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Abstract

Background: Fast changes in human demographics worldwide, coupled with increased mobility, and modified land uses
make the threat of emerging infectious diseases increasingly important. Currently there is worldwide alert for H5N1 avian
influenza becoming as transmissible in humans as seasonal influenza, and potentially causing a pandemic of unprecedented
proportions. Here we show how epidemiological surveillance data for emerging infectious diseases can be interpreted in
real time to assess changes in transmissibility with quantified uncertainty, and to perform running time predictions of new
cases and guide logistics allocations.

Methodology/Principal Findings: We develop an extension of standard epidemiological models, appropriate for emerging
infectious diseases, that describes the probabilistic progression of case numbers due to the concurrent effects of (incipient)
human transmission and multiple introductions from a reservoir. The model is cast in terms of surveillance observables and
immediately suggests a simple graphical estimation procedure for the effective reproductive number R (mean number of
cases generated by an infectious individual) of standard epidemics. For emerging infectious diseases, which typically show
large relative case number fluctuations over time, we develop a Bayesian scheme for real time estimation of the probability
distribution of the effective reproduction number and show how to use such inferences to formulate significance tests on
future epidemiological observations.

Conclusions/Significance: Violations of these significance tests define statistical anomalies that may signal changes in the
epidemiology of emerging diseases and should trigger further field investigation. We apply the methodology to case data
from World Health Organization reports to place bounds on the current transmissibility of H5N1 influenza in humans and
establish a statistical basis for monitoring its evolution in real time.

Citation: Bettencourt LMA, Ribeiro RM (2008) Real Time Bayesian Estimation of the Epidemic Potential of Emerging Infectious Diseases. PLoS ONE 3(5): e2185.
doi:10.1371/journal.pone.0002185

Editor: David Lusseau, University of Aberdeen, United Kingdom

Received December 11, 2007; Accepted March 20, 2008; Published May 14, 2008

Copyright: � 2008 Bettencourt, Ribeiro. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: We gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program for this work.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: lmbett@lanl.gov

. These authors contributed equally to this work.

Introduction

A pandemic of H5N1 influenza in birds is presently unfolding,

with over 50 countries around the world affected, resulting in

hundreds of millions of dead animals through infection or culling [1–

3]. This emergency and the associated risk of a devastating new

human pandemic [4–6] stress the need for new approaches targeted

specifically at detecting and monitoring the evolution of emerging

infectious diseases [7–9]. Assessing the risk of emergence of a human

epidemic at the genetic level requires accounting for rare stochastic

events, associated with genetic mutation and recombination, over

vast pathogen and host populations [4,8,10]. This makes prediction

of pathogenic evolution at the molecular level typically still very

difficult. Consequently, the first indications of disease emergence are

usually observed as infected cases in human and animal populations.

Thus, for early assessments of the epidemic potential of a new

outbreak, it is essential to assign quantitative meaning to existing

epidemiological surveillance data in real time, with quantified

uncertainty, and to use this knowledge to enable primary prevention

strategies targeted at reducing chances of pathogenic evolution.

The quantity that measures the epidemic potential of a pathogen

is the basic reproduction number R0 [11,12]. R0 is defined as the

average number of new infections created by an infectious individual

in an entirely susceptible population. For established human

pathogens, leading to standard epidemics, R0.1, as is the case of

seasonal or pandemic influenza [13–19]. In practice, epidemiolog-

ical data typically permit only the estimation of the effective

reproduction number R, which may differ from R0 due to acquired

immunity and other factors. For an emerging infectious disease,

when transmission is only incipient [20] and the pathogen is

adapting to the population, it becomes crucial to monitor

quantitative changes of the effective reproduction number over

time. Thus, the detection and tracking of an emerging disease can be

formalized in terms of monitoring R, as it evolves and approaches the

critical threshold RR1. This is likely the current state of H5N1 avian

influenza in humans, where complete absence of human to human

transmission would imply R = 0, but likely R is very small, as a few

cases of possible human contagion suggest [21–23].

Notwithstanding a marked recent increase in systematic

surveillance by national and international organizations, and the
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advent of real time reporting of many public health indicators

(syndromics) [24], the epidemiological regime of incipient but

evolving transmission has received little attention in terms of

quantitative modelling [22,25–28]. The main difficulty is that data

in these circumstances tend to be very stochastic, involve small

case numbers and may be plagued by uncertainties and

inconsistent reporting. As an example, we contrast in Figure 1

the time series of confirmed new human cases of H5N1 avian

influenza in Vietnam, reported by the World Health Organization

(WHO), with weekly isolate numbers for seasonal H3N2 influenza

in the USA during 2004–2005 (see Methods for ‘‘Data Sources’’).

The ultimate objective of this paper is to propose a methodology to

extract quantitative inferences and generate epidemiological

outlook in real time from time series like that of Figure 1a.

Recently the problem of real time monitoring of (emerging)

communicable diseases has gained growing attention, with a few

new methods proposed to estimate R. One method proposes the

analysis of the distribution of the sizes of case clusters to provide

indications of changes in R. Specifically, increases in R(,1)

translate on average into larger case cluster sizes [21,27–29].

Another approach [30] relies on the inference of probable chains

of transmission among observed cases from knowledge of the

statistical distribution of the infectious period. From an ensemble

of such chains and their associate compounded probability, R can

be estimated. This method has recently been applied to ‘‘real

time’’ monitoring of SARS [31,32], via a Bayesian inference

scheme. The strength of this class of methods is that they allow

insights into heterogeneities in the population. This demands the

consideration of all pairs of possible transmissions, which may

become computationally intense as case numbers rise and can be

sensitive to under reporting, competing risk and to the details of

the distribution of infectious periods. Moreover those studies

considered the efficacy of control measures for a disease with an

initial R.1 and no new cases introduced during the epidemic,

whereas it is typical of emerging communicable diseases that

adaptation of the pathogen’s tropism to the host population is the

result of numerous such introductions [22].

Here we propose an alternative approach, which addresses the

issue of new introductions, requires in general smaller computa-

tional overhead and results in the estimation of the full probability

distribution for R. The method is based on the probabilistic

formulation of standard SIR disease transmission models analo-

gous to the time-series SIR (TSIR) approach [33], which simplifies

the need to reconstruct transmission chains by aggregating all

infectious and susceptible individuals into classes that are assumed

to mix homogeneously. A Bayesian procedure is then employed to

translate the time series of case numbers into a probability

distribution for epidemiological parameters. The method adopts

the standard assumptions made in epidemiological compartment

models with homogeneously mixing classes, and benefits from

their simpler computational structure allowing efficient estimation

with available sparse empirical data. The estimation method

developed here has been applied once before [34] to 1918

influenza pandemic death notifications time series for San

Francisco, with the purpose of comparing its performance with

other conventional methods for estimating R. Here we present its

full derivation, provide more details and examples, include

introductions from an animal reservoir and show how the method

can be used to provide statistical expectations for new case

predictions. We also show how case predictions with quantified

uncertainty do, in turn, define possible statistical anomalies for

future case numbers, which can be used to inform surveillance and

Figure 1. Time series of new cases for an emerging infectious disease vs. a standard epidemic. (a) Laboratory confirmed new human
H5N1 avian influenza cases, from WHO reports in Vietnam (from January 2004 to June 2006); (b) Number of isolates for seasonal H3N2 influenza in the
USA, over the 2004–2005 season. Note the 100-fold difference in case numbers (y-axis) between panel (a) and (b). For an emerging infectious disease
such as H5N1 influenza in humans, case numbers are small, very stochastic, and alternate short outbreaks with long quiet periods.
doi:10.1371/journal.pone.0002185.g001
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logistical management in the event of a new or continuing

outbreak. As an example, we apply the method to human case

data of H5N1 influenza in Vietnam and Indonesia, to produce

bounds on its effective reproduction number, R, and establish a

basis for its continued monitoring in real time.

Materials and Methods

Data sources
Time series of H5N1 influenza cases in humans were assembled

from World Health Organization (WHO) reports of confirmed

cases (http://www.who.int/csr/don/en/), from January 2004 to

June 1, 2006 (see Supplementary Material S1, including Figure S1,

for more information). Data for H3N2 seasonal influenza was

obtained from the Centre for Disease Control (CDC) Surveillance

Weekly Reports in the United States (http://www.cdc.gov/flu/

weekly/fluactivity.htm).

Model development
New human cases of avian influenza may result from two

alternative processes: i) infection of humans from animal sources

[4], or ii) human to human transmission [23]. For a standard

epidemic, explicit consideration of multiple introductions is not

important as each case produces many secondary infections. For

emerging infectious diseases multiple introductions from a

reservoir [22,25] may constitute an important fraction of all

observed cases, and the progression of secondary cases must be

carefully assessed and monitored.

Our objective is to cast standard SIR-class models in a form that

directly relates to time series data of emerging infectious diseases

by i) accounting for cases from reservoir sources, ii) casting the

model variables in terms of observable quantities reported from

field surveillance, iii) formulating the model in a discrete

probabilistic form, and iv) quantifying uncertainty in the

estimation of epidemiological parameters and future cases, and

assimilate new data to reduce it.

Average case progression in the absence of multiple
introductions

We consider a standard epidemic susceptible-infected (SIR)

model

dS

dt
~{b

S

N
I

dI

dt
~b

S

N
I{cI , ð1Þ

where S(t) is the average number of susceptibles at time t, I(t) is the

average number of infectious, N is the size of the population, which

decreases due to disease-induced deaths (taken as a fraction a of

progressing infections), b is the contact rate, and c21 is the

infectious period. After an average residence time c21, infectious

individuals recover or die (not shown in [1]). The total number of

cases up to time t, T(t) obeys the equation dT/dt = b S/N I.

Epidemic reports most commonly state the occurrence of new

infected cases, which over the period t, are given by

T(t+t)2T(t) =DT(t+t).
To find the expression accounting for the evolution of new cases

DT(t+t) we integrate Eq. [1], for I(t) between t and t+t, to obtain

I tztð Þ~I tð Þexp c

ðtzt

t

R0
S t0ð Þ
N t0ð Þ{1

� �
dt0

� �
&

I tð Þexp tc Rt{1ð Þ½ �
ð2Þ

where R0 =b/c, and Rt = (S(t)/N(t))6R0 (the ‘‘instantaneous’’

reproduction number) is a function of time; the last expression is

exact if S(t)/N(t) is constant in the period [t, t+t]. This simplifying

assumption is generally excellent for emerging infectious diseases,

which result in few cases within a much larger population.

Generally the validity of the assumption can be assessed through

consideration, from [1], of its evolution equation

d

dt

S tð Þ
N tð Þ

� �
~{ c

I tð Þ
N tð Þ R0{að Þ

� �
S tð Þ
N tð Þ ð3Þ

which shows that S(t)/N(t) is approximately constant over a time

interval t, if tcI(t)/N(t)(R02a),,1. This condition is usually satisfied

as the fraction of infectious at a given time, I(t)/N(t), is typically less

than a few percent (even for seasonal influenza), while other quan-

tities in the product are of order unity. The quantity, in expression

[2], b Rtð Þ:exp c
Ð tzt

t
R t0ð Þ{1ð Þdt0

� �
&exp t c Rt{1ð Þ½ � evolves

I(t) to I(t+t), accounting for the number of new cases resulting from

infections over time t [35].

To obtain the disease progression in terms of epidemiological

observables, we discretize the differential equation for the change

in total number of cases between t and t+t as

T tztð Þ{T tð Þ
t

~b
S tztð Þ
N tztð Þ I tztð Þ&b

S tð Þ
N tð Þ b Rtð ÞI tð Þ ð4Þ

where we used [2] and the assumption that S(t)/N(t) is piecewise

constant over [t, t+t], but does vary between intervals contributing

to changes in Rt. At time t, the total number of cases is also

T tð Þ{T t{tð Þ
t

~b
S tð Þ
N tð Þ I tð Þ ð5Þ

Substituting expression [5] into [4], we obtain:

DT tztð Þ~b Rtð ÞDT tð Þ ð6Þ

We see that the well known multiplicative progression between

new cases at successive times due to contagion appears, on average,

as a linear relation between DT(t+t) and DT(t) in an epidemic time

delay diagram, Figures 2a–d. Expression [6] generalizes similar

relations in the TSIR literature by casting them in terms of new cases

over arbitrarily chosen observation intervals t, not necessarily

coinciding with the average generation time c21. Expression [6] also

shows how the initial Rt can be estimated geometrically (without the

need for parameter search or numerical optimization) from an

epidemic time delay plot of surveillance data: b(Rt) is the slope of the

tangent at the origin of case trajectories (dashed line in Fig. 2a, b).

For emerging infectious diseases relative fluctuations in case numbers

are large, see e.g. Figure 2d, and this simple geometric approach is

not valid, thus making more robust estimation methods, as the one

presented here, necessary.

Progression of new cases due to human contagion and
multiple introductions

For emerging infectious diseases, many introductions from a

reservoir may occur before the pathogen adapts its tropism to the

new host population and produces epidemic outbreaks [22,25]. As

a result epidemiological models for the time evolution of new cases

must account for two processes: (incipient) human transmission

and infections from the reservoir.

We introduce a new source of infected individuals, through

contact with the reservoir (birds). The evolution of I is now given

Real Time Bayesian Estimation
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by

dI

dt
~ b

S tð Þ
N tð Þ{c

� �
I tð ÞzbbhS tð ÞK tð Þ: ð7Þ

The first term on the right accounts for the human-to-human

infectious process. The last term is a source, creating new I

through contact with a reservoir of infectious agents of size K(t),

with contact rate bbh.

We denote the number of new infections from the reservoir per

unit time as dB/dt = bbh S(t) K(t). As a result the number of humans

infectious, I, and the total number of cases evolve as

dI

dt
~ b

S tð Þ
N tð Þ{c

� �
I tð Þz dB tð Þ

dt
,

dT

dt
~b

S tð Þ
N tð Þ I tð Þz dB tð Þ

dt
: ð8Þ

The evolution of I(t) between t and t+t, accounting for the effects

of the inhomogeneous source term, is

I tztð Þ~b Rtð Þ

I tð Þz
ðtzt

t

exp

ðt1

t

{c R0
S t2ð Þ
N t2ð Þ

{1

� �
dt2

� �
dB t1ð Þ

dt1

dt1

� �
,

:b Rtð Þ I tð ÞzY t,t,Bð Þ½ �

ð9Þ

where Y(t, t ,B) denotes the integral. We use this expression to

solve for the number of new cases (Eq. [8]), giving

DT tztð Þ~DB tztð Þzb Rtð Þ DT tð Þ{DB tð ÞztcRtY t,t,Bð Þ½ �: ð10Þ

Probabilistic models of contagion
A probabilistic description is crucial for realistic modelling of

new cases of emerging infectious diseases, which are typically

characterized by large coefficients of variation. This probabilistic

description is achieved, as in [33], by defining the number of new

cases, DT(t+t) as a stochastic discrete variable generated by a

Figure 2. Epidemic time delay diagrams for different R0. (a) Relation between new cases at consecutive time periods (weeks) for H3N2 isolates
in the US 2004–05 season, and for simulated data with (b) R0 = 1.7, (c) R0 = 1.0 and (d) R0 = 0.8. For these simulations, the introduction of new cases
from the reservoir follows the Vietnam case history, Figure 1a. New cases are then generated using expression [11], according to a Poisson
distribution. The trajectories connecting new cases at consecutive times (red arrows) eventually return to the origin because depletion of susceptibles
reduces the effective reproduction number (i.e. the actual number of secondary cases produced by an infectious individual). Dashed lines in (a) and
(b) are the tangents at the origin to the case number trajectories (red arrows), with slope b(R).
doi:10.1371/journal.pone.0002185.g002
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probability distribution with average number of cases given by

[10], i.e.

DT tztð Þ*P DB tztð Þzb Rtð Þ DT tð Þ{DB tð ÞztcRtY t,t,Bð Þ½ �f g, ð11Þ

where P{l} denotes a discrete probability distribution with mean

l. If the only information on case evolution is their average

number then the maximum entropy distribution for P{} is Poisson,

which we adopt throughout this paper. If additional information

on the magnitude of fluctuations were also known, a generalized

distribution should be employed, such as a negative binomial [33],

which can account for clumping effects (we reproduce all

estimations from the main paper using a negative binomial in

Supplementary Material S1, Table S2).

To use expression [11] in practice, we need to evaluate the

integral Y. Assuming the introductions from the reservoir per unit

time to be approximately constant between t and t+t, the integral

can be calculated to first order as Y(t,t,B) = t dB/dt and, [11] is

written as

DT tztð Þ*P DB tztð Þzb Rtð Þ DT tð Þ{DB tð ÞztcRtDB tð Þð Þf g ð12Þ

where we replaced tdB/dt by its discrete approximation DB(t). This

is the expression used in practice in all quantitative estimations

presented.

Bayesian estimation of R with quantified uncertainty
Parameter estimation with quantified uncertainty can be

achieved using a Bayesian approach in the context of probabilistic

epidemiological models. Bayes’ theorem expresses the full

probability distribution for model parameters, such as the effective

reproduction number, R, in terms of the probabilistic epidemio-

logical model [12], given the time series for new cases. Specifically,

the probability distribution of R, compatible with the observed

temporal data stream is given by

P R DT tztð Þ/DT tð Þj½ �~ P DT tztð Þ/DT tð Þ Rj½ �P R½ �
P DT tztð Þ/DT tð Þ½ � : ð13Þ

P[R] is the prior, which captures given knowledge of the

distribution of R. The distribution P[DT(t+t)rDT(t)] is indepen-

dent of R, and corresponds to a trivial normalization. From

successive applications of Bayes’ theorem, a sequential estimation

scheme, that uses streaming epidemiological observations per-

formed in real time, can be constructed using the posterior

distribution for R, at time t as the prior in the next estimation step

at time t+t, leading to an update scheme via iteration of Eq. [13].

The resulting probability distribution for R includes information

on all observations up to time t, and contrasts with the

‘‘instantaneous’’ Rt, used above, which only considers the data at

times t and t+t. Thus, R is a robust estimator of the effective

reproduction number assumed to be constant for the whole

epidemic up to time t. Any changes in R over time result from the

assimilation of each new data point, leading to an updated

estimate of R. This in turn allows the use of our estimation

procedure as an anomaly detection tool (see below).

Time series of introductions and contagion
Ideally, field case tracing should provide a measure of the

likelihood that a new case resulted from contact with the (animal)

reservoir, DB in Eq. [12], or was due instead to human contagion.

Another possibility is to explicitly model the introductions from the

reservoir, K(t) in Eq. [7]. Although some empirical studies start to

address this possibility [27,36–38], it is still difficult to calibrate

such models and uncertainties remain large. Thus, for the

calculations in this study, we choose to use a minimal statistical

approach. Formally, assuming statistical independence between

different cases, we model each new introduction as a Bernoulli trial

with probability h. h is defined as the average probability that a

case is attributed to human to human contagion, and 1-h that it is

the result of an infection from the reservoir. Note that for

emerging infectious diseases this probabilistic model is more

appropriate and generalizes (see Supplementary Material S1,

Figure S2) the more typical modelling of introductions as

homogeneous Poisson processes [33].

We can provide an upper bound for h by considering observed

clusters of cases. If we take all confirmed cases in clusters, except

the index case, to be due to human contagion, then an estimate for

h is given by the proportion of such cases divided by the total

number observed over the same period. This gives an upper

bound on h, because it is unlikely that all cluster cases arise from

human infection, rather some could have a common reservoir

source. Two epidemiological studies of H5N1 influenza, one from

January 2004 to July 2005 [39] and another from July 2005 to

June 2006 [40], found that 26 of 109 cases and 15 of 54 cases,

respectively, occurred in family clusters Attributing those cases to

human infection gives h= 0.24–0.28. This estimate of h is

consistent with an independent statistical analysis of a case cluster

in Indonesia, which found that the secondary attack rate for

household transmission of H5N1 influenza was 0.29 [28].

In the remaining of this paper we treat h as a constant

parameter common to all reported cases. The sensitivity of R

estimates is then assessed as a function of h (Table 1). In addition

to tests of the estimation procedure on epidemic data [34], we also

verified the precision of our methodology on an extensive number

of simulated case time series, based on a standard SIR model, with

introductions from a reservoir and different R0.

Numerical parameter estimation
We used the observed time series of new cases of human H5N1

influenza DT(t) to compute the probability distribution for R using

programs implemented both in Matlab and Fortran. We used an

unbiased uniform distribution for R between 0 and 3 as the initial

prior. For each subsequent weekly iteration, we computed the full

posterior distribution from [13] using the posterior at the previous

week as the new prior. The product of the two probabilities on the

right-hand side of [13] was evaluated as a non-parametric function

defined in terms of 1000 discrete bins in R between 0 and 3, as

shown in Figure S3 in the Supplementary Material S1. Parameters

choices used in the calculations in the main text are: t= 1 week,

c= 1 week21, h variable as in Table 1. We also explored other

parameter choices reported in the literature for seasonal influenza

and corresponding results are given in Table S1 of Supplementary

Material S1.

Results

Simulated Outbreaks
Here we show how the method performs at estimating R from

single realization time series, produced by simulation with a

known value of R0. In all instances the time series for human

H5N1 cases in Vietnam (Figure 1a) was used as introductions into

the human population. For a choice of R0.1 in the simulation,

any introduction readily develops into an epidemic. For R0,1

each introduction leads to small outbreaks that eventually become

extinguished.

Real Time Bayesian Estimation
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The effective reproduction number, R, calculated by our

method changes over time, because of decreases in the fraction

of susceptibles, S(t)/N(t), and the availability of more information,

as more cases are observed. Thus, we use the values obtained for R

at early times, when S(t)/N(t) approximates its initial value, to

estimate R0 of the simulation by assuming that max(R) = R0. As

shown in Figure 3, in all circumstances, the method gives an

excellent estimation of R0 as outbreaks unfold, usually making

accurate predictions when supplied with a mere two or three

observation points. Uncertainty, measured by the width of the

95% credible interval, is reduced by larger case numbers, so that it

typically remains higher the smaller the R0. In all instances

uncertainty is reduced as more cases are reported over time.

Bounds on R for avian influenza in humans from WHO
reported time series

We next applied our method to the time series of cases of H5N1

influenza in humans. We produce estimates and credible bounds

for R, under different scenarios for the expected fraction of new

observed human cases that is attributable to human contagion h.

Summary results for Vietnam (and Indonesia) are given in Table 1.

Even in the worst case scenario, where all observed cases are

attributed to human transmission (h= 1), the most likely (as of June

2006) R is 0.53 (0.56), with an upper 95% bound of R,0.77 (0.89).

For the estimated h= 0.29 (see Methods), the most likely R for

both Vietnam and Indonesia is 0, although the estimated upper

95% bound in Vietnam gives the bound R,0.42. For Indonesia,

the corresponding estimate gives an R entirely consistent with zero

at the 95% credible level.

For less than 20% of the cases attributable to human

transmission, R is entirely consistent with zero, even when

accounting for the uncertainty in the duration of the infectious

period (c21). Reported information does not allow at present a

precise determination of c21 for H5N1 influenza in humans, so

that different scenarios are possible, which we explore in detail in

Supplementary Material S1 (Figure S4, Table S1). Data

permitting, a hierarchical Bayesian estimation method for the

distribution of c can also be envisaged [32].

Figure 4 shows the evolution of R and of its corresponding 95%

credible interval. The computation of successive probability

distributions for R gives a basis for assessing the evolution of

transmissibility over time, including the approach to the epidemic

threshold RR1. At present we conclude that, even in the

unrealistic worst case scenario, where cases are aggregated at the

national level and all cases are attributed to human transmission, R

remains below unity.

Shifts in transmissibility as statistical anomalies
The emergence of a new epidemic in humans often requires

shifts in pathogen biology and/or changes in the human

population structure. The methodology developed here can signal

these events as anomalies in the expected number of new cases.

Assuming no change of epidemiological conditions, knowledge of

the distribution of R, accumulated until time t, provides

expectations for future case numbers DT(t+t) , with quantified

credible intervals, via

P DT tztð Þ/DT tð Þ½ �~
ð

dR P DT tztð Þ/DT tð Þ Rj½ �P R½ � ð14Þ

where P[R] is taken as the posterior in [13] at time t, and

P[DT(t+t)rDT(t)|R] is the statistical epidemic model. Failure to

predict future observed cases at time t+t, can then be formulated

as a p-value significance test at any chosen level of credibility. A

statistical anomaly, i.e., future cases falling outside the credible

interval defined by previous observations, may signal changes in

epidemiological parameters, specifically in transmissibility (either

by pathogen evolution or host population changes) as measured by

R. We provide an example in Figure 5, for simulated data with

R0 = 0.8 changing to R0 = 1.3, where we show the predicted 95%

credible interval for new cases vs. the number of cases actually

observed (see also Figure S7 in Supplementary Material S1).

Discussion

Emerging and re-emerging infectious diseases pose some of the

greatest health risks to human populations worldwide. Increasingly

they are a feature of our time, stoked by changes in human

demographics, mobility, land use and climate, and compounded

by poor standards of public health in parts of the world [26,41].

Importantly, new surveillance and intervention strategies are now

becoming possible, guided by quantitative interpretation of

epidemiological data, potentially strengthening the hand of

primary prevention efforts.

The modelling and prediction approaches developed here (see

also Chowell et al. [34] for a comparison to other methods)

provide tools for real time estimation of epidemiological

parameters that are appropriate for emerging infectious diseases.

The method is intentionally simple, relying on standard epidemi-

ological population models, in order to be commensurate with the

paucity of epidemiological data typically available for emerging

infectious diseases. These features are illustrated by the application

of the method to H5N1 influenza infection time series in humans.

Clearly, the SIR class of models, even when cast in probabilistic

Table 1. Bounds on R for different probabilities of human transmission, h.

VIETNAM INDONESIA

Average fraction of cases attributable to human contagion (h)

1.0 0.8 0.29 0.2 1.0 0.8 0.29 0.2

R min 0.26 0.23 0 0 0.16 0.09 0 0

ML R 0.53 0.46 0 0 0.56 0.43 0 0

Mean R 0.52 0.46 0.25 0 0.54 0.42 0 0

R max 0.77 0.68 0.42 0 0.89 0.75 0 0

Current estimates of R (i.e. highest probability R – ML R; and posterior mean R) for human H5N1 avian influenza, obtained from new case time series for Vietnam and
Indonesia. ‘‘R min’’ and ‘‘R max’’ denote the lower and upper bounds of the 95% credible intervals, respectively. h is the probability of human-to-human transmission
(see Methods). Analysis of reported cases from Thailand, China, and Turkey lead to similar or lower R estimates, but display wider bounds due to smaller case numbers.
doi:10.1371/journal.pone.0002185.t001
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terms, relies on several general assumptions, which are simplistic in

specific situations. First, these models do not account for contact

heterogeneities, resulting from spatial effects, age, and/or the

structure of social networks. These effects can be partially

addressed by structuring the population compartments in terms

of spatial and risk classes [42]. For example, different regions in an

affected country may be taken as separate compartments,

provided that there are data pertaining to each region. Indeed

the method would then allow estimation of correlations between R at

different spatial locations. Second, in its present form, the model does

not include independent estimation of infectious or incubation

periods. It is straightforward to include an incubation period [43]

and, given data on the duration of these periods on a case by case

basis, these issues can be addressed by including additional Bayesian

estimation steps (see [32]). Notwithstanding these limiting features,

the SIR structure allows reliable real time parameter estimation with

quantified uncertainty at very low computational overhead, as

verified extensively via simulations at varying known input R, and

applications to past pandemic outbreaks (Supplementary Material

S1 – Fig. S5 and S6 – and Ref [34]).

One feature of the bounds on R derived here is their

dependency on the fraction of cases attributed to human

transmission, h. Although h is judged to be small from present

surveillance [23,27,28], it remains hard to quantify with certainty.

Given the paucity of data, we chose in practice to assume

independence and use a binomial probability to attribute cases to

human transmission vs. infection from the reservoir. However,

other procedures to determine h are possible. If enough data were

available, an explicit dynamical model of the (animal) reservoir

could be built, or an empirical function correlating introductions

through time could be used. Indeed, in the optimal scenario, the

actual cases of introduction from the reservoir would be known

from field work, and the method proposed here could incorporate

that information directly. We note that in the most relevant case,

when R becomes larger than 1, the effect of h,1 quickly vanishes,

as cases multiply exponentially. For R,1, even a choice of h= 1

will lead to estimates of R,1, but different values of h may lead to

credible intervals that include the critical threshold. In general, we

believe that a suspicion of a possible R<1 should be followed up

with careful field investigations.

We presented a general methodology capable of interpreting

quantitatively emerging disease surveillance data in real time with

quantified uncertainty that complements other methods proposed

recently [21,29,30,32]. Although we illustrated the method with

Figure 3. Evolution of R estimates over time (weeks) for single realization simulated data with R0 = 0.8, 1.0, 1.4 and 1.7 (left to right,
top to bottom). Dashed lines indicate the value of R0 in the simulation. The decay of R estimates over time in standard epidemics is due to the
depletion of susceptibles. For R0 = 1.0, 1.4 and 1.7 the mean is indistinguishable from the estimate of R with maximum probability and is not shown.
doi:10.1371/journal.pone.0002185.g003
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data for H5N1 influenza, these inference strategies are general and

can be applied to time series from other communicable diseases.

We verified that the model developed here also applies to standard

epidemics, yielding agreement with previous estimates of R for the

1918 influenza pandemic in US cities [14,44] (Figures S5, S6 in

Supporting Information) and with other estimation methods [34].

We have also shown how to construct p-value statistical

significance tests suitable for automatically monitoring changes

in transmissibility of (emerging) communicable diseases [43].

While still in their infancy, we believe that the current emerging

trend in mathematical epidemiology towards real time predictive

methods will enable a shift towards more quantitative surveillance

and primary prevention, resulting in more consistent and extensive

monitoring of emerging infectious diseases and improved designs

for health interventions and logistic allocations as epidemics

unfold.

Supporting Information

Material S1 In Supplementary Material S1, we present further

details of the method, including extensions and additional

examples.

Found at: doi:10.1371/journal.pone.0002185.s001 (0.28 MB

PDF)

Acknowledgments

We thank Miles Davenport, Mac Hyman, Alan Perelson, Timothy Reluga,

our PLoS One Editor and anonymous referees for comments that

substantially improved the manuscript.

Author Contributions

Conceived and designed the experiments: RR LB. Performed the

experiments: RR LB. Analyzed the data: RR LB. Wrote the paper: RR

LB.

Figure 4. Sequential Bayesian estimation of the posterior mean
R (red dots) and 95% credible intervals (solid lines) for the time
series of H5N1 avian influenza in (a) Vietnam and (b)
Indonesia, under the pessimistic assumption that 29% of
reported cases are due to human-to-human transmission (see
Table 1); and (c) for seasonal H3N2 human influenza isolates in
the USA during the 2004–2005 season. (Note that isolates
represent only a small fraction of total cases, and may contain reporting
biases.) The estimate of the effective reproduction number for an
epidemic outbreak asymptotes to unity at late times because initial
growth and long-term decay in new case numbers (due to depletion of
susceptibles) average out over the history of the outbreak.
doi:10.1371/journal.pone.0002185.g004

Figure 5. Prediction for new cases of avian influenza (simulated
data R0 = 0.8, with infections from reservoir taken from
Vietnam time series, Fig. 1a) vs. realized new cases (blue dots).
Between weeks 74 and 75, the reproduction number is shifted
R0 = 0.8R1.3 to create an epidemic. Although we continued to iterate
the R distributions via the Bayesian procedure described in the text,
note that the shift in R upwards leads to many statistical anomalies
(indicated by black arrows). The anomaly is detected immediately, on
weeks 75 and 76. Anomalies here are defined as observed numbers of
new cases that fall outside the expected 95% credible interval. These
anomalies indicate a violation of the hypothesis that R is unchanged,
and could be used to trigger alerts in surveillance.
doi:10.1371/journal.pone.0002185.g005
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