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Inflammation, proteolysis, smooth muscle cell apoptosis, and angiogenesis have been implicated in the pathogenesis of abdominal
aortic aneurysms (AAAs), although the well-defined initiating mechanism is not fully understood. Matrix metalloproteinases
(MMPs) such as MMP-2 and -9 and other proteinases degrading elastin and extracellular matrix are the critical pathogenesis of
AAAs. Among the risk factors of AAAs, cigarette smoking is an irrefutable one. Cigarette smoke is practically involved in various
aspects of the AAA pathogenesis. Nicotine, a major alkaloid in tobacco leaves and a primary component in cigarette smoke,
can stimulate the MMPs expression by vascular SMCs, endothelial cells, and inflammatory cells in vascular wall and induce
angiogenesis in the aneurysmal tissues. However, for the inflammatory and apoptotic processes in the pathogenesis of AAAs,
nicotine seems to be moving in just the opposite direction. Additionally, the effects of nicotine are probably dose dependent or
associated with the exposure duration and may be partly exerted by its receptors—nicotinic acetylcholine receptors (nAChRs). In
this paper, we will mainly discuss the pathogenesis of AAAs involving inflammation, proteolysis, smooth muscle cell apoptosis and
angiogenesis, and the roles of nicotine and nAChRs.

1. Introduction

Abdominal aortic aneurysms (AAAs) usually occur naturally
in the infrarenal part in the human abdominal aorta. In men
aged 65–80 years, the prevalence of AAAs is between 4% and
8% and approximately six times greater in men than women
[1, 2]. An AAA is a permanent localized dilatation of the
abdominal aorta (beginning at the level of the diaphragm
and extending to its bifurcation into the left and right com-
mon iliac arteries in human) that exceeds the normal di-
ameter by 50%, or >3 cm [3].

The primary risk factors of AAAs include family history,
smoking, increasing age, male gender, central obesity, and
low HDL-cholesterol levels [2, 4]. Hypertension (systolic BP
> 160 mmHg, diastolic BP > 95 mmHg) is associated with
the AAA risk, but only in women [5]. Diabetes, a well-
defined risk factor for atherosclerosis, has been shown to be
protective against the AAAs [6–8].

Historically, the AAAs have been considered as a focal
manifestation of the advanced atherosclerosis [9]. However,
this conventional theory has been challenged by recent
evidences: an AAA was a local representation of a systemic
disease of the vasculature [10]. There was a lower inci-
dence of AAAs in the individuals suffering from diabetes
mellitus that ordinarily considered as the risk equivalent of
atherosclerosis [6–8]. The inflammatory cells were recruited
into the different sites: the outer media and adventitia of
aneurysma, and the intima and subendothelium of atheroma
[11–13].

Three key processes contribute to the AAA phenotype:
inflammation, proteolysis, and smooth muscle cell (SMC)
apoptosis [2]. On the basis of the loss of extracellular matrix
especially elastin and accumulation of proteolytic enzymes in
the aneurysmal tissues, proteolysis has been regarded as the
critical pathogenesis of AAAs [14]. The extracellular matrix
degradation by both predominant proteolytic enzymes
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MMP-2 and -9, which synthesized and released mainly by
the vascular SMCs and infiltrating inflammatory cells such
as macrophages, contribute to the anoikis of vascular SMCs.
The vascular SMC apoptosis is another critical pathogenesis
of AAAs. It has been demonstrated that the decreasing
number of the medial vascular SMCs in the vascular wall
from the AAAs patients was relevant to apoptosis [15–21].
Degradation of elastin and apoptotic cell death of the medial
vascular SMCs destroys the aortic wall integrality, weaken the
wall tensile strength, consequently facilitate the development
of AAAs. The inflammatory responses in vascular wall play
a pivotal role in the MMPs expression and vascular SMC
apoptosis. Conversely, the apoptosis and antigen exposure as
a result of the extracellular matrix degradation are also likely
to contribute to the immune and/or inflammatory responses.
Therefore, the initiating factors of AAAs remain mysterious.
The mechanism underlying the inflammatory responses in
the outer media and adventitia of the vascular wall remains
to be well defined. Recent researches have shown that the
increased angiogenesis in all layers of the aneurysmal wall
is associated with inflammatory responses and related to
aneurysmal rupture [22–25].

Cigarette smoking is the irrefutable risk factor of AAAs.
It has recently been demonstrated by Stolle et al. [26]
that cigarette mainstream smoke enhanced the AAA forma-
tion in Ang II-treated apolipoprotein E-deficient mice as
a result of the increased proteolytic activity of MMPs.
Nicotine, a major alkaloid in tobacco leaves and a primary
component in cigarette smoke, plays its pathophysiological
roles partly through its receptor—nicotinic acetylcholine
receptors (nAChRs). In this paper, we will mainly discuss the
pathogenesis of AAAs involving inflammation, proteolysis,
vascular SMC apoptosis and angiogenesis, and the roles
of nicotine and nAChRs.We made the highlighted change
according to the list of references.

2. Nicotine and nAChRs

Nicotine is a principal tobacco alkaloid occurring to the
extent of about 1.5% by weight in commercial cigarette
tobacco and comprising about 95% of the total alkaloid
content. The nicotine in tobacco is largely the levorotary (S)-
nicotine, only 0.1 to 0.6% of total nicotine content is dextro-
rotatory (R)-nicotine [27].

There are two major types of cholinergic receptors:
the muscarinic and the nicotinic. The endogenous ligand,
acetylcholine stimulates both receptor types, while the exoge-
nous one, nicotine, preferentially stimulates nAChRs. The
nAChRs were firstly identified in excitable cells, but later were
identified in many other cell types including vascular and
immune/inflammatory cells. There are 17 distinct isoforms
(α1–α10, β1–β4, δ, γ, and ε) of the subunits, which form
homomeric or heteromeric channels. Among the subtypes,
the “muscle-type” nAChRα1, the five polypeptide subunits
(α1, β1, δ, and ε in a 2 : 1 : 1 : 1 ratio), and the homomeric
“CNS-type”, α7-nAChRs, have been identified in a variety
of non-neuromuscular cell types such as vascular ECs,
vascular SMCs, smooth muscle specific α-actin positive

myofibroblasts, T lymphocytes, and macrophages [28–32].
It has been shown that nAChRs, particularly “muscle-type”
nAChRs α1 and homomeric CNS-type α7 nAChRs had
participated in the pathological processes of atherosclerosis
and angiogenesis [33].

3. Nicotine, nAChRs, and Inflammation in AAAs

Inflammation plays a pivotal role in the formation and
progression of AAAs and aneurysm rupture [34, 35]. The
inflammatory cells including T, B lymphocytes, neutrophils,
macrophages, and MCs mostly are recruited into the outer
media and adventitia of the aneurysmal wall [13, 22, 24,
36, 37]. Periaortic adipose tissue may also be one of the
resident sites of inflammatory cells. Police et al. [38] have
demonstrated that the increased number of macrophages
in periaortic adipose tissue surrounding the abdominal
aortas of Ang II-infused obese mice was associated with the
enhanced AAA formation. The inflammatory cells release
not only photolytic enzymes to degrade elastin and other
matrix proteins, but also inflammatory and chemotactic
factors to recruit more inflammatory cells and stimulate the
vascular SMC synthetic phenotype by autocrine/paracrine.
In previous studies, macrophages have been frequently
examined and shown its indispensability in AAAs. T lym-
phocytes are not indispensable in the AAAs induced by
Ang II in apolipoprotein E-deficient male mice, although
which play a dominant role in atherosclerosis [39, 40].
Recently, the role of MCs in the AAA development has also
been paid more attention by scientists. The specific granule
contents from MCs are very important for the inflammatory
cell recruitment, pro-MMP and renin-angiotensin system
activation, angiogenesis, and vascular SMC apoptosis [36,
41].

It has been shown by few studies that nicotine played
a proinflammatory role in vasculature in vivo and in vitro.
Two in vitro experiments have demonstrated that nicotine
promoted the VCAM-1 and ICAM-1 expression on human
coronary artery endothelial cells and human umbilical vein
endothelial cells [42, 43]. In another study, chronic (during
90 days) nicotine exposure enhanced the production of pro-
inflammatory cytokines such as TNFα, Interleukin 1β (IL-
1β) by macrophages and upregulates the mRNA expression
level of VCAM-1, cyclooxygenase-2 (COX-2), and platelet-
derived growth factor β (PDGF-β) in the aortas from
low-density lipoprotein receptor-deficient mice [44]. It has
been well known that VCAM-1 and ICAM-1 were the key
mediators of the inflammatory cell migration and infiltration
into vascular wall [45]. Nevertheless, more evidences have
demonstrated the anti-inflammatory role of nicotine via
nAChRs, that is, the so-called cholinergic anti-inflammatory
pathway [46–48]. If a hypothesis that “nicotine can stimulate
formation and progression of AAAs through inflammation”
is true, is it the best explanation that the prolonged exposure
to nicotine may induce desensitization and changes in the
expression of nAChRs and thus the beneficial effects of
nicotine through its receptors may be halted? [49, 50]. It
must be conceded that the AAAs were usually detected in the
older people with a longer smoking history [49].
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Moreover, it has been indicated by some investigations
that the inflammatory mediators including COX-2 and 5-
lipoxygenase (5-LO) were also associated with the develop-
ment of AAAs.

COX-2, a limiting enzyme converting arachidonic acid-
into prostaglandin, plays an important role in the inflam-
matory diseases. In human AAAs, the increased expression
of COX-2 is associated with the augmented angiogenesis
[51]. King et al. demonstrated the increased expression of
COX-2 and the upregulated synthesis of PGE2 selectively
in the aortic aneurismal tissues by exposure to Ang II. The
selective COX-2 inhibitor, celecoxib, decreased the incidence
and severity of Ang II-induced AAAs in apolipoprotein E-
deficient mice and C57BL/6J mice [52]. The above studies
indicate that the increased COX-2 expression is one of
the pathogenesis of AAA formation. It has been implied
by limited studies that nicotine could stimulate the COX-
2 expression likely through nAChRs. In human umbilical
vein endothelial cells, nicotine increases the COX-2, ICAM-
1, and PGE2 expression through NF-kappaB activation
which mediated by nAChRs [53]. In gastric cancer, nicotine
stimulates the COX-2 expression to trigger tumor cell inva-
sion and angiogenesis through the VEGF activation, which
subsequently modulates the MMP activity and plasminogen
activators expression [54].

Activation of the 5-LO pathway contributes to the
biosynthesis of proinflammatory leukotriene mediators in
macrophages, MCs, and other inflammatory cells [55]. 5-LO
plays a role in promoting the AAA formation induced
by an atherosclerotic diet in apolipoprotein E-deficient
mice. 5-LO-positive macrophages localize in the adventitia
of the diseased mouse and human arteries in the areas
of neovascularization and constitute a major component
of the aortic aneurysms. 5-LO deficiency attenuates the
aortic aneurysms and reduces the aortic MMP-2 activity
and diminished plasma macrophage inflammatory protein-
1α (MIP-1α) [56]. It has been recently shown that the
mRNA levels for the three key enzymes/proteins in the
biosynthesis of cysteinyl-leukotrienes, 5-LO, 5-LO-activating
protein (FLAP), and LTC4 synthase (LTC4S), were signifi-
cantly increased in the aneurysmal wall from the human
abdominal aortas. 5-LO, FLAP, and LTC4S proteins express
in the media and adventitia and localize in the areas rich
in inflammatory cells including macrophages, neutrophils,
and MCs. Exogenous LTD4 increased the MMP-2 and -9
release [57]. Houard et al. have similarly demonstrated that,
in the aneurysmal wall of the human abdominal aortas, the
leukotriene pathway mainly localized in the macrophage-
rich adventitial areas [58]. It has been recently indicated that
nicotine could induce the 5-LO expression in colon neoplasm
[59]. A hypothesis: “smoking promotes pathogenesis of
aortic aneurysm through the 5-lipoxygenase pathway.” Had
been proposed by Takagi and Umemoto [60] in 2005, but to
date, it remains to be demonstrated.

Taken together, it has been demonstrated by compelling
evidences that the inflammation in vascular wall is one of
the pathogenesis of AAAs. Mediated by the inflammatory
cells such as macrophages and MCs and inflammatory me-
diators including VCAM-1, ICAM-1, COX-2, and 5-LO,

the inflammatory responses have a preference for the outer
media and adventitia of the aneurysmal wall. Currently, the
notion that nicotine promotes the AAA formation by its
receptor nAChRs is still not supported by robust evidences.
Fortunately, in our recent animal experiment, the AAAs
have been successfully induced by both nicotine and Ang
II in the older C57BL/6J mice, accompanied with the MC
degranulation in the adventitia of the abdominal aortas.
Maybe, it will point out a direction for further research.

4. Nicotine, nAChRs, and Proteolysis
Induced by MMPs in AAAs

Although the abundant connective tissue proteinases includ-
ing MMPs (MMP-1, -2, -3, -9, -12, and -13), serine proteases
(tissue-type plasminogen activator (t-PA); urokinase-type
plasminogen activator (u-PA); plasmin; and neutrophil
elastase), as well as cysteine proteases (cathepsin D, K, L, and
S) [61] have been described in the human AAA tissues, the
most attentions have been kept on the members of the matrix
metalloproteinase family [24, 62–65]. Previous studies have
focused on the 92-kD (MMP-9; gelatinase B) and 72-kD
(MMP-2; gelatinase A) gelatinase/type IV collagenase, both
most prominent elastolytic enzymes secreted by the AAA
tissues in organ culture and in vivo, which are expressed
by macrophages, vascular SMCs, fibroblasts, or ECs, most
often in the areas adjacent to the infiltrated inflammatory
cells [62, 66–70]. Therefore, it has been shown a close
relationship between MMPs and inflammatory responses in
the aneurysmal tissues.

The MMPs are a group of zinc-mediated enzymes present
in the extracellular matrix. It is a fundamental pathogenesis
of AAAs that the increased MMPs in vascular wall degrade
all kinds of extracellular matrix proteins, particularly elastin
[14, 71]. The MMPs are inhibited by the specific endogenous
TIMPs, which comprise a family of four protease inhibitors:
TIMP-1, -2, -3 and -4. An imbalance in the proteolytic
equilibrium between MMPs and TIMPs is a significant
factor of the AAA formation [72]. Elastin and collagens
type I/III keep the integrality and elasticity of vascular wall,
and resist stretch. Under normal conditions, the content
of the proteins keeps balance between degradation and
synthesis. But in fact, the balance is principally maintained by
the collagen metabolism, because elastin is synthesized and
deposited in the early childhood and no further significant
synthesis occurs in adult life [73]. The content of collagens
type I/III increases compensatively in the early stage of the
disease, while decreases dramatically in the advanced stage.
Degradation of elastin and loss of collagens during the
advanced stage destroy the wall integrality and weaken the
wall tensile strength, which promotes the development and
rupture of AAAs. It is supposed that the degradation of
elastin is likely to exert a more significant role in the initiating
process of AAAs.

It has been recently demonstrated that cigarette main-
stream smoke could enhance the proteolytic activity of
MMPs including MMP-2 and -9 induced by Ang II and
accelerate both formation and severity of AAAs in the
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hypertensive apolipoprotein E-deficient mice, [26] while
cigarette smoke extract significantly downregulated TIMP-3
in aortic endothelial cells [74]. Similarly, nicotine increases
the MMPs (especially MMP-2 and -9) expression and ac-
tivities in the vascular wall components including ECs,
vascular SMCs and infiltrating inflammatory cells such as
neutrophils and macrophages, [54, 75–80] and decreases
the expression of TIMP-1, -3, and -4 in osteoblasts [81].
Moreover, the endogenic ligand of nicotine, α7-nAChRs, is
also involved in the MMP-2 and -9 upregulation in human
retinal microvascular endothelial cells [80].

Taken together, nicotine and/or its ligantd α7-nAChRs
have been involved in the synthesis and release of proteolytic
ingredients MMP-2 and -9 and decreased the TIMPs expres-
sion in vivo and in vitro, thus very likely to be involved in the
pathogenesis of AAAs.

5. Nicotine, nAChRs, and Medial Vascular
SMC Apoptosis in AAAs

Histological examinations of both animal and human exper-
imental AAAs have revealed a paucity of medial vascular
SMCs in these specimens which are associated with the SMC
apoptosis [15–21]. Vascular SMCs synthesize and release
the extracellular matrix proteins including collagens, elastin,
glycoproteins, and proteoglycans to provide the mechanical
integrality to the vascular wall. In the aortic media, collagens
are primarily synthesized by vascular SMCs. Theoretically,
a paucity of medial vascular SMCs caused by apoptotic
cell death, can reduce the synthesis of extracellular matrix
proteins and collagens turnover, eventually attenuate the
mechanical properties of the aortic wall and result in the
formation and complications of AAAs. Henderson et al. have
demonstrated that vascular SMC apoptosis, macrophages,
and T lymphocytes coexisted in the aortic mediaand com-
panied by the upregulation of proapoptotic initiators, such
as Fas/FasL in the human AAA segments obtained from the
patients undergoing open repair [15]. Recently, Yamanouchi
et al. [82] firstly reported the direct links between medial vas-
cular SMC apoptosis and pathogenesis of AAAs. In an Ang II-
induced aneurysm model in apolipoprotein E-deficient mice,
a novel caspase inhibitor Q-VD-OPh, inhibited apoptosis
by blocking activation of caspases, drastically reduced the
number of infiltrating macrophages and CD3+ T cells and
remarkably decreased the interleukin-6 level as well as the
elastase activity. These findings suggested that inhibition of
apoptosis may attenuate the aneurysm formation not only by
preventing the vascular SMC depletion but also by affecting
the vascular inflammation and matrix degradation.

In in vitro studies, cigarette smoke extract causes apopto-
sis of aortic SMCs, human umbilical vein endothelial cells,
pulmonary artery endothelial cells, and aortic endothelial
cells from human and rodent animals [83–86]. Beyond
our expectations, as a major ingredient of cigarette smoke,
nicotine inhibits apoptosis of aortic SMCs and ECs through
nAChRs in several investigations [87, 88]. Anyway, the
viewpoint that nicotine is involved in the formation and

progression of AAAs through apoptotic mechanism seems to
be not supported by existing evidences.

6. Nicotine Stimulates Angiogenesis
through α7-nAChRs in AAAs

Angiogenesis is the new blood vessel formation from pre-
existing blood vessels and is a prominent feature in both
atherosclerosis and AAAs [23, 25, 89]. In 1996, Thompson
et al. [23] had demonstrated that the density of the newly
formed vessels was increased in all layers of the aneurysmal
wall compared with the control samples. The degree of
neovascularization is correlated with the extent of the
inflammatory infiltration. Angiogenesis is associated with
the inflammatory responses in the aneurysmal wall and
accelerate the aneurysm rupture [22–25].

Usually, angiogenic stimuli (e.g., hypoxia or inflam-
matory cytokines) may induce the expression and release
of angiogenic growth factors such as vascular endothelial
growth factor (VEGF) and fibroblast growth factor (FGF).
These growth factors stimulate the proliferation of ECs in
the existing vasculature and migration through the tissue
to form new endothelialized channels [90, 91]. Almost all
subunits of nAChRs are expressed on ECs, whereas the most
abundant receptor subunit is α7-nAChRs [92]. Accumulated
evidences have shown that, through excitable α7-nAChRs on
the plasma membrane of vascular SMCs or ECs, nicotine
could stimulate the proliferation and migration of ECs,
increase the VEGF and FGF release by vascular SMCs and
ECs and promote angiogenesis [29, 54, 79, 93–96]. Moreover,
the VEGF receptor and α7-nAChRs appear to mediate the
distinct but interdependent pathways of angiogenesis [97].

Neovascularization is not the exclusive characteristic of
AAAs, which also exists in the atherosclerotic lesion, chronic
ischemia, tumor and other illnesses. Therefore, angiogenesis
may not be a causative but a “contributing to progression and
rupture of aneurysm” factor in the pathological process of
AAAs.

It has been recently implied by a chronic nicotine ex-
posure experiment in an hindlimb ischemic mice model
that chronic nicotine exposure impaired the angiogenic
response to ischemia mediated partly by downregulation
of the vascular α7-nAChRs, as well as by a reduction in
plasma VEGF level [98]. However, because the researches
did not assess the functional measures of limb perfusion, the
conclusion remains to be further confirmed.

7. Conclusion

It is irrefutable that cigarette smoking is the principal risk
factor for AAAs, but as a primary ingredient of cigarette
smoke, nicotine, which has role in AAAs is undefined. The
increased MMPs expression and degradation of all kinds
of extracellular matrix proteins, particularly elastin, in the
aneurysmal wall, has been demonstrated by compelling
evidences, and nicotine may be involved in the process. The
angiogenesis stimulated by nicotine may be the important
factor for the progression or rupture of AAAs rather
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than the causative factor. Inflammation and apoptosis of
vascular SMCs, two important pathogenesis of AAAs, are
seemingly irrelevant to nicotine. Whether nicotine is the key
component in cigarette smoke promoting the formation and
progression of AAAs remains equivocal. In a chronic nicotine
exposure experiment during 90 days, the inflammatory
responses in the aorta are enhanced [44]. It may be explained
as the desensitization and changes in the expression of
nAChRs and thus the beneficial effects of nicotine through
its receptors may be halted [49, 50]. Moreover, the adverse
events of nicotine can be attributed to its dose-dependent
effects, with the toxic cardiovascular effects at higher doses
[49, 93, 99]. Today, cigarette smoking remains a serious
social problem. Nicotine replacement therapy is often used
in smoking cessation, although there are little evidences on
the safety and efficacy of long-term use. Therefore, it is
absolutely necessary to clarify the exact roles of nicotine in
AAAs, especially the adverse effects of chronic exposure.
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