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Aged dogs are considered the most suitable spontaneous animal model for studying normal aging and neurodegenerative diseases.
Elderly canines naturally develop cognitive dysfunction and neuropathological hallmarks similar to those seen in humans,
especially Alzheimer’s disease-like pathology. Pet dogs also share similar living conditions and diets to humans. Oxidative damage
accumulates in the canine brain during aging,making dogs a validmodel for translational antioxidant treatment/prevention studies.
Evidence suggests the presence of detective protein quality control systems, involving ubiquitin-proteasome system (UPS) andHeat
Shock Proteins (HSPs), in the aged canine brain. Further studies on the canine model are needed to clarify the role of age-related
changes in UPS activity and HSP expression in neurodegeneration in order to design novel treatment strategies, such as HSP-based
therapies, aimed at improving chaperone defences against proteotoxic stress affecting brain during aging.

1. Introduction

The aged dogs naturally develop cognitive dysfunction and
neuropathological hallmarks similar to those seen in normal
elderly humans or in patients suffering from neurodegener-
ative conditions, particularly, Alzheimer’s disease (AD). As
well, they exhibit human-like individual variability in the
aging process [1, 2].

Similar neuropathological changes include reduced brain
volume with cortical/hippocampal atrophy, neuronal loss,
and impaired neurogenesis [3–7]. Canines and humans
display beta-amyloid (A𝛽)-containing lesions with identical
amino acid sequence [8, 9] and similar region specific
progression of A𝛽 accumulation [1, 2, 8, 10–16]. In addition,
canine A𝛽 peptides may undergo the same posttranslational
modifications as occurring in humans [17, 18], making dogs
a spontaneous aging model without the need for genetic
modification or overexpression of mutant human proteins
[2, 8]. The amount of A𝛽 plaque deposition in the dog brain
is variable between individual animals, but it is related to the
severity of cognitive decline [19–22].

Canine A𝛽 is ultrastructurally fibrillar and it generally
aggregates into diffuse plaques [11, 23–26], mostly resembling
early AD pathology [27–29]. Thus, the early AD-like canine
neuropathological disease indicates that the dog is a valid
model for prevention studies aimed at identifying AD ther-
apeutics to be applied earlier in the disease progression in
order to have a greater effect [2, 30].

Not only does canine and human A𝛽 exist in fibrillar
conformation, but it may also be seen in a smaller, more
soluble, oligomeric form, which is more toxic to synaptic
and neuronal function and can be found in plaques [31–33].
Higher levels of A𝛽 oligomers are observable in both humans
and canines with increasing cognitive decline [34, 35].

Human-like cerebrovascular abnormalities, particularly
the cerebral amyloid angiopathy (CAA), are also frequently
observed in aged dogs [11, 12, 23, 36–41], with a cerebral
distribution similar to that seen in the human brain [42].
CAA is involved in cognitive decline in both humans [43–46]
and canines [1, 11, 37, 38].

Thus, old dogs are considered a useful animal model for
studying normal brain aging and neurodegenerative diseases,
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especially AD [1–3]. In particular, a comparative analysis
of the changes described in the brains of selected elderly
domestic animals and nonhuman primates indicated that the
dog is the best natural animal model for further studies and
observations on aging [47].

Pet dogs provide the unique advantage to share similar
living conditions and diets to humans [2, 48, 49]. Canine
cooperativeness also eliminates several physiological stres-
sors that can affect cognitive testing results in other animal
models such as rodents [2, 50].

Several drugs, especially statins, which have been pro-
posed as novel therapeutics for AD, exhibit similar pharma-
cokinetics when administered to dogs or humans [51, 52].
Therefore, the canine model may be useful for the devel-
opment of preventive or therapeutic interventions aimed at
improving aged brain functions, which can be translated into
human clinical trials [2].

Aging and age-related neurodegenerative disorders are
usually associated with oxidative stress as one of the most
important pathogenetic mechanisms contributing to neu-
ronal dysfunction, degeneration and death, and cognitive
decline in both humans and animals. A𝛽 accumulation may
induce oxidative damage; at the same time, oxidative damage
may contribute to A𝛽 deposition [2, 53–55]. Oxidative stress
is one of themost common insults encountered by cells and it
increases with age due to an excessive production of reactive
oxygen species (ROS) or their derivatives. Mitochondria
constitute the main source of these oxidants [56]. In normal
conditions, adequate production and levels of endogenous
antioxidants and antioxidant enzymes, quenching ormetabo-
lizing ROS, may reestablish a homeostatic balance. However,
ROS overproduction associated with a progressive fail of
protective mechanisms over time may result in oxidative
damage to proteins, lipids, and/or DNA/RNA [1, 2]. In par-
ticular, neurodegenerative diseases are considered disorders
of protein misfolding, so that they are usually referred to as
proteinopathies [57–59]. Proteinopathies are characterized by
the formation of fibrillar, amyloid-like structures with an ele-
vated content of proteinaceous 𝛽-sheets [59–61]. Oligomers
and protofibrils formed during protein aggregation have been
demonstrated to be potent neurotoxins [59, 61, 62].

Besides antioxidants and antioxidant enzymes, multiple
intracellular systems exist to protect cells from the pro-
teotoxic stress, mainly represented by a network of chaperone
and cochaperone proteins aimed at preventing protein mis-
folding and aggregation, and promote refolding of damaged
proteins [59]. The posttranslational process that involves
folding of newly synthesized proteins, as well as refolding or
degradation of misfolded proteins, is termed protein quality
control [63]. This chaperone network is mainly constituted
by Heat Shock Proteins (HSPs) family members, which are
one of the most evolutionarily conserved classes of molecules
playing a fundamental role in the maintenance of cellular
homeostasis, under both physiological and stress conditions,
by acting as molecular chaperones in “protein holding”
and “protein folding.” The higher levels of HSPs observed
in tissues of longer-lived mammals and birds suggest that
one mechanism underlying the evolution of longevity may

be an improved protein homeostasis through an increased
constitutive expression of HSPs [64].

When severely damaged proteins cannot be refolded
into their native shapes, they can be targeted by chaperones
to the primary cytosolic protein degradation pathway, the
ubiquitin-proteasome system (UPS). In fact, the proteolytic
destruction of abnormal proteins is usually performed by
the proteasome, a large macromolecular complex that rec-
ognizes polyubiquitinated, damaged proteins. Alternatively,
misfolded proteins with a KFERQ-related motif can be
guided by HSPs (particularly, the heat shock cognate 70:
Hsc70 or Hsp73) into the lysosome via translocation through
the lysosomal-associated membrane transporter (LAMP2A),
a process known as chaperone-mediated autophagy (CMA)
[59, 65–67]. However, during aging, these systems may
exhibit a reduced effectiveness and may be overwhelmed by
the proteotoxic stress [59, 68, 69] (Figure 1). In particular,
alterations in the proteasome activitymay occur during aging
and in several neurodegenerative conditions, possibly con-
tributing to elevated intracellular levels of protein oxidation,
protein aggregation, and consequent neurodegeneration [70,
71]. At the same time, glycated, oxidized, and aggregated
proteins may inhibit the proteasome function [67].

Altered (increased or reduced) expression of many HSPs
has been observed in the brain tissue of aged humans and
animals as well as in tissues from elderly patients with neu-
rodegeneration, indicating their involvement in the patho-
physiology of aging and neurodegenerative disorders [59, 68]
and making them potential targets for therapeutic interven-
tions in aging and aging-related diseases [72, 73].

2. Oxidative Stress in the Aged Canine Brain

Oxidative injury can be measured by the amount of pro-
tein oxidation (carbonyl groups), by the end products of
lipid peroxidation, including 4-hydroxynonenal, lipofus-
cin, lipofuscin-like pigments, and malondialdehyde, or by
8-hydroxy-2-deoxyguanosine (8OHdG) detecting oxidative
damage to DNA/RNA [1, 2].

The aged canine brain experiences accumulation of car-
bonyl groups [74, 75], as well as increased lipid peroxidation
[74, 76–79] and increased 8OHdG [29, 78]. Accumulation
of carbonyl groups is associated with reduced endogenous
antioxidant enzyme activity or protein levels, including
glutamine synthetase and superoxide dismutase (SOD) [74,
79–81]. Increased oxidative damage to proteins and lipids
correlates with cognitive dysfunctions in dogs [75, 77, 78].
Thus, aged dogs exhibit oxidative stress, similarly to humans
with age-related neuropathological conditions, particularly
AD [55, 82–88]. Since the canine brain shows an age-
associated oxidative damage that correlates with an increased
cognitive decline, aged dogs are considered a suitable model
for translational antioxidant treatment/prevention studies
[2].

2.1. Ubiquitin-Proteasome System (UPS) and Chaperones
in Protein Quality Control in the Canine Model of Brain
Aging. An increasing body of evidence indicates a decline
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Figure 1: Intracellular protein quality control systems fighting against proteotoxic stress to avoid disruption of cellular functions by unfolded
proteins. Under normal conditions,misfolded proteins can induceHsp70 gene expression in order to be either refolded to native conformation
or targeted for degradation if they are damaged beyond repair.Themain cytosolic protein degradation pathway is represented by the ubiquitin-
proteasome system (UPS). During protein degradation, both Hsp70 and Hsp90 bind to the cochaperone CHIP (carboxyl terminus of Hsp70-
interacting protein), which serves as an E3 ubiquitin ligase by attaching a polyubiquitin chain to the irreparably damaged protein so that it
can be targeted for proteasomal degradation. The proteasomal degradation process also requires the binding of BAG-1 (Bcl-2-associated
athanogene) to the ATPase, N-terminal domain of Hsp70. Alternatively, CHIP may target misfolded proteins with a KFERQ motif for
chaperone-mediated autophagy (CMA) by binding the heat shock cognate 70 (Hsc70 or Hsp73), which then guides the damaged proteins
into the lysosome through the lysosomal-associated membrane transporter (LAMP2A). On the other hand, if proteins can be refolded into
their native shape, BAG-1 binding toHsp70 is blocked by the cochaperoneHip (Hsp70-interacting protein), whereas CHIP binding is blocked
by the cochaperone Hop (Hsp70/90-organizing protein). Hsp40 and Hsp90 also bind to this protein refolding complex, promoting an ATP-
dependent folding activity. Under conditions of overwhelming proteotoxic stress and defective protein degradation machineries, misfolded,
damaged proteins may dramatically accumulate, aggregate, and kill cells.

in UPS and CMA activity during aging [69–71]. As well,
increases or decreases of HSPs expression in aging and in
neuropathological conditions have been observed in both
humans and rodent models, with the responses depending
on the different HSPs, disease, cell type, or brain region
considered. Higher levels of someHSPsmay represent a com-
pensatory mechanism to reestablish homeostasis and slow
down the progression of age-related disorders. However, such
increases may be insufficient to counteract the overwhelming
proteotoxic stress, since the levels and activity of several
other HSPs and endogenous protective systems are reduced
[59]. Understanding the roles played by the different HSPs
in protein aggregation and subsequent neurotoxicity may
lead to novel treatment strategies for aging and age-related
proteinopathies directed to improve chaperone defences and
reestablish the correct fate of misfolded proteins [68, 73].

UPS activity andHSP expression in the aged canine brain
have not been extensively studied. However, some interesting
data indicate the presence of an age-related decline of the
basal expression of several components of the protein quality
control systems in the canine hippocampus, a region playing
an essential role in cognition and memory. In particular,

an age-related decline of Psmd4, Psmb8, CHIP (carboxyl
terminus of Hsp70-interacting protein), and egr1 expression,
associated with an increase of Psmb9 and Hsp90 expres-
sion, suggests an age-related impairment of UPS activity
[89]. In this respect, an age-related increase in density of
ubiquitinated bodies has been found in the canine brain
[3, 90], indicating a decreased proteolytic rate of damaged
proteins. Egr1 is an inducible transcription factor with a
confirmed role in synaptic plasticity [91] and regulation of
the proteasome activity [92]. Many of the identified target
genes of egr1 in neurons encode either components of the
proteasome or proteins associated with ubiquitination and
the intracellular protein degradation machinery [93]. Psma5,
Psmb8, and Psmb9 are three proteasome egr1 target genes,
which displayed heterogeneous modifications in aged dogs.
In particular, the basal expression of Psma5, a gene encoding
the 𝛼5-subunit of the 20S core particle of the proteasome,
was not affected by aging. Conversely, downregulation of
Psmb8 and upregulation of Psmb9 genes (which encode
the catalytic subunits Lmp7 and Lmp2 of the 20S particle,
resp.) were observed in the aged canine hippocampus [89].
The enhanced regulation of Psmb9 was consistent with
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the transcriptional suppression activity exerted by egr1 on
Psmb9 [92]. The transcriptional activity of Psmd4 gene
encoding the ubiquitin receptor located in the 19S regulatory
particle of the proteasome (Rpn10) also showed an age-related
reduction in the aged canine hippocampus [89].

The decline of UPS activity during aging in the canine
brain was also indicated by an age-related reduction of the
CHIP gene transcription associated with a decrease in CHIP
protein levels in the canine hippocampus [89]. CHIP gene
encodes a cochaperone protein with ubiquitin-ligase activity
that has a crucial role in the UPS system [94, 95], and
its deficiency has been shown to induce a decline in the
proteasomal activity and an accelerated cellular senescence
[96]. Since CHIP may also target proteins for CMA [67], its
deficiency may be supposed to impair not only proteasomal
but also lysosomal degradation, although alterations ofHsc70
expression were not observed in the aged canine brain [89].
On the other hand, an upregulation of Hsp90 was detected in
the aged canine hippocampus [89], suggesting that the higher
levels of Hsp90 observable with aging may be due to a higher
load of damaged proteins. In this respect, enhanced levels of
Hsp90 were observed in the 20S proteasomal fraction of aged
mouse brain and liver, suggesting that the Hsp90 association
with the 20S proteasome may be involved in rescuing cells
from an age-related loss of proteasomal activity [97].

Differently from humans, canine neuropathological
changes do not include the neurofibrillary tangle (NFT) for-
mation [9, 98]. NFT formation is initiated by the polymeriza-
tion of hyperphosphorylated tau into paired helical filaments
(PHFs) and binding of ubiquitin. Tau is a microtubule-asso-
ciated protein that stabilizes microtubules for axonal trans-
port [47]. Although no study to date has observedNFTs in the
brain of aged dogs, the increased phosphorylation detected
at some tau sites in AD cases also occurs in cognitively
impaired canines [76, 99–101]. Colocalization of p-tau and
ubiquitin has also been observed in neurons of aged dogs
with cognitive dysfunction and p-tau Ser396 is associated
with canine cognitive decline [98]. Ubiquitin incorporation
into protein aggregates is a consistent feature of several
major human neurodegenerative disorders [102], including
AD, and it is due to an impaired proteasomal degradation
[103]. Whether UPS dysfunction is causally related to the
disease pathogenesis or alternatively occurs as a result of the
pathological condition remains to be elucidated [102].

The lack of NFT pathology in the canine brain could
be due to differences in the tau protein sequence between
canines and humans [47]. Whereas, in human AD brains,
there are many sites of tau phosphorylation (including
Ser189, 194, 202, 205, 207, 262, 396, 404, and Thr231) that
contribute to PHF aggregation leading to NFT formation;
tau phosphorylation in the brain of aged dogs with cognitive
dysfunction may be limited to particular phosphorylation
sites (i.e., Ser189, 207, and 396), so NFTs would not develop
[98]. In addition, since NFTs are constituted by abnormally
folded protein aggregates, the formation of such misfolded
proteins could require a certain time scale, suggesting that in
order to induce NFT formation in the canine brain, it would
be necessary to lengthen the lifespan of the dog [104].

Notwithstanding this, an advantage to dogs not accu-
mulating NFTs is that they may provide a selective valuable
model for understanding the pathogenesis of A𝛽 pathology,
especially early AD, as well as for preclinical testing of ther-
apeutic approaches that specifically target this toxic protein
[2, 98].

2.2. Antioxidant Treatments in the Canine Model of Nor-
mal Human Brain Aging and Neurodegenerative Disorders.
Evidence suggests that the use of antioxidants results in
reduction of oxidative damage and improvement of cognitive
function in the canine model of human brain aging [105].
Several studies aimed at developing treatments for cognitive
dysfunction in aged dogs were based on an antioxidant-rich
diet in combination with a behavioural enrichment, includ-
ing physical exercise, environmental and social enrichment,
and cognitive training, which led to significant cognitive
and neurobiological benefits [81, 106–108]. In particular, a
significant increase in the enzymatic activities of Cu/Zn SOD,
total SOD, and glutathione-S-transferase, as well as in the
protein levels of heme oxygenase 1 (HO-1 or Hsp32), was
observed in enriched environment-antioxidant-fortified food
treated dogs [81]. In addition, aging dogs treated with human
dose atorvastatin showed anupregulation ofHO-1 in the pari-
etal cortex, which exhibited significant negative correlations
with oxidative stress indices and positive correlations with
glutathione levels [109]. Hsp32 differs from the other HSPs,
since it is more directly involved in antioxidant defence [59].
In response to oxidative stress, HO-1 induction may protect
cells by promoting the catabolism of prooxidant metallo-
porphyrins, such as heme, to bile pigments (biliverdin and
bilirubin) with free radical scavenging properties. However,
since heme-derived free iron and carbon monoxide may
increase the intracellular oxidative stress and mediate injury
to mitochondrial membranes, a controversy was raised as to
whether HO-1 upregulation observed in neurodegenerative
diseases may exert a cytoprotective function or it may be an
agent for further neurotoxicity [110]. Notwithstanding this,
other studies have highlighted the protective functions of
HO-1, also speculating that it might be a novel therapeutic
target for neuroprotection. A more complete knowledge on
the involvement of HO-1 in the pathogenesis of neuropatho-
logical diseases will be essential to successfully develop such
promising therapeutic strategy [111, 112].

3. Conclusions

Old dogs are considered the best spontaneous animal model
for studying normal brain aging and neurodegenerative dis-
eases. The aged canines naturally develop cognitive dysfunc-
tion and neuropathological hallmarks similar to those seen
in humans, especially AD-like pathology. Pet dogs also share
similar living conditions and diets to humans. The canine
brain shows age-associated oxidative lesions that correlate
with increased cognitive decline, making dogs a suitable
model for translational antioxidant treatment/prevention
studies [1, 2]. Available data also indicate the presence of
defective protein quality control systems in the aged canine
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brain [89]. Even though a HSP-based therapy appears to be a
promising strategy for the treatment of diseases characterized
by oxidative damage, there are still somemajor problems that
must be overcome before this approach can be successfully
applied. In particular, it is essential to understand how to
safely and successfully upregulate HSPs at the right time and
in the right location (specific cell type and brain region) [59].
An effective HSP-based therapy also needs to ensure that all
the binding cochaperones are also present at the proper levels.
If these difficulties could be overcome, an effectiveHSP-based
therapy would be of great benefit to a variety of pathological
conditions, including neurodegeneration, in which oxidative
stress and protein misfolding play a critical role [113]. Further
studies on the canine model will be useful to clarify the
implications of the age-related changes in UPS activity and
HSP expression in neurodegeneration in order to design
novel treatment strategies targeting misfolded proteins.
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