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Automated diffusion‑based 
parcellation of the hypothalamus 
reveals subunit‑specific 
associations with obesity
Melanie Spindler1*, Jale Özyurt1 & Christiane M. Thiel1,2,3

The hypothalamus is a small, yet highly versatile structure mainly involved in bodily functions such as 
control of food intake and endocrine activity. Functional anatomy of different hypothalamic areas is 
mainly investigated using structural MRI, validated by ex-vivo histological studies. Based on diffusion-
weighted imaging (DWI), recent automated clustering methods provide robust tools for parcellation. 
Using data of 100 healthy adults provided by the Human Connectome Project Database, we applied 
DWI-based automated clustering to the hypothalamus and related microstructural properties in these 
hypothalamic compartments to obesity. Our results suggest that the hypothalamus can be reliably 
partitioned into four clusters in each hemisphere using diffusion-based parcellation. These correspond 
to an anterior–superior, anterior-inferior, intermediate, and posterior cluster. Obesity was predicted 
by mean diffusivity of the anterior–superior cluster, suggesting altered inhibition of food intake. The 
proposed method provides an automated hypothalamic parcellation technique based on DWI data to 
explore anatomy and function of hypothalamic subunits in vivo in humans.

The hypothalamus plays a central role in controlling bodily functions, such as endocrine activity, food intake, 
and energy homeostasis1,2 and hypothalamic abnormalities have been linked to behavioral dysfunctions in these 
domains3. For example, research suggests that functional connections between the insula and hypothalamus are 
related to obesity1,4, indicating compromised mechanisms of food intake control. Additionally, mean diffusivity 
(MD), reflecting overall diffusion within the hypothalamus has been associated with obesity, suggesting altered 
microstructural integrity5. Although the hypothalamus is a small structure of about 1–4 cm3, it is made up of 
approximately 15 distinct nuclei6 with different connections to widespread cortical and subcortical areas7. Never-
theless, correlates of hypothalamic function in humans have often not been related to different compartments. To 
better determine hypothalamic contributions to obesity and other functions, it is however of substantial interest 
to consider not only the hypothalamus but also its subunits.

Several methods have been proposed for hypothalamic compartmentalization in humans. Prior studies using 
structural magnetic resonance imaging (MRI) employed a combination of manual and semi-automated segmen-
tation techniques based on ex-vivo histological knowledge8,9. Current approaches make use of anatomical land-
marks visible in T1- and T2-weighted MRIs, whereby commonly identified subunits are the preoptic, anterior, 
tuberal and posterior/mammillary areas8,10,11. Still, there is a missing consensus across studies on the location 
and separation of hypothalamic compartments. Some authors combined different regions into one cluster (e.g. 
preoptic and anterior, or anterior and tuberal subunits), or used inferior to superior9,12,13, or ventral to lateral7 
boundaries to define the subunits. Most approaches result in four or five compartments depending on the method 
used, but three or six compartments have been reported as well. To establish more standardized procedures, two 
very recent studies proposed the usage of automated parcellation techniques. In Billot et al.14, a convolutional 
neural network was trained on a set of manually parcellated landmark-based subregions for automated parcella-
tion with T1w images. In contrast, a study by Neudorfer et al.15 proposed a detailed hypothalamic atlas containing 
nuclei and surrounding structures based on data from the Human Connectome Project (HCP). A summary of 
hypothalamus parcellation studies is given in Table 1. Still, it is unclear whether manual or automated landmark-
based parcellation also reflects functional relevance. Additionally, the hypothalamus is a highly variable structure 
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with considerable interindividual differences in size and shape that could be overlooked employing atlas-based 
techniques. Therefore, data-driven automated procedures could be used to capture variations in healthy and 
diseased populations by integrating knowledge about the underlying tissue. During the past years, advances in 
MR imaging enabled the development of methods for automated parcellations using local diffusion properties.

A first approach to automated hypothalamic parcellation based on diffusion-weighted imaging (DWI) was 
introduced by Schönknecht et al.16. The authors applied k-means clustering on the principal diffusion direction 
information in each voxel of a manually segmented hypothalamus mask. With this approach they could reliably 
divide the hypothalamus into three distinct clusters according to their main diffusion direction: anterior, pos-
teromedial, and lateral. The principal diffusion direction displays, however, only one aspect of diffusion within 
each voxel and does not grasp the full information of the diffusion tensor. Further, the measure is affected by 
crossing fibres, which are present in form of e.g., fornical fibres passing through the hypothalamus, or by the 
presence of cerebrospinal fluid (CSF) in voxels with close spatial proximity to the third ventricle. Therefore, the 
principal diffusion direction in diffusion-based clustering has recently been widely replaced by approaches utiliz-
ing more encompassing parameters to describe the diffusion process. For example, Battistella et al.17 employed 
a weighted k-means clustering algorithm on diffusion orientation distribution functions (ODF) in each voxel 
of an automatically created mask of the thalamus to identify anatomically meaningful subregions that were in 
accordance with a standard anatomic atlas of the thalamus17,18. Through the use of ODFs, the probability of dif-
fusion in any direction, crossing or kissing fibres can be better characterized19.

The goal of the present study was twofold. First, we aimed to investigate whether the k-means clustering 
algorithm on diffusion ODFs can reliably compartmentalize the hypothalamus. Second, we aimed to examine 

Table 1.   Overview of studies including parcellation of the hypothalamus in humans using MRI and 
histology. When parcellation was performed on nucleus level, the number of subunits is denoted as –. HC 
Healthy controls, PN preoptic nucleus, SDN sexually dimorphic nucleus, Pe periventricular nucleus, PVN 
paraventricular nucleus, SO supraoptic nucleus, SCh suprachiasmatic nucleus, AN anterior nucleus, LHA 
a/p lateral hypothalamic area anterior/posterior, VMN ventromedial nucleus, DMN dorsomedial nucleus, 
Inf infundibular/arcuate nucleus, PeF perifornical nucleus, MM medial mammillary nucleus, LM lateral 
mammillary nucleus, TM tuberomammillary nucleus, PHA posterior hypothalamic area, LTN lateral tuberal 
nucleus.

Sample description Parcellation modality Procedure No. subunits Subunits (nuclei)

Baroncini et al.8 HC (n = 20), ex-vivo (n = 6) 1.5T T1w, T2w, histology Manual 4
Preoptic (PN, SDN, Pe), Anterior 
(PVN, SO, SCh, AN, LHA), Tuberal 
(VMN, DMN, Inf, PeF, LHA), Poste-
rior (MM, LM, TM, PHA, LHAp, LTN)

Billot et al.14
HC and frontotemporal dementia 
(n = 37) described in12, HCP (n = 2), 
IXI (n = 2) and ADNI dataset (n = 675)

3T T1w Automated 5

Anterior–superior (PVN)
Anterior–inferior (SO)
Superior–tuberal (DMN, LHA, PVN), 
Inferior–tuberal (Inf, VMN, SO), 
Posterior (MM, LM, LHA) as in 12

Bocchetta et al.12 Frontotemporal dementia (n = 18), 
HC (n = 18) 3T T1w, T2w Manual 5

Anterior–superior (PVN)
Anterior–inferior (SO)
Superior–tuberal (DMN, LHA, PVN), 
Inferior–tuberal (Inf, VMN, SO), 
Posterior (MM, LM, LHA)

Florent et al.49
Anorexia nervosa (n = 10), normal-
weight (n = 10) and constitutionally 
lean HC (n = 10)

3T T1w Manual –
mammillary region, PHA, LHA a/p, 
VMN, DMN, SO, Inf, PVN, medial 
PN, tuberal LHA

Goldstein et al.10 Schizophrenia cohorts (n = 88), rela-
tives (n = 45), and HC (n = 48) 1.5T T1w Manual 4 Preoptic, Anterior, Tuberal

Posterior (MM, LM)

Lemaire et al.7 Neurodegenerative disease (n = 7), 
HC (n = 7) 3T T1w, T2w Manual 6 Preoptic, Supraoptic, Anteroventral, 

Anterodorsal, Lateral, Posterior

Makris et al. 9 Ex-vivo (n = 2), HC (n = 44) 7T T1w, 1.5T T1w, histology Manual 5

Anterior–superior (PN, PVN, SDN), 
Anterior–inferior (SCh, SO), Superior 
tuberal (PVN, DMN, LHA), Inferior 
tuberal (SO, Inf, VMN, LTN), Posterior 
(LM, MM, LHA, TM)

Neudorfer et al.15
HCP dataset (n = 900) for atlas genera-
tion, hypothalamic lesion (n = 1), deep 
brain stimulation patients (n = 2)

3T T1w, T2w Manual, automated (atlas) –
AN, Inf, (dorsal) Pe, DMN, LHA, 
medial PN, PVN, PHA, SCh, SO, TM, 
VMN

Osada et al.50 HC (n = 12) 3T rs-fMRI Automated – Inf, AN, MM,VMN, PN, DMN, PVN, 
PHA, LHAa/p

Piguet et al.3
Frontotemporal dementia (n = 18, 
ex-vivo: n = 12), HC (n = 16, ex-vivo: 
n = 6)

3T T1w, histology Manual 2 Anterior, Posterior

Schindler et al.11 HC (n = 10) 7T T1w Manual 4 Preoptic, Anterior, Tuberal, Posterior

Schönknecht et al.16 HC (n = 10) 3T DWI Automated 3
Anterior (PVN, AN, DMN, LHA), 
Posteromedial (SCh, Inf, VMN, PHA, 
MM,LM), Lateral (VMN, SO, LHA)

Wolff et al.13 HC (n = 4), depression (n = 8) 3T T1w Semi-automated 4 Preoptic, Intermediate–superior, Inter-
mediate–inferior, Posterior
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the relationship between neuronal integrity in these compartments and obesity. We used a large dataset of 
high-resolution diffusion-weighted images from the HCP. Overall, this study provides a data-driven automated 
parcellation method of the hypothalamus without the use of anatomical landmarks and enhances our knowledge 
regarding hypothalamic anatomy and function.

Results
Intraclass correlation (ICC) for hypothalamic volume between both raters (n = 29) was good (ICC = 0.805, 95% 
confidence interval 0.63–0.90). Dice coefficients ranged between 87 and 96% overlap. Body-Mass Index (BMI) 
of participants (n = 100) ranged between 18.44 and 41.76, with 27% of participants with a BMI ≥ 30.

Clustering.  The clustering algorithm was able to reliably identify four clusters per hemisphere, which could 
be divided into anterior–superior, anterior-inferior, intermediate, and posterior in 98% of the cases (Figs. 1, 2). 
For two participants, generated clusters could not be divided into these categories. In both cases, the anterior–
inferior and intermediate clusters could not be reliably identified. Therefore, both participants were excluded 
from further analyses. Cluster differences in volume as well as tissue properties measured by FA and MD 
were assessed with three one-way ANOVAs. Results suggest that clusters differed in volume (F(3,388) = 92.83, 
p < 0.001), FA (F(3,388) = 32.17, p < 0.001), and MD (F(3,388) = 86.42, p < 0.001). Tukey’s HSD post hoc test 
results are displayed in Fig. 2.

Table 2 shows the assignment of hypothalamic nuclei to clusters obtained in the current study.
To generate a probabilistic map of the hypothalamus and its subunits, individual parcellations of n = 98 

subjects were registered to Montreal Neurological Institute (MNI) space and added to a common template. 
The resulting atlas was compared to individual parcellations of the validation sample (n = 20). In all subjects of 
the validation sample, subunits based on ODFs were computed and registered to MNI space. Dice coefficients 
between the data-driven parcellations and the atlas-based subunits suggest a high mean overlap for the ante-
rior–superior (0.87 ± 0.05), anterior-inferior (0.78 ± 0.07), and posterior (0.83 ± 0.05) subunits, as well as medium 
overlap for the intermediate subunit (0.51 ± 0.14).

Relationship between integrity of hypothalamic subunits and obesity.  To investigate the rela-
tionship between hypothalamic integrity, gauged by MD, and obesity, a multiple linear regression analysis was 
employed with BMI as response variable (n = 98). Predictor variables included sex, age, cardiovascular fitness, 
and MD in each hypothalamic subunit. To test for correlation between predictors, the variance inflation factor 
was computed, which is a measure for inflated variance of regression coefficients due to multicollinearity. A vari-
ance inflation factor of < 2 for all predictors suggested a low correlation between predictors. The regression anal-
ysis revealed that the BMI was significantly predicted by cardiovascular fitness and MD in the anterior–superior 
hypothalamic subunit, explaining 12.5% of variance in BMI (F(7,90) = 2.971, p = 0.008, Adj. R2 = 0.125, Table 3).

Figure 1.   Visualization of the diffusion orientation distribution functions (ODF) and the corresponding 
clusters (large rectangle, anterior–superior in green, anterior-inferior in blue, intermediate in red, posterior in 
yellow) in a CSF- and FA-thresholded sagittal slice of the total hypothalamus (small rectangle, lateral view to 
display all clusters). Color-coding of the ODFs represents the probability of orientation in the given direction at 
each point of the surface: red for right–left, green for rostral–caudal, blue for dorsal–ventral.
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Figure 2.   Clustering results in 3D sagittal view exemplary for one participant (bottom right), and boxplots 
displaying intracranial volume-corrected cluster volumes (bottom left), fractional anisotropy (top left), and 
mean diffusivity (top right) for each participant. Tukey’s HSD post hoc test results: ***p < 0.001, *p < 0.05.

Table 2.   Assignment of hypothalamic nuclei to clusters obtained by k-means clustering based on diffusion 
orientation distribution functions.

Cluster Nuclei

Anterior–superior Lateral and medial preoptic nuclei, paraventricular nucleus, anterior hypothalamic nucleus

Anterior–inferior Suprachiasmatic nucleus, supraoptic nucleus, infundibular nucleus, anterior hypothalamic nucleus, ventromedial 
nucleus

Intermediate Lateral hypothalamic area, dorsomedial nucleus, ventromedial nucleus

Posterior Lateral and medial mamillary nuclei, posterior hypothalamic nucleus, tuberomammillary nucleus

Table 3.   Results of a multiple linear regression predicting BMI. MD mean diffusivity. *p < 0.05.

Predictor variables Standardized coefficients β Standard error (SE) T p

(Intercept)  − 0.06 0.15  − 0.387 0.700

Anterior–superior MD 0.29 0.11 2.646 0.009*

Anterior–inferior MD  − 0.15 0.11  − 1.374 0.173

Intermediate MD 0.01 0.10 0.049 0.961

Posterior MD 0.19 0.13 1.473 0.144

Cardiovascular fitness  − 0.29 0.10  − 2.807 0.006*

Age  − 0.02 0.10  − 0.168 0.867

Sex (male) 0.12 0.24 0.509 0.612
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Given those results, a post hoc Pearson correlation analysis was performed to examine whether ante-
rior–superior MD and cardiovascular fitness are correlated. Results suggested no linear relationship between 
anterior–superior MD and cardiovascular fitness (r = 0.06, p = 0.525).

Discussion
In this study, we propose a data-driven automated parcellation procedure based on high resolution DWI data 
for the hypothalamus to identify anatomically meaningful subunits based on the diffusion process in each voxel 
and provide information regarding the relationship between obesity and hypothalamic microstructure.

We showed that using a weighted k-means clustering algorithm based on diffusion ODFs, we were able to 
reliably divide the hypothalamus into four subunits (anterior–superior, anterior–inferior, intermediate, and 
posterior) with different underlying tissue microstructure. Here, subunits differed mostly in MD, whereas in 
FA, only the intermediate subunit was significantly different from the other subunits. We assume that this is 
related to residual white matter of the fornix that could not be fully excluded. To date, histological data serves as 
gold standard for hypothalamus parcellation, thus we compared our results to studies with parcellations based 
on histology. For example, Baroncini et al.8 also divided the hypothalamus into four subunits, but nuclei of the 
anterior–superior and anterior–inferior subunits were instead grouped from ventral to dorsal into preoptic and 
anterior subunits. Therefore, their subunits contain different nuclei than those in our study. Still, the tuberal and 
posterior region are similar to our intermediate and posterior clusters. A study conducted by Makris et al.9 used 
manual parcellation of the hypothalamus based on ex-vivo MRI and subsequent histological analysis and divided 
the hypothalamus into five subunits: Anterior–superior, anterior–inferior, superior–tuberal, inferior–tuberal, 
and posterior (Table 1). These clusters closely resemble the subunits we obtained with our automatic parcellation 
technique. When comparing the spatial extent of the clusters, it is, however, important to note that in our case the 
infundibular nucleus is more likely to be located in the anterior–inferior instead of the inferior–tuberal cluster as 
suggested by the authors. Due to the missing consensus concerning subunit boundaries across studies, subunits 
are only comparable to a limited extent. Additionally, methodological differences in rating criteria between stud-
ies add further variability to the results. Possible interindividual differences, such as displacement, shrinkage, or 
enlargement of nuclei may also confound the data, especially in clinical samples. Therefore, an automated proce-
dure incorporating knowledge about underlying tissue presents a useful alternative to landmark- or atlas-based 
parcellations when it comes to comparing hypothalamic differences across healthy and diseased populations.

We also investigated the role of obesity in hypothalamic microstructure measured by MD. MD is commonly 
referred to as a measure of white matter integrity. For example, higher MD is an indicator for increased tissue 
water, which could be induced by e.g., inflammation or edema. Multiple neuronal mechanisms can result in 
changes in the diffusion tensor that in turn influence MD20. In obesity, hypothalamic inflammation is commonly 
associated with a high-fat diet, with most evidence based on animal model studies21,22. In obese humans, hypo-
thalamic inflammatory markers including increased gliosis and higher mean diffusivity have been observed5,21. 
For example, Thomas et al.5 showed a positive association between MD in the hypothalamus and BMI. We were 
able to replicate the finding of increased hypothalamic MD in obesity, and notably, in our study, this increase 
was observed in the anterior–superior region of the hypothalamus only. Albeit a partial correlation between 
BMI and cardiovascular fitness was observed in our regression model, anterior–superior MD and cardiovascular 
fitness were not significantly correlated. Hence, it can be assumed that the relationship between hypothalamic 
microstructure and BMI is at least partly independent of physical activity. The anterior–superior subunit contains 
the paraventricular nucleus (PVN), which is suggested to play a critical role in inhibitory control of food intake 
and energy expenditure23,24. In the melanocortin system, proopiomelanocortin (POMC)-expressing neurons in 
the arcuate nucleus project to the PVN, where regulatory neuropeptides including oxytocin and corticotropin-
releasing hormone (CRH) are secreted, which regulate feeding behaviour25,26. Increased MD in the paraventricu-
lar nucleus could therefore be an indicator of altered inhibitory control of food intake. Additionally, the PVN 
regulates hypothalamic–hypophyseal–adrenal axis (HPA axis) activity27, thereby presenting a link between the 
stress and feeding systems. Dysregulation of the HPA axis is commonly associated with obesity, explained by 
interactions between glucocorticoids and neuropeptides that mediate feeding behavior28. For example, activation 
of the PVN stimulates the release of adrenocorticotropic hormone, which contribute to an increased production 
and release of glucocorticoids that in turn alter the expression of neuropeptides (e.g., POMC)29. Therefore, future 
research should consider both stress-related and metabolic mechanisms when exploring neural correlates of 
obesity. Also likely influenced by obesity and related to hypothalamic microstructure is the hypothalamic–pitui-
tary–gonadal (HPG) axis30. Here, it is suggested that energy balance and adipose tissue affect the reproductive 
system via Gonadotropin-releasing hormone that is produced in the hypothalamus31. But even in healthy indi-
viduals, the hypothalamus is affected by activity of the HPG axis. For example in 2010, Baroncini et al. found 
changes in hypothalamic MD during the course of the artificial menstrual cycle32. Due to the multifunctional 
role of the hypothalamus, other mechanisms influencing our results cannot be ruled out, and as the generated 
clusters in this study contain multiple nuclei of the hypothalamus, interpretations on the basis of single nuclei 
remain speculative. Additionally, MD is a rather unspecific, albeit sensitive DTI measure20. It should also be 
noted, that due to the proximity of the hypothalamus to the third ventricle, especially the periventricular and 
arcuate nucleus are most likely not fully included in our masks. Nevertheless, our results add to previous find-
ings indicating that obesity is associated with changes in specific subunits of the hypothalamus33, highlighting 
the importance of hypothalamic parcellation when investigating hypothalamic function.

We conclude that automated parcellation methods based on DWI could be a useful tool for assessing hypo-
thalamic microstructure. We further provide evidence of a relation between hypothalamic microstructure, 
particularly in the anterior–superior region, and obesity. The multifaceted role of the hypothalamus in endo-
crine, cognitive and metabolic functions highlights the importance of studying unique features of hypothalamic 
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subunits. Additionally, automated parcellation procedures constitute a useful addition to unravelling hypotha-
lamic function in health and disease.

Methods
Participants.  One hundred unrelated healthy subjects (age range 22–36, 54 females) provided by the HCP 
database were used. As validation sample, twenty additional subjects (age range 23–35, 8 females) were ran-
domly selected from the HCP database. All subjects were scanned on a customized 3T Connectome Scanner 
adapted from a Siemens Skyra (Siemens AG, Erlangen, Germany) with a 32-channel head coil and completed 
behavioral assessment at Washington University34,35. In addition to basic demographic information (age in years, 
sex), measures for obesity and cardiovascular fitness were selected from the available data. The HCP protocol 
was approved by the Institutional Review Board at Washington University in St. Louis and data acquisition was 
in accordance with the declaration of Helsinki36. All participants provided written informed consent for the 
project.

MRI data.  T1-weighted high-resolution anatomical images were obtained using a 3D Magnetization-Pre-
pared Rapid Acquisition Gradient Echo (MP-RAGE) sequence with the following parameters: sagittal acquisi-
tion, isotropic voxel size of 0.7 mm3, echo time (TE) = 2.14 ms, repetition time (TR) = 2400 ms, echo spacing 
(ES) = 7.6 ms, inversion time (IT) = 1000 ms, flip angle (FA) = 8°, field of view (FOV) = 180 × 224 × 224 mm, and 
bandwidth (BW) = 210 Hz per pixel. The acquisition time was 7 min 40  s. T2-weighted sagittal images were 
acquired using a variable flip angle turbo spin-echo sequence (Siemens SPACE37) with an acquisition time of 
8 min 24 s, the same voxel size, FOV, and slices as in the T1w, BW = 744 Hz per pixel, TE = 565 ms, TR = 3200 ms, 
and ES = 3.53 ms. Diffusion-weighted images were acquired using a single-shot 2D spin-echo multiband sequence 
with multiband factor 3, and the following parameters: TR = 5520 ms, TE = 89.5 ms, ES = 0.78 ms, FA = 78°, voxel 
size = 1.25 mm3, b-values 1000, 2000 and 3000 s/mm2, BW = 1488 Hz per pixel, and FOV = 210 × 180 × 138 mm. 
Three different gradient tables were used, each acquired once with left-to-right and right-to-left phase encod-
ing direction. Each of the gradient tables included approximately 90 diffusion-weighting directions plus 6 b = 0 
images interspersed throughout each run. Acquisition time was around 55 min.

MRI processing.  We obtained minimally preprocessed T1-weighted, T2-weighted, and DWI data from the 
HCP database (S1200 release)35,38, where T1-weighted images were aligned to anterior–posterior commissure 
(AC-PC) orientation in the midsagittal plane, and DWIs were corrected for susceptibility field distortions, eddy 
currents and subject movement using the FMRIB Software library tools39 (FSL, https​://fsl.fmrib​.ox.ac.uk/fsl), 
and registered to the T1-weighted image. A downsampled T1-weighted image matching the DWIs was gener-
ated as well. In addition, we performed segmentation of T1 images into grey matter (GM), white matter (WM) 
and CSF, with bias-correction using the Statistical Parametric Mapping toolbox (SPM12, https​://www.fil.ion.ucl.
ac.uk/spm/softw​are/spm12​/), running on MATLAB 2017a (Mathworks Inc.). From the preprocessed DWI data, 
we extracted the b1000 shell and fitted a tensor model to generate Fractional Anisotropy (FA) and MD maps for 
each participant.

Segmentation of the hypothalamus.  Hypothalamus extraction.  To generate a mask of the left and 
right hypothalamus, we used a semi-automated approach. First, the Segment Editor in Slicer v.10.4.240 in tri-
planar view (https​://www.slice​r.org/) was used for manual slice-by-slice segmentation on coronal slices. The 
high resolution T1-weighted image was superimposed onto the downsampled (1.25 mm3) T1 image such that 
anatomical structures were better visible during segmentation. Axial and sagittal views were used to allow easier 
identification of landmarks (e.g., the mammillary bodies, thalamus). The segmentation procedure started on 
the most anterior coronal slice where the anterior commissure appeared continuous and ended on the last slice 
with visible mammillary bodies11. Parts of the fornix surrounded by hypothalamic tissue were included for all 
participants, as they could not be reliably excluded. The superior fornix was excluded. The left and right hemi-
spheric masks were created separately for each participant. Afterwards, the masks were checked using the T2-
weighted image, to accurately delineate especially the lateral boundary of the hypothalamus. Segmentation took 
approximately 30 min per participant. For a more detailed description of the segmentation procedure, see10,11,13. 
To control for partial volume effects, the hypothalamus masks were then automatically refined using CSF prob-
ability maps calculated in SPM12, whereby voxels with a probability of > 15% CSF were excluded from the mask. 
To further exclude voxels containing the optic nerves or the fornix, an FA threshold of > 0.55 was employed as 
well. Both thresholds were based on previous research18 and empirically adjusted to minimize the loss of hypo-
thalamic structures close to the ventricles. Consistency of manual hypothalamus segmentation was determined 
by analysis of inter-rater reliability with a second independent rater using a data subsample (n = 29). Inter-rater 
reliability was calculated with intraclass correlation (model 3.1)41 and Dice coefficients42. Masks generated by 
researcher 1 were used for final computations across the whole sample.

Clustering of the hypothalamus.  To reconstruct the fibre orientations in the hypothalamus, we estimated the 
ODFs within the hypothalamus using the qboot command implemented in FSL (Fig. 1). Qboot uses constant 
solid angle q-Ball imaging to generate ODFs based on spherical harmonics (SH). The maximum SH basis was 
set to 6 (lmax = 6), whereas the number of ODF peaks was kept at 2, with 50 samples of residual bootstrapping 
(default settings). Single-shell data with b = 1000 was used to obtain results comparable to the most widely used 
DWI sequences.

Clustering was applied using a procedure adapted from Battistella et al.17. In short, the approach combines the 
Euclidean distances of voxel position coordinates and ODF coefficients with an equal weighting of 0.5 as input 

https://fsl.fmrib.ox.ac.uk/fsl
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.slicer.org/
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into a k-means clustering algorithm. Hereby, the spatial distance served to constrain the clusters to be contiguous, 
while the distance between the ODF coefficients grouped voxels with similar microstructural diffusion proper-
ties. First, 5000 randomly initialized k-means were run with only voxel position as input to generate the average 
centroid which served as the initial setting for the final clustering. To eliminate the influence of voxel size on 
clustering with the position coordinates and to achieve an easier adaptation across different imaging sequences, 
we introduced a standardization of both ODF coefficients and voxel coordinates to have M = 0 and SD = 1. This 
approach served to obtain a similar range of Euclidean distances and replaced multiplication of the ODFs by a 
constant as proposed in the original paper17.

The optimal number of clusters was evaluated between k = [2, 3, 4, 5, 6] as observed in the literature, by 
minimizing the Davies-Bouldin index43 in 20 randomly selected participants. The Davies–Bouldin index meas-
ures similarity as the ratio of within-cluster to between-cluster distances and is a commonly used method to 
determine a proper number of clusters. Here, the optimal number of clusters ranged between 2 and 6, with k = 2: 
2.5%, 3: 10%, 4: 32.5%, 5: 25%, and 6: 30% of the cases. Afterwards, the spatial position of clusters obtained 
with k = 4, 5, and 6 clusters was assessed, and it was determined that in contrast to k = 5 or 6, for k = 4, the same 
spatial formations could be identified in all participants. Depending on their location, clusters were labelled as 
anterior–superior, anterior–inferior, intermediate, or posterior. Volumes for each cluster were corrected for total 
intracranial volume (ICV) using the residual approach44,45. Mean volume, FA, and MD were then compared 
between clusters using three one-way ANOVAs (p < 0.017 considered significant after Bonferroni adjustment).

To determine cluster overlap between subjects, hypothalamic subunits were affine and non-linearly registered 
to the MNI template in 1mm3 resolution using FSL’s flirt and fnirt (n = 98). Spatial overlap of clusters was resolved 
such that a voxel was assigned to the cluster with the highest probability (majority voting). Voxel values then 
represented the number of participants that share the cluster label at the respective voxel, with higher values at 
the center and lower values at the borders of each cluster. The resulting atlas template was made publicly avail-
able (https​://githu​b.com/Spind​M/Hypot​halam​icAtl​as), and can be further thresholded to only include voxels 
exceeding a certain probability for more conservative or liberal masks. To determine individual correspondence 
of atlas-generated subunits with those of individual data-driven parcellation, further n = 20 participants from 
the HCP database were included as a validation sample and analyzed following the procedures described above. 
Afterwards, subunits were registered to MNI space, and Dice coefficients were calculated between atlas-based 
and data-driven subunits.

Relationship between integrity of hypothalamic subunits and obesity.  We included information 
about body-mass index (BMI) measured in kg/m2 and scores of a 2-min walk test measuring sub-maximal car-
diovascular fitness. The test was adapted from the American Thoracic Society’s 6-min Walk Test Protocol46, and 
recorded the distance that the participant was able to walk on a 50-foot (out and back) course in 2 min. The raw 
score was calculated as the distance (in feet and inches) walked. For analyses, we used age-adjusted scale scores. 
Including instructions and practice, the test took about 4 min. To investigate the relationship of hypothalamic 
microstructure with the Body Mass Index, a multiple linear regression analysis was computed to predict BMI 
from mean diffusivity in each hypothalamic cluster, controlling for sex, age in years, and cardiovascular fitness. 
To detect possible collinearity among predictors, the variance inflation factor was computed. A Pearson correla-
tion was conducted exploratively to analyze the association between anterior–superior MD and cardiovascular 
fitness. If not stated otherwise, statistical significance was set at p < 0.05. Behavioral analyses were conducted 
using R (v. 3.6.3)47. Visualizations were performed with FiberNavigator48 and Slicer40.

Data availability
The data used for this study was accessed from https​://db.human​conne​ctome​.org and is publicly available. The 
group template of hypothalamic subunits in standard MNI space is publicly available at https​://githu​b.com/
Spind​M/Hypot​halam​icAtl​as.
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