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Abstract: With the spread of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), there is a need to assess the protection conferred by both previous infections and current
vaccination. Here we tested the neutralizing activity of infected and/or vaccinated individuals
against pseudoviruses expressing the spike of the original SARS-CoV-2 isolate Wuhan-Hu-1 (WH1),
the D614G mutant and the B.1.1.7 variant. Our data show that parameters of natural infection (time
from infection and nature of the infecting variant) determined cross-neutralization. Uninfected
vaccinees showed a small reduction in neutralization against the B.1.1.7 variant compared to both the
WHI strain and the D614G mutant. Interestingly, upon vaccination, previously infected individuals
developed more robust neutralizing responses against B.1.1.7, suggesting that vaccines can boost the
neutralization breadth conferred by natural infection.

Keywords: SARS-CoV-2; humoral response; pseudovirus; neutralization; B.1.1.7 variant

1. Introduction

Early in the COVID-19 pandemic, severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) variants started to develop regionally and globally. Currently, the rapid
spread of the B.1.1.7, or 501Y.V1, variant [1], first reported in the UK, casts doubts on the
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protection conferred by the neutralizing antibody response acquired during a previous im-
munization. Besides the D614G mutation, the B.1.1.7 variant contains six non-synonymous
mutations and three deleted amino acids in the spike (S) protein (Figure 1A). The ma-
jor changes are the mutation N501Y in the receptor-binding domain (RBD); the deletion
69-70 which may increase transmissibility [2] and produces a false negative in certain RT-
PCR-based diagnostic assays; and the mutation P681H, next to the furin cleavage site, that
could impact antigenicity and enhance viral infectivity. Recent studies indicate that B.1.1.7
is associated with a higher hospitalization risk [3] and higher mortality [4] and several
reports indicate that it has a higher secondary attack rate, making this viral variant 30-50%
more transmissible [5]. Importantly, this variant remains susceptible to some monoclonal
and plasma antibodies from convalescent or vaccinated individuals [6-8].
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Figure 1. In vitro infectivity of SARS-CoV-2 variants. (A). The different mutations identified in the B.1.1.7 variant are listed
and their location in the spike protein (side and top views) is shown. This variant also includes the D614G mutation.

(B). Spike expression in pseudovirus-producing cells stained with an anti-RBD polyclonal rabbit antibody (See Methods

for details).

Here we analyzed cross-neutralizing plasma antibody titers in individuals infected
during both the first and second waves of COVID-19 epidemics in Catalonia (Spain),
as well as in vaccinated individuals. The B.1.1.7 variant showed minimal resistance to
the neutralizing capacity from both infected and vaccinated individuals, but its impact
was significantly more pronounced on the latter group. Interestingly, previous infection
significantly improved neutralization titers against this variant upon vaccination.

2. Materials and Methods
2.1. Study Overview and Subjects

The study was approved by the Hospital Ethics Committee Board from Hospital
Universitari Germans Trias i Pujol (PI-20-122 and PI-20-217) and all participants provided
written informed consent before inclusion.

Plasma samples were obtained from the prospective KING cohort of the HUGTiP
(Badalona, Spain) and from Althaia (Manresa, Spain). The KING cohort included indi-
viduals with a documented positive RT-qPCR result from nasopharyngeal swab and/or a
positive serological diagnostic test.

Samples in this study were collected from March 2020 to February 2021; thus, covering
the different COVID-19 outbreaks in Catalonia (dadescovid.cat). We analyzed 32 non-
vaccinated individuals infected in March 2020, using plasma samples collected at a median
of 48 days (n = 16) or 196 (n = 16) days after symptom onset. We also selected 16 individuals
infected in August 2020 using plasma samples collected at a median of 44 days after
symptom onset, and 5 patients (1 = 13 samples) infected in January 2021 by the B.1.1.7
variant. Finally, 32 individuals having received two doses of Pfizer/BioNTech vaccine were
sampled 2 weeks after the second dose. This last group included uninfected and long-term
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previously-infected individuals. A description of the different groups and subgroups is
shown in Table 1.

Table 1. Description of participants. Uninfected individuals were included as negative controls for neutralizing activity. All

of them showed undetectable neutralizing activity. IQR: interquartile range.

Uninfected Infected Non-Vaccinated Vaccinated
n=>5 n=>53 n=232
Infection Status Uninfected Infected Infected Infected Infected Uninfected
Date of Infection March 2020 August 2020 January 2021 March 2020
Strains D614/G614 20E (EU1) B.1.1.7 D614/G614
Sampling Early Late
n=16 n=16 n=16 n=>5 n=16 n=16
Age 46 65 56 44 79 39 45
(years), median (IQR) (42-52) (55-68) (54-62) (37-54) (60-91) (29-44) (30-61)
Gend‘;r (ge)male)' 4(80) 4(25) 7 (44) 8 (50) 2 (40) 11 (69) 12 (75)
Days from symptom 48 196 44 16 324 —
onset, median (IQR) (36-57) (186-207) (37-54) (8-20) * (184-339)
Days from vaccination, . . . . . 13 9
median (IQR) (10-14) (7-12)
Hospitalized, 1 (%) — 11 (69) 11 (69) 11 (69) 5 (100) 0(0) —
Severe (%) — 6 (38) 6 (38) 5(31) 0(0) 0(0) —

* Data from 13 samples obtained from 5 participants in this group.

2.2. Cell Lines

HEK293T cells (presumably of female origin) overexpressing WT human ACE-2
(Integral Molecular, Philadelphia, PA, USA) were used as a target for a SARS-CoV-2
spike-expressing pseudovirus infection. The cells were maintained in T75 flasks with
Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% FBS and 1 pg/mL
of Puromycin.

2.3. Spike Plasmid Generation

SARS-CoV-2.5c¢tA19 WH1 and B.1.1.7 were generated (Geneart) from the full protein
sequence of the original SARS-Cov-2 isolate Wuhan-Hu-1 (WH1) and the UK variant
(B.1.1.7) spike sequences respectively, with the deletion of the last 19 amino acids in C-
terminal [9], human-codon optimized and inserted into pcDNA3.1(+). The D614G spike
mutant was generated by site-directed mutagenesis as previously described [10]. In brief,
SARS-COV-2.5ctA19 WH1 plasmid was amplified by PCR with Phusion DNA polymerase
(Thermo Fisher Scientific, Waltham, MA, USA, ref# F-549S) and the following primers:
5-TACCAGGgCGTGAACTGTACCGAAGTGCC-3' and 5'-GTTCACGcCCTGGTACAGCA
CTGCCAC-3'. PCR was 20 cycles with an annealing temperature of 60 °C and an elon-
gation temperature of 72 °C. The PCR product was then treated for 3 h with the Dpnl
restriction enzyme (Thermo Fisher Scientific, ref# ER1705), to eliminate template DNA, and
transformed into supercompetent E. coli. The final mutated DNA was then fully sequenced
for validation.

2.4. Pseudovirus Generation and Neutralization Assay

HIV reporter pseudoviruses expressing SARS-CoV-2 S protein and Luciferase were
generated using the defective HIV plasmid pNL4-3.Luc.R-.E- obtained from the NIH AIDS
Reagent Program [11]. Expi293F cells were transfected using ExpiFectamine293 Reagent
(Thermo Fisher Scientific) with pNL4-3.Luc.R-.E- and SARS-CoV-2.5ctA19 (WH1, G614 or
B.1.1.7), at an 8:1 ratio, respectively. Control pseudoviruses were obtained by replacing the
S protein expression plasmid with a VSV-G protein expression plasmid as reported [12].
Supernatants were harvested 48 h after transfection, filtered at 0.45 um, frozen and titrated
on HEK293T cells overexpressing WT human ACE-2. Spike expression in pseudovirus-
producing cells was confirmed by flow cytometry, showing comparable expression for all
constructs (Figure 1B).
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Neutralization assays were performed in duplicate. Briefly, in Nunc 96-well cell
culture plates (Thermo Fisher Scientific), 200 TCIDsq of pseudovirus were preincubated
with three-fold serial dilutions (1/60-1/14,580) of heat-inactivated plasma samples for 1 h
at 37 °C. Then, 2 x 10* HEK293T /hACE2 cells treated with DEAE-Dextran (Sigma-Aldrich)
were added. Results were read after 48 h using the EnSight Multimode Plate Reader and
BriteLite Plus Luciferase reagent (Perkin Elmer, Waltham, MA, USA). The values were
normalized, and the IDsj (the reciprocal dilution inhibiting 50% of the infection) was
calculated by plotting and fitting the log of plasma dilution vs. response to a 4-parameter
equation in Prism 8.4.3 (GraphPad Software, San Diego, CA, USA). This neutralization
assay had been previously validated in a large subset of samples [13,14]. The lower limit of
detection was 60 and the upper limit was 14,580 (reciprocal dilution).

2.5. Flow Cytometry

Transfected Expi293F cells were first stained extracellularly with a polyclonal rabbit
anti-spike RBD antibody (Sino Biological, Beijing, China, ref# 40592-T62) and a secondary
APC labeled anti-rabbit (Jackson Immuno Research, West Grove, PA, USA, ref# 711-605-
152). Cells were then fixed (Life Technologies, Carlsbad, CA, USA, ref# GAS0015100)
and stained in permeabilization buffer (Life Technologies, ref# GAS0025100), with a FITC-
labeled mouse anti-p24Gag antibody KC57 (Beckman Coulter, Brea, CA, USA, ref# 6604665).
Cells were acquired on a BD Celesta flow cytometer with DIVA software and analyzed on
Flow]o vX.0.7 (Tree Star, Inc., Ashland, OR, USA).

2.6. Statistical Analysis

Continuous variables were described using medians and the interquartile range (IQR,
defined by the 25th and 75th percentiles), whereas categorical factors were reported as per-
centages over available data. Quantitative variables were compared using the Mann-Whitney
test; and percentages using the chi-squared test. The Friedman test with Dunn’s multiple
comparison test was used to compare neutralization of different pseudoviruses. Multiple
M-W comparisons were corrected by false discovery rate. Analyses were performed with
Prism 8.4.3 (GraphPad Software) and R version 4.0 (R Foundation for Statistical Computing).

3. Results
3.1. Global Analysis of Cross-Neutralizing Titers in Vaccinated and Infected Participants

As a first approach, we tested the neutralizing antibody response of all participants
segregated in two main groups labeled “all vaccinated” and “all infected”. “All vaccinated”
included all the vaccinated participants whether they had experienced previous natural
infection or not. “All infected” included all non-vaccinated participants who were infected
during either the first wave, the second wave or specifically infected by the B.1.1.7 variant.
We tested all the plasma samples (1 = 98) against pseudoviruses expressing three different
spike glycoproteins: a spike corresponding to the original SARS-CoV-2 virus, isolated in
Wuhan, and named here WH1; a D614G mutant based on the WH1 spike and a spike
including the defining mutations of the B.1.1.7 variant and named B.1.1.7.

The neutralization titers of all vaccinated individuals against B.1.1.7 and WH1 were
not statistically different (according to the Friedman test with Dunn’s multiple comparison
test) (Figure 2A), despite WHI1 expressing the spike sequence on which the vaccine was
based. In contrast, vaccinated individuals showed significantly higher potency to neutral-
ize the intermediate D614G mutant (p < 0.0001) (Figure 2A). A similar analysis, including
all non-vaccinated infected individuals, showed similar results (Figure 2B). The highest
neutralization (p < 0.0001) was noticed for the D614G mutant, while no significant differ-
ences were observed between WH1 and B.1.1.7. Next, we compared cross-neutralization
capacities by determining fold change ratios between a spike of interest (5*, indicated on
top) and a reference spike (S, indicated in the Y axis of Figure 2C,D, fold change = S"/S%).
This ratio is a measure of the loss of neutralizing capacity; a ratio inferior to one indicates
a better neutralization of the spike of interest in comparison to the reference spike, and
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vice versa. When B.1.1.7 and WH1 variants were compared, median fold-change was
0.97 in the vaccinated group, a value significantly higher than the one obtained in naturally
infected individuals (0.7; p = 0.033, M-W test, Figure 2C). Similarly, the fold change be-
tween B.1.1.7 and D614G was significantly different between the all vaccinated and the all
infected groups (median values 1.9 vs 1.17, respectively; p < 0.0001, M-W test, Figure 2D).
Altogether, these data indicate that, relative to WH1 and D614G, cross-neutralization of
B.1.1.7 was worse in vaccinated individuals in comparison to infected ones.
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Figure 2. Global analysis of neutralization titers in SARS-CoV-2 vaccinated and infected individuals.
Values of IDs (as reciprocal dilution) are shown for all plasma samples from (A) vaccinated and
(B) infected non-vaccinated individuals against the indicated pseudoviruses. Bars indicate median
titer in each group with a 95% confidence interval and p values show the comparison of median
titers among the three viruses (Friedman test with Dunn’s multiple comparison test, * p < 0.05,
**** p < 0.0001). The corresponding fold-change in neutralization titers between (C) WH1 and B.1.1.7
or (D) D614G and B.1.1.7 is shown (lower is better), comparing the vaccinated (VACC) and the
infected (INF) groups. Bars indicate median in each group with 95% confidence interval and top
values indicate the median fold-change between the indicated variants (variants compared are
indicated in the graph title and in the Y axis). Fold change medians were compared using the
Mann-Whitney test (* p < 0.05, **** p < 0.0001).

3.2. Identification of Parameters Influencing Cross-Neutralization

To better understand these differences, we analyzed infected and vaccinated sub-
groups. To assess the impact of sequence evolution on the immune responses, infected
individuals were divided according to infection date. Individuals infected during the
first wave (March 2020) in Spain were initially exposed to the original D614 virus that
was rapidly displaced by the G614 variant. An evolving 85 to 22% prevalence for the
original variant has been estimated [15]. Individuals infected during the second wave
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(August 2020) were almost exclusively exposed to the G614-containing 20E (EU1) lin-
eage, which accounted for nearly 100% of new infections during the summer of 2020
(https:/ /nextstrain.org/ncov/global, accessed on 31 March 2021). Individuals infected by
the B.1.1.7 variant, identified in January 2021, were also analyzed.

First, we analyzed the neutralization response specifically in participants infected
during the first wave. Individuals sampled 48 days after infection showed a small but
significant decrease in neutralization capacity against the B.1.1.7 variant when compared
with the D614G mutant (median fold change of 1.53, p = 0.031, Friedman test, Figure 3A,B).
When compared to WH1, no significant difference was observed (median = 1.20-fold,
p = 0.155). Individuals infected on March 2020 and sampled 6 months later also showed
a general decay of the neutralization response as previously reported by us and many
others [14,16]. Interestingly though, in these limited cohorts, decay of the neutralization
response was only significant when measured against WH1 (p = 0.0374, K-W, Figure 3A)
and not against D614G or B.1.1.7. In fact, we observed a general trend of improving cross-
neutralization capacities against both D614G and the B.1.1.7 variant when compared with
WHL1, although it was only significant for the latter (fold change evolving from 1.2 to 0.6,
p = 0.024, M-W, Figure 3B). These data suggest that the neutralization response induced by
natural infection continued to evolve several months after the initial symptoms.

We then looked at the neutralization responses induced during the subsequent waves
of infection. Individuals infected in August 2020 or infected by the B.1.1.7 variant be-
haved differently from those infected in March 2020, in that no significant differences
were detected between neutralizing titers against all three tested spikes (Figure 3C). When
comparing ratios with first wave participants, B.1.1.7 infected individuals showed a signifi-
cant increase in the neutralization of B.1.1.7 vs D614G (fold change going from 1.53 to 1,
p = 0.0006) (Figure 3D). These data illustrate the progressive evolution of the virus infecting
the population and its impact on the induced cross-neutralization response. Importantly,
individuals infected by the B.1.1.7 variant were still able to cross-neutralize the original
WHI1 spike and the D614G mutant.

Finally, we analyzed vaccinated individuals. Vaccinated individuals were sub-classified
according to previous COVID-19 evidence into infected or uninfected. We compared three
groups: vaccinated non-infected, vaccinated previously infected during the first wave and
the group of first wave infected participants (late plasma sampling) not vaccinated. As
we did not have the neutralization levels of vaccinated previously infected individuals
prior to vaccination, we used the group of first wave infected (late plasma) individuals as
a surrogate.

When analyzing specifically vaccinated individuals not previously infected, the
decrease in B.1.1.7 cross-neutralization already observed for the all vaccinated group
(Figure 2A) was even more clear (Figure 4A). This was significant in comparison to both
WHI1 (fold change of 2.04, p = 0.0021) and D614G (fold change of 2.65, p = <0.0001). Vac-
cinated individuals previously infected did not show such a decrease; in fact, B.1.1.7
neutralization was increased compared to WH1 (fold change of 0.60, p = 0.0034). B.1.1.7
neutralization was still reduced when compared to D614G (fold change of 1.55, p = 0.0027)
but, overall, the response in the vaccinated previously infected group was improved in
comparison to vaccinated only individuals (Figure 4A,B).
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Figure 3. Subgroup analysis of neutralization titers in infected individuals. (A,B). Comparison of

plasmas collected at 48 days (early sampling) and >6 month (late sampling) after infection from
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2 independent groups of participants infected in March 2020 (first wave). Neutralization titers (IDsq
expressed as reciprocal dilutions) are shown in (A), and the corresponding ratios between variants
(lower is better) are shown in (B). (C,D) Neutralizing titer of individuals infected during the second
wave (August 2020) or specifically by the B.1.1.7 variant. Neutralization titers (ID5g expressed as
reciprocal dilutions) are shown in (C), and the corresponding ratios between variants (lower is
better) are shown in (D). In (D), we also included ratios from the first wave infected individuals
(early sampling) for comparison. In (A,C), bars indicate median titer in each group and p values
show the comparison of median titers among the three viruses (Friedman test with Dunn’s multiple
comparison test; * p < 0.05, **** p < 0.0001). Specifically in (A), p values are also indicated for the
comparison of neutralization titers against the same spike between the 2 groups (Kruskal-Wallis
test; * p < 0.05). In (B,D), bars indicate the median in each group with a 95% confidence interval and
top values indicate the median fold-change between the indicated variants (variants compared are
indicated in the graph title and in the Y axis). p values show the comparison of the group sampled at
48 days vs the group sampled at 6 months (Mann-Whitney test; * p < 0.05). In (D), p values show the
comparison between individuals from the different infection waves (Kruskal-Wallis with Dunn’s
multiple comparison test; *** p < 0.001).

Neutralization titers in infected only individuals were generally lower than in the
vaccinated groups (Figure 4A) as the former group experienced a decay in the neutralizing
response over time (Figure 3A) [14,16] while vaccinated participants were sampled between
1 and 2 weeks after the second shot, when the neutralizing response was maximized [17].
However, in comparison to vaccinated only individuals, the cross-neutralizing response
against both D614G and B.1.1.7 was superior to WH1 and the response against B.1.1.7 was
only marginally reduced compared to D614G (fold change of 1.28, p = 0.034). Interestingly,
the cross-neutralization profile of vaccinated previously infected individuals was very
similar to infected only participants as there was no significant difference between the two
groups when looking at the ratios of the neutralizing response between variants (Figure 4B).
This suggests that vaccination was able to boost the full cross-neutralization breadth of the
response previously established by natural infection during the first wave. In fact, in these
limited cohorts, the averages of the titers against each variant were all increased by a factor
of four when considering the average titers of vaccinated and non-vaccinated previously
infected groups (Figure 4A).
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Figure 4. Subgroup analysis of neutralization titers in vaccinated individuals. Comparison of plasma
from vaccinated individuals, previously infected or not during the first wave, as well as late plasma
from first wave infected individuals. (A) Neutralization titers (IDsy expressed as reciprocal dilutions).
Bars indicate the median titer in each group with a 95% confidence interval. p values show the
comparison of median titers against the three variants in the same group (Friedman with Dunn’s
multiple comparison test ; * p < 0.05, **** p < 0.0001) and the comparison of the response against
the same spike between groups (Kruskal-Wallis with Dunn’s multiple comparison test * p < 0.05,
***p <0.001, *** p < 0.0001) (B) Corresponding ratios between variants (lower is better). Bars
indicate the median in each group with a 95% confidence interval and top values indicate the median
fold-change between the indicated variants (variants compared are indicated in the graph title and
in the Y axis). p values show the comparison of median ratios between each group (Kruskal-Wallis
with Dunn’s multiple comparison tests; * p < 0.05, ** p < 0.01, **** p < 0.0001).

4. Discussion

D614G neutralization was significantly increased in both vaccinated and infected,
compared to WHI. This is in agreement with recent reports showing that D614G mutation
is associated with a more open (one-up) conformation which increases access to the RBD
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and results in both an increase in infectivity [18] and an increase in sensitivity to neutraliza-
tion [19,20]. Interestingly, this effect was increased when testing the plasma at 6 months
from infected individuals but reduced when testing plasma from the second wave (largely
G614) as well as B.1.1.7 infected participants.

Overall, we show that the B.1.1.7 variant minimally impacted sensitivity to neutral-
izing immune responses from individuals infected during the first wave and sampled
between 1 and 2 months after symptoms, in line with other reports [6,21]. The neutralizing
response associated with the B.1.1.7 variant only showed a significant decrease when
compared to the D614G mutant but not with the original WH1 spike. Importantly, these
small differences faded in first wave participants tested 6 months after infection, despite
a general decay in the neutralization response. This observation supports the positive
evolution over time of neutralizing responses in infected individuals suggested by different
authors [14,22].

No significant impact of the B.1.1.7 variant was observed when analyzing the neutral-
izing activity of participants infected during the second wave, in August 2020. During the
second wave in Spain, G614 genotype was highly prevalent but the B.1.1.7 variant was
still absent. This suggests that the intermediate evolution of the virus spike sequence was
sufficient to increase the quality of the neutralizing response against the B.1.1.7 variant.
The second wave participants’ plasma was collected between 1 and 2 months following
symptoms. Considering our observations on the evolution of the cross-neutralization
capacities in first wave participants, it will be interesting to perform a similar follow up
on second wave participants. As expected, participants specifically infected by the B.1.1.7
variant, in January 2021, demonstrated the best cross-neutralization capacity against the
B.1.1.7 variant in comparison to other spikes. Their plasma was collected earlier than the
other groups, between 1 and 3 weeks following symptom onset. Once again, additional
follow ups will refine our data. Finally, in line with other reports [23], we demonstrate that
infection by the G614-containing 20E (EU1) and B.1.1.7 variants elicits cross-neutralizing
responses against former viral variants.

Finally, we show here that vaccinated individuals, as a whole, suffered a small reduc-
tion of cross-neutralizing activity against B.1.1.7 in comparison to D614G, as previously
reported [24-26]. This loss of neutralization was more evident when excluding vaccinated
individuals who had experienced a previous SARS-CoV-2 infection. Indeed, previously
infected vaccinated participants demonstrated a much-improved neutralization of the
B.1.1.7 variant. The capacity of this group to neutralize B.1.1.7 in comparison to both WH1
and D614G was not statistically different from infected individuals tested after 6 months.
This suggests that, even though the vaccine alone did not generate an optimal B.1.1.7
neutralization response (compared to natural infection), it was capable of boosting the
full cross-neutralization response pre-established by natural infection, in line with other
reports [27,28]. Importantly, vaccinated individuals were all sampled at least 7 days after
the second dose of vaccine, at a time when both humoral and neutralizing responses have
reportedly reached a plateau [29,30]. However, another study suggests that the kinetics of
neutralization following vaccination might vary depending on the variant [31]. Moreover,
our data do not allow us to draw any conclusion on the long-term evolution of immune
responses elicited by vaccines, in terms of the quality or durability of antibodies.

In conclusion, the neutralizing response from infected individuals, while slowly
decaying in magnitude, seems to show a good qualitative evolution which can be fully
recalled upon vaccination. Importantly, our data suggest a better cross-neutralizing quality
of antibodies induced by natural infection compared to those induced exclusively by
vaccination. It will be interesting to analyze how neutralization breadth evolves over time
in non-infected vaccinated individuals to define if new vaccines will be necessary to further
enrich it.
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