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Summary

Read-across, i.e. filling toxicological data gaps by relating to similar chemicals, for which test data 

are available, is usually done based on chemical similarity. Besides structure and physico-chemical 

properties, however, biological similarity based on biological data adds extra strength to this 

process. In the context of developing Good Read-Across Practice guidance, a number of case 

studies were evaluated to demonstrate the use of biological data to enrich read-across. In the 

simplest case, chemically similar substances also show similar test results in relevant in vitro 
assays. This is a well-established method for the read-across of e.g. genotoxicity assays. Larger 

datasets of biological and toxicological properties of hundreds and thousands of substances 

become increasingly available enabling big data approaches in read-across studies. Several case 

studies using various big data sources are described in this paper. An example is given for the US 

EPA’s ToxCast dataset allowing read-across for high quality uterotrophic assays for estrogenic 

endocrine disruption. Similarly, an example for REACH registration data enhancing read-across 
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for acute toxicity studies is given. A different approach is taken using omics data to establish 

biological similarity: Examples are given for stem cell models in vitro and short-term repeated 

dose studies in rats in vivo to support read-across and category formation. These preliminary 

biological data-driven read-across studies highlight the road to the new generation of read-across 

approaches that can be applied in chemical safety assessment.
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1 Introduction

Read-across has become a primary approach to fill data gaps for chemical safety 

assessments. Chemical similarity based on structure, reactivity and physico-chemical 

property information, is the main approach applied for this purpose. Chemical toxicity, 

however, normally contains complicated biological mechanisms, so only using chemical 

similarity to justify the read-across will induce errors, especially when the chemical similar 

compounds show dissimilar toxicity phenomenon. The availability of massive biological 

data for environmental compounds makes biological similarity approaches feasible within 

the scope of read-cross. This accompanying paper to the efforts toward Good Read-Across 

Practice (Ball et al., 2016, this issue) scopes the opportunities for biological support to 

strengthen read-across with a number of examples.

There are three different types of biological similarity approaches that have been applied: 1) 

When several bioassays represent key mechanisms of target toxicity endpoints, they may 

have straightforward predictive power and in some instances it has been possible to show 

this for a larger applicability domain by traditional validation. In some cases, biological 

similarity can be applied, however, successfully only for specific parts of the chemical 

universe and only one toxicity endpoint, which has been termed “local validity” (Patlewicz 

et al., 2014); 2) When biological similarity is based on a large number of bioassays, the 

read-across study may be successful for various types of toxicity endpoints. This kind of 

studies is so far rarely pursued because of expensive cost to screen the same target 

compounds against many (often several hundred) different bioassays (Zhu et al. 2014). The 

recent public availability of large High Throughput Screening (HTS) datasets (e.g. ToxCast 

and Tox21 data) has made this kind of study feasible. In this case, new statistical tools need 

to be applied for the read-across studies using complex biological data; 3) The concept of 

“toxicity pathways” (or the molecularly define pathways of toxicity, PoT (Kleensang et al., 

2014)) represents a new opportunity of risk assessment. When all receptors within a 

potential pathway are included in the biological testing, the mechanism-based read-across 

studies are feasible. In the current big data era, some popular compounds, such as well-

known toxicants, have been extensively studied worldwide and a complex data landscape is 

available for these compounds (e.g. omics data). To this end, more biological data is needed 

for target compounds, more toxicity mechanisms need to be clarified and novel 

computational tools (e.g. big data approaches) need to be developed. The recent efforts 

steered by OECD of developing Adverse Outcome Pathways (AOP) have added lots of 
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useful information and tools regarding these needs (Vinken et al. 2013a; Vinken 2013b; 

Ankley et al. 2010). Biological similarity studies have been greatly enhanced by these 

rapidly increased biological data (Zhu et al. 2014).

Omics analyses allow also to assess similarity; here in vivo models, such as short-term 

animal studies as well as stem cell-derived developmental and organ models lend themselves 

for signatures of toxicity to be compared. While test-across deviates from traditional 

methods only by acknowledging the small applicability domain of proven usefulness, the 

HTS and omics approaches are based on what is now called “big data”, i.e. curated large 

datasets for data-mining.

2 The state of the art of read-across using biological data

2.1 Empirical read-across studies using biological data

2.1.1. Moving from chemical structure information to biological data—The 

traditional read-across studies, mostly using Quantitative Structure-Activity Relationship 

(QSAR) approaches, were normally based on chemical structure information (Solimeo et al., 

2012; Zhu et al., 2008; Schultz et al., 2003; Zhu et al., 2009). Certain structural fragments 

(e.g. structural alerts) (Klopman et al., 2004), physico-chemical properties (Klopman et al., 

1999) or other molecular properties (e.g. molecular sizes) (Moss et al., 2002) were used to 

estimate the chemical toxicity potential. In contrast to these efforts, the early stage of using 

biological data in read-across normally uses limited biological data obtained from one or 

few bioassays for small sets of compounds.

In the studies using chemical information alone for large parts of the chemical universe, 

activity cliffs (i.e. small changes in structure inducing significant changes of toxicity) 

resulted in major prediction errors (Maggiora, 2006). For this reason, evaluation of certainty 

for read-across, as well as for in silico methods (Hartung and Hoffmann, 2009) and for in 
vitro assays, is crucial. Especially, the part of the chemical universe where a given method is 

applicable needs to be defined. This means that reliable predictions can be made within a 

certain applicability domain (Hartung et al., 2004). Without knowing all parts of the 

chemical universe to which a method is applicable, it is often possible to demonstrate that a 

method works for a certain group of chemicals. A new term, named “local validity”, was 

introduced to describe this issue in read-across studies (Patlewicz et al., 2014). When 

applying biological data in read-across, it should focus on the areas of local validity to carry 

out in vitro tests, which represent key aspects of the pathophysiology, a concept earlier 

introduced as test-across (Hartung, 2007). Because of the recent emergence of the public 

toxicity data from the European Registration, Evaluation, Authorisation and Restriction of 

Chemicals (REACH) and the US Tox21 datasets, which notably resulted in more than 1,700 

overlap of chemicals (Luechtefeld et al., 2016a), this concept can now be empirically 

evaluated. These new efforts will help to move from a pragmatic use of weight-of-evidence 

to a quantitative biological data read-across with an associated measure of evaluation 

uncertainty (Linkov et al., 2015).

2.1.2. Case study: developing bioassays for read-across evaluations of 
developmental toxicity—Substantial efforts have already been undertaken to develop 
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alternative assays for the assessment of reproductive and development toxicity (Adler, et, al. 

2011; Leist, et. al, 2014). Of these alternatives only a few have been formally validated for 

developmental toxicity, such as the whole embryo culture (WEC)2, the embryonic stem cells 

test (EST), and the mammalian micromass (MM) test (Pamies et al., 2011). While 

characterizing these assays, it was also recognized that none of them alone could cover the 

whole mammalian reproductive cycle due to its inherent complexity, covering male and 

female fertility, implantation, and embryonic development (Adler et al., 2011; Leist et al., 

2014). Therefore, more recent studies have attempted to combine several in vitro assays into 

a test battery instead of applying individual assays. As part of a European FP6 project called 

ReProTect, a feasibility study was performed, in which ten compounds in a battery of 14 

assays was studied (Schenk et al., 2010). This battery, which consisted of several assays 

detecting endocrine disruption (AR and ER receptor binding assays, and ARE and ERE 

promotor driven reporter assays), 3 tests detecting embryotoxicity (mEST, WEC, and 

ReProGlo), and several assays detecting adverse effects on male and female fertility (mouse 

follicle bioassay, bovine maturation and fertilization assays, mouse peri-implantation assay, 

and Ishikawa test). This battery was able to detect all reproductive toxicants, for which the 

modes of action were actually represented in at least one of the assays. In a subsequent study 

of the European FP7 project ChemScreen, this battery approach was given a follow-up 

(Piersma, et. al, 2013). The zebrafish embryo test (ZET) and the embryonic stem cell test 

(EST) were included as more apical assays, to detect effects on development of a whole egg 

from fertilization until the hatching stage 72 h later (Hermsen, et. al, 2011), and to detect 

effects on cellular differentiation of cardiomyocytes (Scholz, et. al, 1999), respectively. 

Again the ReProGlo assay, monitoring interference with the WNT pathway (Uibel, et. al, 

2015), and assays for CYP17 and CYP19, to detect effects on steroidogenesis, enzymes 

essential for reproductive hormone homeostasis (van Duursen, et, al. 2010; Hecker, et. al, 

2011) were included. Finally, a panel of 24 high-throughput CALUX assays were added to 

measure changes in activity of key transcription factors, varying from nuclear receptors (e.g. 

reproductive hormone receptors) to transcription factors involved in cellular signaling 

(Sonneveld et al., 2005; van der Burg et al., 2013). The approach also encompassed 

toxicokinetic modeling to reveal whether effective in vitro concentrations observed in the 

battery are in the range expected from the in vivo reproductive toxicity data, in line with 

suggestions by Daston et al. (2010). The ChemScreen battery approach (including the 

toxicokinetic model) successfully identified eleven out of twelve compounds with varying 

mechanisms of action, while the missed compound, glufosinate ammonium, had a 

mechanism not covered by the battery (Piersma et al., 2013). This result encourages to 

further optimize this battery into one ultimately able to detect all reprotoxic compounds.

The use and interpretation of battery results depends strongly on the purpose of testing and 

the information that may already be available. In the absence of any in vivo test information 

relevant to potential reproductive toxicity and/or in the absence of any structural alerts 

pointing to such effects, the battery could be applied as a filter optimizing and/or reducing 

the testing of potential reproductive toxicants in animal studies (Wu et al., 2013). The 

2WEC: whole embryo culture; mEST: mouse embryonic stem cell test; ReProGlo: Wnt signaling EST (Hecker, et. al, 2011); Ishikawa 
test: mRNA levels of progesterone receptor; AR: Androgen Receptor; ER: Estrogen receptor.
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battery could also help for prioritizing chemicals for further investigation and/or by selecting 

candidate compounds (e.g. drug candidates) for further development (van der Burg et al., 

2011). On the other hand, when there are clear indications for potential reproductive toxicity 

based on close structural similarity of a query chemical to a reproductive toxicant, the 

battery could be used to confirm any reproductive toxicity, and to avoid any further in vivo 
studies. Ideally, this battery should then also be capable to correctly distinguish reproductive 

toxicants from non-reproductive toxicants, even when both have high structural similarity. 

This has been investigated by Kroese et al. (2015) via testing three groups of structurally-

related chemicals, differing in their reproductive toxicity: two valproic acid (VPA) analogs, 

i.e. 2-ethylhexanoic acid (EHA), and 2-methylhexanoic acid (MHA), two analogs of 

monoethylhexyl phthalate (MEHP), i.e. monobenzyl phthalate (MBzP), and monomethyl 

phthalate MMP), and three organotin analogs, i.e. tributyltin chloride, dibutyltin dichloride 

(TBTC), dibutyltin chloride dibutyltin dichloride (DBTC) and monobutyltin trichloride 

(MBTC). MHA and MMP were not considered as reproductive toxicants, while MBTC was 

considered as a weak reproductive toxicant. The battery correctly distinguished MMP and 

MBTC as non- or weak developmental toxicants. MHA was identified as a weak 

developmental toxicant by this battery, while it is negative in in vivo studies. However, 

available toxicokinetic data for MHA show clearly lower predicted fetal concentrations as 

compared to that of VPA and EHA, and at these lower concentrations the battery showed no 

developmental toxicity for MHA. This result clearly shows the relevance of toxicokinetic 

information for any assessment based on alternative in vitro models (Bosgra and Westerhout, 

2015). Such in vitro batteries can be combined with in silico tools, bioassays in lower 

species or even short-term in vivo tests. An important improvement lies in combining these 

batteries of tests with algorithms for optimizing the employment and interpretation of the 

different components. Such Integrated Testing Strategies (Hartung et al., 2013; Rovida et al., 

2015) hold promise for the in vitro prediction of complex endpoints. However, they 

represent enormous challenges for validation of such a battery. Before such validation efforts 

are actually possible, already test-across approaches for groups of chemicals similar to the 

examples given above could be carried out, where non-tested compounds are profiled 

together with chemically similar tested ones. Besides the above efforts, other complex 

bioassays representing broad biological processes possibly disturbed by a given chemical 

can serve to profile substances. The devTOX quickPredict (devTOXqP) assay was developed 

around the principal that toxicity is a function of exposure. The assay uses human embryonic 

or induced pluripotent stem (hPS) cells to predict a test article’s developmental toxicity 

potential based on changes in the metabolites ornithine and cystine (Palmer et al., 2013). 

Changes in these metabolites are measured in response to treatment and then used in a ratio 

(o/c ratio) across an 8-point dose response curve. The developmental toxicity potential (dTP) 

is the interpolated exposure level (concentration) of a test article where the dose response 

curve crosses a defined developmental toxicity threshold (dTT). Exposure levels greater than 

this concentration are associated with developmental toxicity. The assay was 85% accurate 

in predicting the developmental toxicity potential of 80 compounds with a broad range of 

chemotypes (89% specificity, 82% sensitivity). The data generated with the devTOXqP 

assay presents an opportunity to include an in vitro human endpoint in read-across or weight 

of evidence approaches.
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A set of five structurally similar triazole fungicides (flusilazole, hexaconazole, 

propiconazole, triadimefon and myclobutanil) were evaluated in the devTOXqP assay to 

demonstrate how the assay can be used to strengthen read-across and weight of evidences 

approaches (Tab. 1). Myclobutanil was used as an example compound with an uncertain 

developmental toxicity profile. Flusilazole was the most potent chemical in vivo and in the 

devTOXqP assay, with a developmental toxicity potential at 17 μM (Tab. 2). Myclobutanil 

had a developmental toxicity potential similar to its analogs and was classified as a 

developmental toxicant, which is consistent with published in vivo data (Tab. 2). 

Additionally, myclobutanil had the highest NOAEL for developmental toxicity in vivo, 

which is consistent with it being the least potent in the devTOXqP assay. Taken as part of a 

weight of evidence approach, this human data point would help to define potential for risk.

2.2 Using big data to establish chemical profile for biological similarity read-across studies

2.2.1 Available sources of biological data—The term “big data” describes a 

collection of data sets that are so large and complex that the data is too difficult to process by 

traditional data analysis tools. Modern toxicity research has moved into the big data era as 

massive biological data for compounds of interest (e.g. toxicants) became available (Zhu et 

al., 2014). There are two major sources of biological data: One biological data source is 

HTS of large libraries of compounds in toxicity studies. There has been a huge increase in 

the number of compounds and associated testing data in different in vitro screenings. 

Besides that, there are also efforts to curate historical in vivo toxicity data to share with the 

public. Table 3 shows some examples of these data collections distributed through various 

data sharing programs. PubChem is a public repository for chemical structures and their 

biological properties (Wang et al., 2009, 2010). Bioactivity data in PubChem were 

contributed by hundreds of institutes, research laboratories, and specifically those screening 

centers under the NIH Molecular Libraries Program (MLP) (Austin et al., 2004). For 

example, the NIH Chemical Genomics Center (NCGC) was created in 2005 as a 

comprehensive Screening Center in the NIH MLP (Thomas et al., 2009). The mission of the 

NCGC is to apply the tools of small molecule screening and discovery to toxicology studies. 

Every year the NCGC generates millions of toxicity bioassay data points by testing 

thousands of diverse compounds and shares all the data with the research community via 

PubChem. The unique quantitative High Throughput Screening (qHTS) technique developed 

and optimized by the NCGC generates data in high quality and standardized form (Inglese et 

al., 2006). Another large reservoir of toxicity bioassay data in PubChem comes from the 

European Bioinformatics Institute (EBI) (ChEMBL3). The EBI’s goal is to provide freely 

available data and bioinformatics services to all parts of the scientific community. As a part 

of this goal, the ChEMBL database was constructed for screening data of both chemical 

toxicity and Absorption, Distribution, Metabolism and Excretion (ADME) properties. 

ChEMBL version 11 (ChEMBL_11) was launched in 2011. It includes 3.3 million bioassay 

measurements covering 629,943 compounds (Gaulton et al., 2012). This was obtained from 

curating over 42,500 scientific publications.

3www.ebi.ac.uk/chembldb/index.php
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The ToxCast program of the US EPA was initiated to find alternatives to animal models 

(Reif et al., 2010; Dix et al., 2007). For this purpose, this program intentionally tested 

compounds with rich animal toxicity information, which generate a database containing both 

in vitro and in vivo toxicity data. Currently the ToxCast data, along with animal toxicity 

data, is shared via Aggregated Computational Toxicology Resource (ACToR4) (Judson et 

al., 2008, 2012) portal. Similarly, but different compared to ACToR, ToxNET5 contains and 

allows navigation through 16 separate databases of much more diverse chemicals (Fonger et 

al., 2000). ToxNET was developed by the National Library of Medicines’ (NLM) Division 

of Specialized Information Services (SIS). By grouping the databases together, ToxNET 

allows for all information to be accessed from one query form. Although there are 14 

separate databases, some are very similar and are grouped together in the example report.

In response to the shortage of alternative testing methods, the European Commission and the 

European Cosmetics Trade Association, Cosmetics Europe, launched over the last five years 

the research initiative called Safety Evaluation Ultimately Replacing Animal Testing 

(SEURAT-16) in 2011 (Vinken et al. 2012). It is called “SEURAT-1”, indicating that more 

steps have to be taken before the ultimate goal of full animal replacement will be reached. 

Under the SEURAT-1 initiative, there were five research projects and one coordinating 

project funded and extensive data curation/management work was involved (Kohonen et al. 

2013). For example, one of these projects, the COSMOS project, was dedicated to the 

development of freely available tools and workflows to predict the safety of cosmetic 

ingredients to humans (Yang et al., 2013). In the released COSMOS database web portal7, 

there are over 5,500 unique cosmetic-relevant compounds with their respective in vivo 
toxicity data. A similar effort is the recent curation of REACH toxicity data (Hartung, 2010; 

Hengstler et al., 2006) from the publicly available registration summary data (Luechtefeld et 

al., 2016a–d, this issue).

Another rapidly growing area of interdisciplinary research generating big data is 

toxicogenomics (TGx), which aims to study the underlying molecular mechanisms of 

toxicity and address challenges that are difficult to overcome by conventional toxicology 

methods by integrating genomic technology with bioinformatics. Toxicogenomics is a field 

of toxicology that addresses information concerning gene expression changes, and in 

extension also protein, and metabolite changes (Bouhifd et al., 2013; Ramirez et al., 2013), 

within a particular cell or tissue of an organism in response to chemicals. It has to be noted 

that transcriptomics is certainly most advanced among the omics technologies (van Vliet, 

2011) with regard to standardization and quality assurance, but other omics technologies 

such as metabolomics are catching up (Bouhifd et al., 2015). Many modern in vitro toxicity 

studies now address relevant toxicity mechanisms and these findings can be translated into 

biomarkers that could be applied to human exposure studies (McHale et al., 2010; Blaauboer 

et al., 2012).Several extensive publicly available TGx databases based on good experimental 

designs, such as the Japanese Toxicogenomics Project (TGP) (Uehara et, al. 2010) and 

4http://actor.epa.gov/actor
5http://toxnet.nlm.nih.gov
6www.seurat-1.eu
7http://cosmosdb.cosmostox.eu
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PredTox (Suter, et. al, 2011), provide enormous opportunities to evaluate and investigate a 

large set of TGx assays systematically, which gives a landscape of TGx and more objective 

understanding of toxicity mechanisms. TGx investigations generate enormous amounts of 

“omics” data that are meant to predict toxicity or genetic susceptibility induced by 

chemicals. The Chemical Effects in Biological Systems (CEBS8) database developed by the 

NIEHS is now the public repository for all NTP conventional toxicology and carcinogenicity 

data as well as NCGC HTS data (Waters et al., 2008) along with the Comparative 

Toxicogenomics Database (CTD9) at Mount Desert Island Biological Laboratory aims to 

promote comparative studies of genes and proteins across species (Mattingly et al., 2006a,b; 

Mattingly et al., 2004; Mattingly et al., 2003). CTD data is searchable through the ToxNET 

portal. Similar efforts in toxicogenomics data curation, but with more specific research goal, 

are DrugMatrix10 and Cmap11 (Lamb et al., 2006).

2.2.2 Evaluating biological similarity based on big data—Although the read-across 

based on the hypothesis that similar structures have similar toxicological profiles, usually the 

information derived from the chemical structure is limited. Therefore, information regarding 

the biological properties of the chemicals, both target and analogs, is the key support to the 

read-across. The biological similarity refers to the similar results from one or more assays 

for two chemicals. One of the approaches is to use the results from a large number of assays, 

usually high throughput assays, to profile the biological fingerprint of a chemical (Kim et 

al., 2016; Zhang et al., 2014; Sipes et al., 2013). If two chemicals have similar bioprofiles, 

they will be considered to be biologically similar (Low et al., 2013; Zhang et al., 2014). 

However, it is not easy to apply this in any real case of read-across. First, it requires 

comprehensive information from toxicogenomics studies and/or high-throughput assays for 

both target and analog. It is unusual that both target and analog have been tested in the same 

toxicogenomics studies and/or high-throughput assays. If we generate the data required as 

needed, the costs may not be much less than just testing the chemical of interest for any 

specific toxicity endpoint. Second, irrelevant information might be included when 

conducting read-across for a specific toxicity endpoint. For example, if using read-across to 

fill the data gap for skin sensitization, endocrine system related in vitro assays are not 

relevant to this endpoint. Therefore, one should be cautious using a universal bioprofile to 

evaluate the biological similarity to support an endpoint specific read-across. Another 

approach is based on the understanding of the mechanism of the specific toxicity, which is 

using one or a few closely related bioassays to compare the biological similarity. For 

example, one can use the Direct Peptide Reactivity Assay (DPRA) and KeratinoSens assays 

to profile the biological similarity for skin sensitization, or use the bluescreen assay to 

profile the biological similarity for genotoxicity. Assays that map to the estrogen receptor 

pathway can be used to define biological similarity for potential endocrine disrupting 

compounds. It is worth mentioning that biological similarity should serve as a weight of 

evidence to evaluate the read-across, but structural similarity will be usually the first tier for 

similarity criteria.

8http://tools.niehs.nih.gov/cebs3/ui/
9http://www.niehs.nih.gov/research/resources/databases/cebs/index.cfm
10https://ntp.niehs.nih.gov/drugmatrix/index.html
11https://www.broadinstitute.org/cmap/
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In the current big data era, the bioassay response profile can be very large for some 

compounds (e.g. well-known toxicants) (Zhu et al. 2014). If all the public data for these 

compounds are used to create a profile, the initial profile can be large, complex and 

unorganized. For example, Figure 1 shows the PubChem response space of 962 ToxCast 

compounds by using 193 PubChem assays (accessed August 2013). So the public resources 

shown in Table 3 contain lots of biological data that will be useful for read-across purposes.

It is understandable that most areas within the initial response map are either “no testing” or 

“inconclusive” because many bioassays have only been applied to a small portion of this 

large chemical set. Furthermore, the nature of HTS assays, many of which represent specific 

interactions, results in a biased distribution of responses for the target chemicals (many more 

“inactives” than “active” data entries). Since not all the bioassay data are relevant or useful 

for a particular type of toxicity, in the big data scenario, the most critical issue is to identify 

useful in vitro data. In principle, this could be done by a human expert using the knowledge 

of the design and quality of each particular bioassay (e.g., the “Confidence Score” assigned 

during manual curation to each assay in ChEMBL). However, in the big data era, the data-

driven approaches should be developed preferably by fully automatic techniques. We 

recently developed an automatic bioassay system to evaluate and extract the relevant 

bioassay data based on the in vitro-in vivo relationship (Zhang et al., 2014; Wang et al., 

2015; Kim et al., 2014). Using this approach, we analyzed the current REACH compounds 

with their rat oral acute toxicity. Table 4 shows three REACH compounds with their 

chemical nearest neighbors in the same set. It is obvious that these three pairs of chemicals’ 

nearest neighbors have quite different acute toxicity results. Any read-across approaches 

only based on molecular structures will not be able to differentiate them. Therefore, these 

activity cliffs in the REACH data set will prompt prediction errors of any QSAR models.

We can integrate public bioassay results for these compounds as extra information for read-

across purposes. If searching the PubChem portal using an in-house profiling tool, hundreds 

of PubChem assays containing experimental data for REACH compounds were 

automatically extracted (Luechtefeld et al., 2016a, this issue). These experimental biological 

data can be viewed as extra descriptors and a similarity search can be applied by using these 

data as bioprofiles. This way, the biological nearest neighbors for the target three compounds 

can be found within the REACH data set, as shown as the third compound in each group of 

Table 4. It is clear that the biological nearest neighbors have much more similar acute 

toxicity results to the three target compounds when comparing to the chemical nearest 

neighbors, indicating the value of using these extra biological data in the read-across 

procedure. This effort provides a potential solution to the pitfall of applying QSAR as read-

across approaches induced by the activity cliff issue.

2.2.3 Case study: using complex high-throughput biological data to support 
read-across - BioActivity-based read-across (BaBRA) using ToxCast Data—As 

highlighted above, the advent of high-throughput screening and research initiatives such as 

Tox21 and ToxCast provide data on a range of targets and pathways that may be linked to 

toxicity (Judson et al., 2010; Betts, 2013). The Tox21 program has screened over 8,000 

chemicals in approximately 60 assays, and ToxCast testing includes a much broader range of 

assays, with around 800 targets, on a fewer number of chemicals (~2,000). The ToxCast 
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dataset12 in particular affords a unique opportunity to attempt BioActivity Based Read-

Across (BaBRA), due to the wide coverage of biological space and range of assays from 

different cell types, species, and technology platforms. A number of predictive models have 

identified critical pathways, such as embryonic vascular development, and characterized 

similar chemical activity against the identified molecular targets as a way to prioritize 

chemicals for their potential to cause toxicity, e.g. developmental defects (Kleinstreuer et al., 

2011; Knudsen and Kleinstreuer, 2012). Supervised analyses such as Support Vector 

Machines (SVM) have successfully predicted mechanisms such as phosphodiesterase 

inhibition and glucocorticoid receptor agonism for unknown chemicals based on similar 

protein expression profiles in primary human cells (Kleinstreuer et al., 2014). Others have 

described an approach that is pathway-agnostic and more closely resembles traditional 

structure-based read-across, with the addition of all available in vitro assay data as features 

to determine biological similarity (Low et al., 2013; Kim et al., 2016). Here we examined 

analogous approaches, both encompassing and pathway-specific, with a novel mathematical 

definition of similarity that used in vitro bioactivity data from ToxCast, as well as structural 

features to classify different adverse effects in vivo.

Here, ToxCast in vitro assay data was used to perform BaBRA to predict in vivo endpoint 

information for one chemical by using data from the same in vivo endpoint from another 

chemical, which had similar in vitro activity. This biological databased similarity was also 

enriched with structural similarity (St.BaBRA) and used to make predictions for a 

chemical’s in vivo toxicity based on its nearest neighbors. The measure of chemical 

similarity was calculated using an unsupervised random forest approach to produce a 

proximity matrix. Briefly, a random forest is a collection of tree predictors such that each 

tree depends on the values of an independently sampled random vector from within the 

feature space (i.e. in vitro assay data and/or structural descriptors). When random forest is 

run in an unsupervised fashion to calculate the proximity matrix, the original data is 

considered as class 1 and a synthetic second class of the same size is created by sampling at 

random from the univariate distributions of the original data and labeled as class 2. In this 

way class 2 maintains the distributions of the variables but destroys the dependency structure 

in the original data. The N×N proximity matrix is formed by growing a large number of 

trees (here 10,000) based on the artificial two-class problem, and for each tree if chemicals x 

and y end in the same terminal node their proximity increases by one. Finally, the proximity 

scores are normalized by dividing by the number of trees. Figure 2 shows the proximity 

matrix for the ToxCast Phase I and II chemical library, based on the entire set of in vitro 
assays.

Several proximity matrices were calculated to characterize similar bioactivity across the 

ToxCast chemical library, based on all the in vitro assays (Figure 2), on a subset that were 

run in concentration response (excluding those that were only run in a single concentration 

screen), or on assays that mapped to a particular biological pathway relevant to the endpoint 

of concern. These proximities, with and without enrichment for structural similarity, were 

used to make predictions for a particular chemical based on the in vivo outcomes observed 

12http://actor.epa.gov/actor/toxcastdbata.jsp
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in k-Nearest Neighbor (kNN) space. The following equations define the predicted activity 

for a chemical against a toxicity endpoint based solely on in vitro biological similarity,

or with the inclusion of structural similarity,

where Apred is the predicted activity, k is the number of nearest neighbors, Pi is the 

proximity score based on the ToxCast data, and Si is the structural similarity score based on 

the Tanimoto index (Abdo and Salim, 2009). The BaBRA and St.BaBRA predictions were 

produced based on a variety of proximity matrices, as mentioned previously, and compared 

to a range of in vivo endpoints from the Toxicological Reference Database (ToxRefDB13) 

and from a database of guideline-like uterotrophic studies curated by the National 

Toxicology Program Interagency Center for Evaluation of Alternative Toxicological 

Methods (NICEATM14).

Multiple study types are represented in ToxRefDB, namely prenatal developmental, 

multigenerational reproductive, subchronic, and chronic cancer studies, with corresponding 

lowest effect levels (LELs) on a per-chemical basis for a hierarchy of apical endpoints (e.g. 

skeletal malformations, litter size, liver tumors, etc.). Many of these endpoints are highly 

unbalanced, with either positive or negative results significantly overrepresented. To deal 

with the biased data, random sampling from the positive/negative space was used to create a 

balanced dataset for each ToxRefDB endpoint. Parameter sweeps were used to define the 

optimal values for the respective kNN space and apply a minimum threshold for the 

similarity scores. Endpoints from all four study types were predicted using the BaBRA and 

St.BaBRA approaches, and showed generally poor predictive performance. The best BaBRA 

model for a ToxRefDB endpoint used a proximity matrix based on the ToxCast assays that 

were run in concentration response to predict the existence of a LEL for reproductive 

impairment. This model was based on 256 compounds (even distribution between positives 

and negatives), an optimal kNN space of 6 nearest neighbors, and achieved sensitivity, 

specificity and balanced accuracy of 70% (p-value < 1×e−6). The addition of structural 

similarity did not improve the model. Interestingly, this level of predictivity may actually 

reflect the degree of variability in the in vivo endpoint being predicted and/or the presence of 

multiple mechanisms contributing to an observed endpoint.

To create BaBRA/St.BaBRA frameworks that were informed by biological relevance and 

anchored to highly curated data, we used only assays that mapped to the estrogen receptor 

13http://actor.epa.gov/toxrefdb
14http://ntp.niehs.nih.gov/pubhealth/evalatm/tox21-support/endocrine-disruptors/edhts.html
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(ER) pathway to create a proximity matrix, and attempted to predict the outcome in high 

quality uterotrophic studies that specifically measure an estrogenic response in vivo. The 

NICEATM uterotrophic database (Kleinstreuer et al., 2015) contains results from >700 

studies whose protocols were evaluated based on adherence to a set of minimum criteria 

from internationally harmonized test guidelines from the U.S. EPA and the Organization for 

Economic Cooperation and Development (OECD). The best model performance was 

achieved using a proximity matrix calculated with only the 18 ToxCast assays that map to 

the ER pathway, with an optimal kNN of 3 nearest neighbors, for compounds with 

uterotrophic studies that met all the minimum criteria to be considered guideline-like and 

had reproducible results across multiple labs. Both BaBRA and St.BaBRA approaches 

resulted in a sensitivity of 95%, a specificity of 98%, and a balanced accuracy of 97% (p-

value < 1×e−15), with dibutyl phthalate as the only false positive and 

octylmethyltetrasiloxane (D4, a highly volatile compound) as the only false negative.

BaBRA and St.BaBRA are approaches that show great promise within certain applicability 

domains and well-curated data sets. However, broad in vitro activity patterns across a wide 

range of assays are difficult to correlate with apical in vivo toxicity endpoints, even when 

enriched with structural similarities. Feature selection and optimization methods should be 

explored to improve predictive accuracy and applicability. For example, identifying features 

that provide the best separation between positive and negative space for each ToxRefDB 

endpoint in combination with in vivo data curation (e.g. lowest adverse effect levels instead 

of LOELs, study quality evaluation) will improve the applicability of read-across. Further, 

biological pathway knowledge can be used to define the assay/proximity space that is 

relevant to the endpoint of interest (e.g. endocrine targets to predict reproductive 

impairment, or cancer hallmarks to predict carcinogenesis).

2.3 Using omics data for establishing biological similarity for read-across

Grouping of chemicals based on structural relationships should also be complemented by 

omics data: The advantage can be illustrated by two examples: 1) 2-Acetylaminofluorene (2-

AAF) and 4-Acetylaminofluorene (4-AAF) are structurally very similar. However, the 

toxicological profile of these two compounds differs significantly. 2-AAF is a strong liver 

enzyme inducer, leading in long term studies to liver tumors, whereas 4-AAF only slightly 

induces liver enzymes and does not induce the formation of liver tumors. This is reflected in 

different metabolome changes induced by these two compounds in rat plasma (van 

Ravenzwaay et al., 2012); 2) A lot of compounds with different structures (e.g., fibrates, 

phthalates, perfluorinated fatty acids) are stimulating the peroxisome proliferator activated 

receptor alpha (PPARα) leading to hepatomegaly and liver tumors in rodents (Youssef, 

1998). These compounds can be grouped by typical metabolite changes in rat plasma in one 

class, and can be differentiated from other liver tumor-inducing compounds, e.g. liver 

enzyme inducers (van Ravenzwaay et al., 2010a).

A prerequisite for using omics data for read-across is a standardized technique and a 

database with reference compounds for application of grouping with data-poor chemicals. 

Regarding metabolomics, BASF and Metanomics have established a standardized 

technology (Looser et al., 2005) and built up such a database (MetaMap® Tox) with about 
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600 compounds administered to rats in repeated dose studies (van Ravenzwaay et al., 2015). 

The toxicological activity of data-poor chemicals in rats can be assessed by a standardized 

evaluation procedure with this database: 1) Profile strength: it is assessed if the number of 

metabolite changes in rat plasma is above a threshold representing a treatment-related effect 

(van Ravenzwaay et al., 2014); 2) Pattern ranking: metabolomics mode of action patterns are 

defined with reference compounds representing a unique set of metabolites changed in the 

same way. The fit of the metabolome of new compounds to these patterns is evaluated 

statistically and by toxicological expert judgement; 3) Treatment correlation: The measured 

metabolome of data-poor chemicals is compared with reference compounds in the database 

by correlation statistics; 4) Pathway analysis: eventually, endogen metabolite changes can 

explain or monitor key events in the adverse outcome pathway (e.g., accumulation of 

tyrosine and 4-hydroxyphenylpyruvate of 4-hydroxyphenylpyruvat dioxygenase inhibitors, 

i.e. a herbicide compound class). As result of the mentioned evaluation process, an 

assessment can be made regarding: 1) target organ; 2) systemic toxicity mode of actions by 

comparison with reference compounds; 3) which pathways or which chemical groups of 

metabolites (e.g. aromatic amino acids, unsaturated long chain fatty acids etc.) in the rat 

physiology are affected. For example, differentiating direct thyroid hormone synthesis 

inhibitors from compounds accelerates the thyroid hormone clearance (Montoya et al., 

2014). The assessment is restricted to the set of reference compounds in the database and the 

established metabolite patterns, defining, which mode of actions can be covered.

To increase confidence in the results, different levels of validation procedures have to be 

performed. Apart from the technical validation of the applied methods and the statistics, 

influencing factors and the variation of the biological system (here metabolomics in rat 

plasma) have to be assessed. Regarding the MetaMap® Tox database several aspects have 

been published, such as influence of rat strains (Strauss et al., 2009), influence of the diet 

(Mellert et al., 2011), reproducibility and robustness of the biological system (Kamp et al., 

2012).

Concerning read-across for the absence of a toxic effect, a quantitative risk assessment for 

the regarded endpoints is necessary. The no adverse effect level (NOAEL) can be determined 

with omics technologies as the absence of a consistent pattern of change associated with an 

adverse effect (ECETOC, 2008, 2010, 2013). This is assessed for metabolomics by the fit of 

the metabolite profile of new compounds to the established adverse mode of action patterns 

in the MetaMap Tox database (van Ravenzwaay et al., 2014). There are some publications 

comparing transcriptomic/metabolomic data and most sensitive traditional toxicity data 

regarding the benchmark dose or NOAEL dose, stating that the sensitivity of the omics 

technologies compared to “traditional” toxicity measurements (histopathology, clinical 

pathology) are in a comparable magnitude order (van Ravenzwaay et al., 2014, Thomas et 

al., 2011, 2012).

3 Discussion

The above sections and examples together here show that the concept of biological similarity 

enhances read-across: if the target of interest and the similar compounds have been tested in 

the same set of high-throughput assays, one can use a bioprofile (i.e. a collective set of 
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results from different assays) to profile the target compounds against the tested compounds, 

and then compare the bioprofile between them. The key of this procedure is to prove the 

selected assays are related to the toxicological endpoint of interest, either from the 

understanding of the toxicological mechanism (e.g. as characterized by an AOP) or from the 

correlative data analysis (e.g. significant relationship between the bioprofile and the 

toxicological effect). If there is any data gap for generating the bioprofile (i.e. lacking 

information for certain in vitro assays,) one might use QSAR models to predict the results of 

the in vitro assay. When applying QSAR modeling, one should follow the respective OECD 

guidance for QSAR (Gramatica, 2007).

The increasing availability of biological data via the data sharing depositories will augment 

such support of read-across and grouping by big data. The curation of such datasets and the 

respective data-sharing by companies, organizations and individual researchers needs to be 

further encouraged and possibly furthered with some incentives. Alternatively, wholesome 

profiling, typically by transcriptomics or metabolomics, of the biological effect of 

substances in complex systems representing many targets for perturbation can allow an 

individual assay to support similarity arguments.

4 Conclusions

Taken together, the approaches presented here cannot yet be considered as standardized tools 

for read-across. However, they promise already now on a case-by-case basis to support read-

across considerations and should be considered when the respective test data are available or 

can be obtained with reasonable efforts. For the future, more accessible standardized testing 

environments might offer bioprofiling of substances and thereby open the doors for 

enhanced read-across of substances, which have not been broadly studied in the scientific 

literature.
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Fig. 1. The response space of 962 ToxCast compounds represented by the data obtained from 193 
PubChem bioassays
The red dots represent active responses; the blue dots represent inactive responses, and the 

yellow dots represent no available testing data or inconclusive results.
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Fig. 2. Random Forest Proximity Matrix for 1,056 ToxCast Phase I/II chemicals
Chemicals are clustered based on their similarity across all 800 ToxCast in vitro assay 

targets. Chemical ordering is the same on each axis, and the unity correlation is shown along 

the diagonal. Darker red coloring indicates a higher degree of similarity.

Zhu et al. Page 22

ALTEX. Author manuscript; available in PMC 2016 April 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 23

Ta
b

. 1

G
en

er
al

 in
fo

rm
at

io
n 

an
d 

pr
op

er
tie

s 
of

 th
e 

an
al

og
s

P
ro

pe
rt

y
F

lu
si

la
zo

le
H

ex
ac

on
az

ol
e

P
ro

pi
co

na
zo

le
T

ri
ad

im
ef

on
M

yc
lo

bu
ta

ni
l

U
se

Fu
ng

ic
id

e/
an

tib
ac

te
ri

al
 d

ru
g

Fu
ng

ic
id

e
Fu

ng
ic

id
e

Fu
ng

ic
id

e
Fu

ng
ic

id
e

St
ru

ct
ur

al
 r

ep
re

se
nt

at
io

n

C
A

SR
N

85
50

9-
19

-9
79

98
3-

71
-4

60
20

7-
90

-1
43

12
1-

43
-3

88
67

1-
89

-0

M
ol

ec
ul

ar
 w

ei
gh

t 
(g

/m
ol

)
31

5.
39

27
31

3.
07

49
34

1.
06

98
29

3.
09

31
28

8.
11

42

P
hy

si
ca

l s
ta

te
 a

t 
20

°C
 &

 1
01

.3
 k

P
a

So
lid

So
lid

L
iq

ui
d

So
lid

So
lid

W
at

er
 s

ol
ub

ili
ty

 (
m

g/
L

) 
at

 2
0 

or
 2

5°
C

43
1.

29
10

0
71

.5
14

2

lo
g 

P
 (

oc
ta

no
l–

w
at

er
)

4.
68

3.
7

3.
7

2.
8

2.
9

ALTEX. Author manuscript; available in PMC 2016 April 17.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 24

Ta
b

. 2

Su
m

m
ar

y 
of

 te
st

 a
rt

ic
le

 A
D

M
E

 a
nd

 to
xi

ci
ty

 d
at

a

F
lu

si
la

zo
le

 [
1]

H
ex

ac
on

az
ol

e 
[2

]
P

ro
pi

co
na

zo
le

 [
3]

T
ri

ad
im

ef
on

 [
4]

M
yc

lo
bu

ta
ni

l [
5]

A
D

M
E

 P
ro

pe
rt

ie
s

In
 v

iv
o 

ha
lf

-l
if

e 
(p

la
sm

a/
se

ru
m

)
N

A
N

A
24

–3
1 

hr
~4

 h
r

B
ip

ha
si

c 
R

ap
id

 P
ha

se
: 5

.2
5

Sl
ow

 P
ha

se
: 2

5.
7

R
at

e 
an

d 
ex

te
nt

 o
f 

or
al

 a
bs

or
pt

io
n

R
ap

id
 &

 E
xt

en
si

ve
 (

up
 

to
 8

0%
)

N
A

>
80

%
 in

 4
8h

28
%

 in
 f

em
al

es
, 6

7%
 in

 
m

al
es

 a
s 

ur
in

ar
y 

ex
cr

et
io

n
R

ap
id

ly
 a

bs
or

be
d 

(>
 8

9%
)

D
is

tr
ib

ut
io

n
W

id
el

y

W
id

el
y 

di
st

ri
bu

te
d;

 h
ig

he
st

 
co

nc
en

tr
at

io
ns

 in
 li

ve
r, 

in
te

st
in

al
 tr

ac
t a

nd
 a

dr
en

al
 

co
rt

ex

W
id

el
y 

di
st

ri
bu

te
d;

 h
ig

he
st

 
co

nc
en

tr
at

io
ns

 in
 th

e 
liv

er
 

an
d 

ki
dn

ey

W
id

el
y 

di
st

ri
bu

te
d 

in
 k

id
ne

ys
 

an
d 

liv
er

W
id

el
y 

di
st

ri
bu

te
d

In
 v

iv
o 

m
et

ab
ol

is
m

E
xt

en
si

ve
E

xt
en

si
ve

E
xt

en
si

ve
R

ap
id

 &
 E

xt
en

si
ve

R
ap

id
 &

 E
xt

en
si

ve

M
os

t 
ac

ti
ve

 C
Y

P
s

N
A

N
A

N
A

C
Y

P2
C

 a
nd

 C
Y

P3
A

C
Y

P2
C

 a
nd

 C
Y

P3
A

E
xc

re
ti

on
*

96
 h

r
72

 h
r

24
 h

r
96

 h
r

96
 h

rs

P
ri

m
ar

y 
ro

ut
e 

of
 e

xc
re

ti
on

ur
in

e
43

%
 u

ri
ne

/5
3%

 f
ec

es
 (

m
)

66
%

 u
ri

ne
/2

9%
 f

ec
es

 (
f)

E
ve

n 
di

st
ri

bu
tio

n 
in

 u
ri

ne
 &

 
fe

ce
s

Fe
ce

s 
(m

)
ur

in
e 

(f
)

E
ve

n 
di

st
ri

bu
tio

n 
in

 u
ri

ne
 &

 
fe

ce
s

To
xi

co
lo

gi
ca

l D
at

a

A
cu

te
 t

ox
ic

it
y,

 o
ra

l, 
L

D
50

 (
m

g/
kg

 
bw

)
67

4
21

89
15

17
36

3–
18

55
16

00

G
en

ot
ox

ic
it

y
N

eg
at

iv
e

N
eg

at
iv

e
N

eg
at

iv
e

N
eg

at
iv

e
N

eg
at

iv
e

Sh
or

t-
te

rm
 T

ox
ic

it
y 

St
ud

ie
s

Ta
rg

et
L

iv
er

 a
nd

 U
ri

na
ry

 
bl

ad
de

r
L

iv
er

B
od

y 
w

ei
gh

t, 
liv

er
, 

er
yt

hr
oc

yt
es

L
iv

er
L

iv
er

O
ra

l N
O

A
E

L
 (

m
g/

kg
 b

w
 p

er
 d

ay
)

9
2.

5
76

15
0

51
.5

In
 V

iv
o 

D
ev

el
op

m
en

ta
l T

ox
ic

it
y 

St
ud

ie
s

Ta
rg

et
/c

ri
ti

ca
l e

ff
ec

t
Sk

el
et

al
 a

no
m

al
ie

s,
 

m
al

fo
rm

at
io

ns
 a

t h
ig

he
r 

do
se

s

Fe
ta

l T
ox

ic
ity

, s
ke

le
ta

l 
va

ri
at

io
ns

Sk
el

et
al

 v
ar

ia
tio

ns
Sk

el
et

al
 v

ar
ia

tio
ns

Fe
ta

l t
ox

ic
ity

/in
cr

ea
se

d 
nu

m
be

r 
of

 e
ar

ly
 r

es
or

pt
io

ns
 a

nd
 lo

w
er

 
fe

ta
l w

ei
gh

ts

D
ev

el
op

m
en

ta
l t

ox
ic

it
y 

N
O

A
E

L
**

 
(m

g/
kg

 b
w

 p
er

 d
ay

)
2

2.
5

30
30

93
.8

M
at

er
na

l t
ox

ic
it

y 
N

O
A

E
L

 (
m

g/
kg

 
bw

 p
er

 d
ay

)
10

25
90

10
93

.8

de
vT

O
X

qP
 R

es
ul

ts

dT
P

 (
μM

)
17

22
26

35
51

ALTEX. Author manuscript; available in PMC 2016 April 17.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 25
N

ot
e:

 N
A

: D
at

a 
no

t a
va

ila
bl

e.
 In

 v
iv

o 
da

ta
 s

um
m

ar
iz

ed
 f

ro
m

 r
at

 s
tu

di
es

.

* E
xc

re
tio

n 
is

 g
re

at
er

 th
an

 o
r 

eq
ua

l t
o 

90
%

 o
f 

ra
di

ol
ab

el
.

**
D

ev
el

op
m

en
ta

l t
ox

ic
ity

 in
cl

ud
es

 e
m

br
yo

/f
et

al
 to

xi
ci

ty
 a

nd
 te

ra
to

ge
ni

ci
ty

.

[1
] 

A
dc

oc
k 

an
d 

Ta
sh

ev
a,

 2
00

9

[2
] 

To
nk

el
aa

r 
an

d 
va

n 
K

ot
en

-V
er

m
eu

le
n,

 1
99

1

[3
] 

D
ew

hu
rs

t a
nd

 D
el

la
rc

o,
 2

00
6

[4
] 

Z
ar

n 
et

 a
l.,

 2
00

6

[5
] 

Y
os

hi
da

 a
nd

 M
cG

re
go

r, 
20

15

ALTEX. Author manuscript; available in PMC 2016 April 17.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 26

Tab. 3

Public databases of toxicity data

Name General Information Data description

PubChem Over 50 million compounds, over 700,000 bioassays, over 13 billion data 
points

Toxicity, genomics and literature data

ChEMBL Over 600,000 compounds, 3.3 million bioassay readout data Literature toxicity data

ACToR The toxicity results from 100 various data resources Both in vitro and in vivo toxicity data

ToxNET Over 50,000 environmental compounds from 16 different resources Both in vitro and in vivo toxicity data

SEURAT Over 5,500 cosmetic-type compounds in the current COSMOS database 
web portal

Animal toxicity data

REACH 816,048 studies for 9,800 substances and 3,600 study types Data submitted in EU chemical legislation, made 
machine-readable by Luechtefeld et al. 2016a (this 
issue)

CTD Over 13,000 compounds, over 32,000 genes, over 6000 diseases Compound, gene and disease relationships

CEBS About 10,000 toxicity bioassays from various sources Gene expression data

DrugMatrix About 600 drug molecules and 10,000 genes Gene expression data

Cmap About 1,300 compounds and 7,000 genes Gene expression data
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Tab. 4

Three REACH compounds (the first compound) with their chemical nearest neighbor (the second compound) 

and biological nearest neighbor (the third compound)

Compounds LD50 (mg/kg) Bioprofiles*

1 181

730 N/A**

320

2 949

2,100 N/A

520

3 206

6,490

1,041

*The bioprofile consists of 18 PubChem assays (PubChem assay AIDs 427, 542, 544, 545, 546, 921, 963, 964, 966, 968, 973, 974, 993, 504832, 
651802, 686979, 743041, 743086) which were selected for calculation since they contain the largest number of active responses per assay in 
REACH compounds. The red color indicates active response, blue color indicates inactive response and white color indicates no data available.

**N/A indicates there is no data available for this compound within these assays.
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