipofectamine RNAiMAX transfection reagent (Invitrogen, #13778030). Thirty hours after transfection, the 
cells were used for fluorescence imaging.

http://www.umin.ac.jp/ctr/index.htm
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Confocal live cell imaging.  Cells were seeded on a glass-bottomed dish and cultured for 2 days, then incu-
bated with 10 μ​M GP-HMRG in RPMI1640 containing 0.1% v/v DMSO as a co-solvent (when necessary, cells 
were co-incubated with 100 μ​M DPP-IV inhibitor). Fluorescence images were captured at 5 or 60 min after appli-
cation of the probe with a Leica Application Suite Advanced Fluorescence (LAS-AF) microscope with a TCS 
SP5 unit and an oil immersion objective lens (×​40, numerical aperture 1.25, Leica). The excitation and emission 
wavelengths were 488 nm and 500–580 nm, respectively. The light source was a white-light laser.

Fluorescence imaging with biopsy samples.  Biopsy samples from patients were freshly taken from both 
cancer-positive sites and negative sites during preoperative upper endoscopic examination. A 50 μ​M probe solu-
tion (50 μ​l) in PBS containing 0.5% v/v DMSO as a co-solvent was dropped onto each sample, and fluorescence 
images were obtained before and at 1, 3, 5, 7, 10, 20 and 30 min after application of the probe with the Maestro 
In Vivo Imaging System (PerkinElmer, Massachusetts, USA). The blue-filter setting (excitation: 435 to 480 nm; 
emission: 490 nm long-pass) was used. The tunable filter was automatically stepped in 10-nm increments, from 
500 to 720 nm, while the camera sequentially captured images at each wavelength interval. The diagnostic per-
formance of EP-HMRG was evaluated by ROC analysis of average fluorescence intensity of the biopsy samples at 
540 nm (Fig. 1b).

Fluorescence imaging with resected specimens obtained by ESD or at surgical operation.  
Esophageal specimens from esophageal cancer patients were resected during ESD or surgical operation. A 50 μ​M 
solution of EP-HMRG (1000 μ​l) in PBS containing 0.5% v/v DMSO as a co-solvent was sprayed onto the freshly 
resected specimens, and fluorescence images were obtained before and at 3, 5, 10, 20 and 30 min after spraying, 
as described above. A mixture of EP-HMRG (50 μ​M) and DPP-IV inhibitor (50 μ​M, Calbiochem) was used to 
examine specificity of EP-HMRG for DPP-IV on the specimens.

Real-time fluorescence endoscopy.  A fluorescence endoscopic system (Olympus Corp.) equipped with 
an in-house-developed fluorescence detection system was used for this study. Excitation and emission filters were 
450 to 490 nm and 520 to 600 nm, respectively. Fluorescence images were captured with the endoscope at 10 min 
after spraying EP-HMRG.

Histological analysis.  Resected specimens were evaluated pathologically with hematoxylin and eosin 
(H&E) staining to confirm the existence of cancer. These specimens were fixed in 10% neutral buffered formalin, 
embedded in paraffin and sliced at 4 μ​m thickness. The tissue sections were deparaffinized, and stained with 
hematoxylin and eosin for histopathologic evaluation. Immunohistochemistry (IHC) of DPP-IV was performed 
for comparison with the pathological diagnosis. The distribution of carcinoma evaluated pathologically in the 
resected specimen was also compared to that of fluorescence-positive and lugol-voiding regions.

Immunohistochemistry.  After tissue sections had been prepared as described above, the slides 
were immersed in immunosaver buffer and microwaved at 98 °C for 20 minutes for antigen retrieval. The 
VECTASTAIN Elite ABC (Avidin Biotinylated enzyme Complex) system was used for staining tissue according to 
the manufacturer’s instructions. Briefly, the slides were incubated in 3% H2O2/H2O for 30 min to quench endog-
enous peroxidase activity, and an Avidin/Biotin blocking system was used to eliminate non-specific staining. 
The sections were incubated with primary antibody against CD26 (DPP-IV) (rabbit polyclonal antibody, H-270 
(Santa Cruz, CA)) at 1:500 dilution for 2 hours at room temperature. Sample without primary antibody was also 
prepared as a negative control. Normal small intestine, known to be DPP-IV-positive, was used as a positive con-
trol. 3,3′​-Diaminobenzidine (DAB) was used as a chromogen and hematoxylin was applied for counterstainng.

Statistical analysis.  Continuous data were compared using the Wilcoxon rank-sum test. Receiver operating 
characteristic (ROC) curves was used to determine a cutoff value. Sensitivity, specificity and accuracy were calcu-
lated by using ROC analysis. A value of P <​ 0.050 (2-sided) was regarded as statistically significant. All analyses 
were performed using JMP pro software version 11 (SAS Institute, Cary, North Carolina, USA).
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