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Abstract: Due to the increasing sewage sludge production in the world and problems with its disposal,
an application of sludge to the soil appears to be a suitable solution considering its fertilizer properties
and ability to improve the soil physical conditions. On the other hand, the sludge may also contain
undesirable and toxic substances. Since soil microorganisms are sensitive to environmental changes,
they can be used as indicators of soil quality. In this study, we used sewage sludge (SS) from two
municipal wastewater treatment plants (SS-A and SS-B) in the dose of 5 t/ha and 15 t/ha in order to
determine possible changes in the fungal community diversity, especially arbuscular mycorrhizal
fungi (AMF), in the rhizosphere of Arundo donax L. Rhizosphere samples were collected in summer and
autumn for two consecutive years and the fungal diversity was examined using terminal restriction
fragment length polymorphism and 18S rDNA sequencing. Fungal alpha diversity was more affected
by SS-A than SS-B probably due to the higher heavy metal content. However, based on principal
component analysis and ANOSIM, significant changes in overall fungal diversity were not observed.
Simultaneously, 18S rDNA sequencing showed that more various fungal taxa were detected in the
sample with sewage sludge than in the control. Glomus sp. as a representative of AMF was the most
represented. Moreover, Funneliformis in both samples and Rhizophagus in control with Septoglomus in
the sludge sample were other representatives of AMF. Our results indicate that the short-term sewage
sludge application into the soil does not cause a shift in the fungal community composition.

Keywords: arbuscular mycorrhizal fungi; fungal community; genetic diversity; sewage sludge;
T-RFLP; 18S rDNA sequencing

1. Introduction

Sewage sludge is a byproduct of the wastewater treatment process, and its production in the
world continues to grow. Disposal of sludge in the European Union (EU) is carried out in several
ways—agricultural use, compost, landfill, dumping at sea, incineration, and other applications [1].
Since sludge contains macro and microelements, which are an important source for plant nutrition and
also a high proportion of organic matter, it would be appropriate to use it as a fertilizer in agriculture or
as a soil conditioner. On the other hand, the sludge may contain heavy metals, harmful microorganisms
(thermo-tolerant coliform bacteria, fecal streptococci, and others) or organic pollutants [2], and thus
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its use in agriculture in Europe is defined by Council Directive 86/278/EEC of 12 June 1986 on the
protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture;
and in Slovakia by Act No. 188/2003 Z.z. These laws set out strict criteria that must be fulfilled before
the sludge is applied into the soil. The application of sludge to agricultural soil in Slovakia was 0%
since 2014 [1]. On the other side, available data from Eurostat indicates that in 2017 Ireland, Lithuania,
and the Czech Republic applied 79%, 49%, and 46% of the sewage sludge into the agricultural soil,
respectively [1].

Application of sludge into the soil affects soil’s physical, chemical, and biological properties [2] as
a result of the high content of organic matter [3]. This sludge addition can change soil pH [4], decrease
bulk density and erosion [5], or increase soil aggregate stability, porosity, water holding capacity,
humus content, heavy metals, electrical conductance, cation exchange capacity, content of N and P,
and harmful microorganisms [5–7]. Furthermore, an organic matter content is related to changes in
soil microbial communities [8,9] and application of sewage sludge in recommended amounts increases
microbial activities [10]. Soil microorganisms play a crucial role in various biogeochemical cycles,
also in the formation of soil structure, the decomposition of soil organic matter, and the recycling of
nutrients [11], thus they are sensitive to various environmental changes and consequently can be used
as indicators of soil quality [12]. Soil fungal communities are more affected by abiotic environmental
factors than biotic factors [13] and their importance varies across different environments [11]. Similarly,
soil fungal communities are formed by a local plant community that affords them with nutritional
resources and acts as a host of certain fungal groups [14,15]. Approximately 80% of terrestrial plant
species form some of the six types of mycorrhizal symbiosis, which are categorized according to
clear morphological characteristics [16,17]. From them, arbuscular mycorrhiza (AM) is the most
widespread and a predominant type [18]. Arbuscular mycorrhizal fungi (AMF) belong to the phylum
Glomeromycota that colonize a wide spectrum of mono and dicotyledonous plants without the host
plant specificity [19,20]. AMF have very important functions that enhance plant production or affect
soil properties, and generally they affect the entire ecosystem [18]. Their significant function is also in
phytoremediation of heavy metals in contaminated soil [21], and plant-AMF symbiosis or targeted
plant inoculation with tolerant or stress-adapted AMF could be a potential biological solution for
effective restoration of contaminated ecosystems [22,23].

In this study, we investigated the dynamics of fungal communities, especially arbuscular
mycorrhizal fungi, in the rhizosphere of Arundo donax L. planted in the soil with the addition
of sewage sludge over two years. Arundo donax, as a promising energy crop from family Poaceae, was
selected because it can help to meet renewable energy targets set by the EU directive. It produces a
huge amount of biomass even under low-input cultivation. Simultaneously, this plant is able to grow
in contaminated or other marginal soils [24]. To increase yield of biomass, application of sewage sludge
as a low-cost nutrient may be more economical than N-fertilizers. This species was also selected for
the reason that it is grown for non-food purposes and the application of sewage sludge as a source of
nutrients may be more acceptable there than for food crops. Therefore, we evaluate dynamics of fungal
communities from the rhizosphere of Arundo donax planted in the soil with the sewage sludge addition
in doses of 5 t/ha and 15 t/ha using terminal restriction fragment length polymorphism (T-RFLP). At the
same time, we used 18S rDNA sequencing to reveal the rhizosphere fungal spectrum and possible
changes in the AMF communities in the presence of sewage sludge. We assumed that the sewage
sludge addition into the soil would appreciably amend fungal alpha diversity and that this would
be more pronounced in the dose of 15 t/ha. Furthermore, we assumed that the sludge, as well as the
seasonal effect, would have an impact on the rhizosphere fungal community composition.
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2. Materials and Methods

2.1. Study Description and Sewage Sludge Used

Plants of Arundo donax L. (giant reed) used in this experiment were multiplied in explant culture by
the method of in vitro tillering [25]. Plantlets were transplanted to garden substrate and acclimatized
to ex vitro conditions for 8 weeks. After acclimatization, the plants were transplanted to the pots
(1 plant/1 pot), filled with 7 kg of arable soil supplemented with dried sewage sludge (SS) in doses
of 5 or 15 t/ha, and control variant was without any supplement. Soil type used was Luvi-Haplic
Chernozem on loess with pH (KCl) 6.3, medium content of humus (1.77%), low content of nitrogen
(0.096%)—measured by Dumas method, good content of potassium (196 mg/kg) and phosphorus
(97 mg/kg), and a high content of magnesium (280 mg/kg)—measured by Mehlich III extraction and
atomic emission spectroscopy. Two different samples of SS were used: SS-A from the wastewater
treatment plant Pannon-Víz Zrt.,Győr, Hungary, in the growing season 2014, and SS-B obtained from
the wastewater treatment plant Tavos, a.s., Piešt’any, Slovakia, in the growing season 2015. Elemental
analyses of macroelements and heavy metals (these did not exceed the limits permitted by the Act
No. 188/2003 in the Slovak Republic) in used SSs are shown in Table 1. Plants were cultivated from
May to December in natural outdoor conditions and regularly irrigated if needed. At the end of 2014,
the pot experiment with plants and sludge SS-A was discarded. In 2015, new plants were planted in
pots under the same conditions as in the previous year but using sludge SS-B.

Table 1. Analysis of elements in used sewage sludge from Győr, Hungary (SS-A) and Piešt’any, Slovakia
(SS-B), and the conversion of heavy metal content to 1 kg of soil supplemented with sewage sludge in
the dose of 5 t/ha and 15 t/ha.

Macroelements

Element SS-A SS-B Unit (Method)

N 3.47 3.51 % (D)
P 18,129.4 16,663.4 mg/kg (M)
K 5958.6 2663.4 mg/kg (M)
Ca 23,694.8 36,394.7 mg/kg (M)
Mg 5704.7 6444.4 mg/kg (M)

Microelements/Heavy Metals

Element SS-A SS-B Unit
(Method)

SS-A mg/kg
Soil in 5 t/ha

SS-A mg/kg
Soil in 15 t/ha

SS-B mg/kg
Soil in 5 t/ha

SS-B mg/kg
Soil in 15 t/ha

As 8 3 mg/kg (RFS) 0.02 0.05 0.01 0.02
Cd <2 <1 mg/kg (RFS) <0.004 <0.01 <0.002 <0.01
Cr 84.7 36 mg/kg (RFS) 0.19 0.57 0.08 0.24
Cu 654 224 mg/kg (RFS) 1.47 4.40 0.50 1.51
Ni 42 22 mg/kg (RFS) 0.09 0.28 0.05 0.15
Pb 36 46 mg/kg (RFS) 0.08 0.24 0.10 0.31
Zn 1940 1269 mg/kg (RFS) 4.35 13.05 2.85 8.54

D—Dumas method, M—Mehlich III method, RFS—X-ray fluorescence spectrometry.

2.2. Rhizosphere Sampling and DNA Isolation

The samples were collected twice in 2014 (August and November) and twice in 2015 (August
and December) from the rhizosphere of Arundo donax and each sample was taken individually from
separate pots. Three pots/3 individual samples were considered as controls with arable soil only,
3 pots/3 individual samples were supplemented with sewage sludge with the dose of 5 t/ha and
3 pots/3 individual samples with the dose of 15 t/ha. The mgDNA was extracted from 0.25 g of
fresh rhizosphere samples using the PowerSoilTM DNA Isolation kit (Qiagen, Hilden, Germany).
Extracted DNA was dissolved in 50 µL of nuclease-free water. The quantity and purity of DNA were
measured spectrophotometrically with NanoDrop-1000 Spectrophotometer (Thermo Fisher Scientific
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Inc., Waltham, MA, USA), and samples were diluted to the same final concentration (25 ng·µL−1), and
stored at −20 ◦C.

2.3. Terminal-Restriction Fragment Length Polymorphism

The AM fungal partial 18S rRNA gene sequences were amplified using Nested PCR with two
conserved primer pairs: NS1–NS4 [26] and NS31–AM1 [27]. The first primer pair amplified PCR
products of approximately 1100 bp and the second about 550 bp. Forward primer NS31 is a universal
eukaryotic primer and reverse primer AM1 is a specific primer for AMF however, other studies have
shown that they also amplify DNA from Ascomycota and Basidiomycota [28,29]. The second forward
and reverse primers were labelled at the 5’-end with FAM and VIC fluorescent dyes, respectively. First
DNA amplification with NS1–NS4 primers was carried out in 20 µL reaction mixture containing 1 ×
PCR buffer (Invitrogen, Thermo Fisher Scientific Inc., Waltham, MA, USA), 1.5 mM MgCl2 (Invitrogen,
Thermo Fisher Scientific Inc., Waltham, MA, USA), 0.05 µM of each forward and reverse primer, 0.2 mM
dNTP (Invitrogen, Thermo Fisher Scientific Inc., Waltham, MA, USA), 1 U of Taq DNA polymerase
(Invitrogen, Thermo Fisher Scientific Inc., Waltham, MA, USA), and 25 ng of mgDNA using the
GeneAmp PCR System 9700 (Applied Biosystems, Thermo Fisher Scientific Inc., Waltham, MA, USA).
The PCR conditions were as follows: initial denaturation at 94 ◦C for 3 min, 35 cycles of denaturation at
94 ◦C for 30 s, annealing at 40 ◦C for 1 min, elongation at 72 ◦C for 1 min, and final elongation at 72 ◦C
for 10 min. The samples with amplified DNA from this first PCR were diluted 1:100 and 1 µL was used
in the second PCR with fluorescently labeled NS31–AM1 primers. The composition of the PCR mixture
and PCR condition were the same as in the first PCR except for the annealing temperature, which was
60 ◦C in this case. PCR amplification was controlled electrophoretically in 1% (w/v) agarose in 1 ×
TBE buffer (1.1% (w/v) Tris-HCl; 0.1% (w/v) Na2EDTA 2H2O; 0.55% (w/v) boric acid) pre-stained with
0.10 µL·mL−1 of ethidium bromide. PCR products were purified by the PCR Purification & Agarose
Gel Extraction Combo kit (Thermo Fisher Scientific Inc., Waltham, MA, USA), and dissolved in sterile
water. Purified PCR products were digested with HinfI and Hsp92II restriction enzymes (Promega
Corp, Madison, WI, USA) in 20 µL of digestion mixture contained 10 U of restriction enzyme, 1 × buffer,
0.1 mg·mL−1 of bovine serum albumin and 10 µL of purified PCR products. The mixture was incubated
for 3 h at 37 ◦C and then purified using a purification kit and dissolved in sterile water. One microliter
of purified products was mixed with 9 µL of formamide containing LIZ 600 size standard (Applied
Biosystems, Thermo Fisher Scientific Inc., Waltham, MA, USA), denatured at 95 ◦C for 3 min, and
separated by capillary electrophoresis using the ABI 3100 Prism Avant (Applied Biosystems, Thermo
Fisher Scientific Inc., Waltham, MA, USA). Electropherograms were analyzed by the Peak Scanner
2 (Applied Biosystems, Thermo Fisher Scientific Inc., Waltham, MA, USA), and terminal restriction
fragments (T-RFs) in range 60–550 bp were used for evaluation. Only peaks above the threshold of 50
fluorescence units were considered. The DNA from 1 sample was amplified with both labeled forward
and reverse primers and subsequently, restriction digested with two enzymes, therefore, 1 sample was
characterized by 4 resultant T-RFLP profiles.

2.4. Construction of 18S rDNA Clone Library

Fungal clone library was created from metagenomic DNA isolated from rhizosphere of Arundo
donax without SS and with SS in doses of 15 t/ha. The partial 18S rRNA gene was amplified using Nested
PCR with the conserved primer pairs as described above. PCR products were ligated into the pGEM-T
Easy vector (Promega Corp., Madison, WI, USA) and transformed into competent E. coli TOP10F’
(Invitrogen, Thermo Fisher Scientific Inc., Waltham, MA, USA), according to the manufacturer’s
instructions. Plasmid clones were identified based on blue–white screening and isolated by GeneJET
Plasmid Miniprep kit (Fermentas, Thermo Fisher Scientific Inc., Waltham, MA, USA). Isolated plasmids
were digested with EcoRI restriction enzyme (Promega Corp., Madison, WI, USA) to check the presence
of the insert of correct size. Digestion mixture (20 µL) contained 6 U of restriction enzyme, 1 × buffer,
0.1 mg·mL−1 of BSA, and 5 µL of plasmid DNA. This mixture was incubated for 2 h at 37 ◦C and
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controlled electrophoretically in 1% (w/v) agarose gel. Variation of cloned inserts was assessed by
T-RFLP according to the procedure described above, and clones with different T-RFLP profiles were
sequenced using SP6 and T7 primers in the ABI 3100 Prism Avant (Applied Biosystems, Thermo Fisher
Scientific Inc., Waltham, MA, USA). DNA sequences were checked by using Sequence Scanner Software
2 (Applied Biosystems, Thermo Fisher Scientific Inc., Waltham, MA, USA), and edited with VecScreen:
Screen a Sequence for Vector Contamination on the National Center for Biotechnology Information
website (https://www.ncbi.nlm.nih.gov/tools/vecscreen/). Subsequently, all sequences were analyzed
for the presence of chimeras by using the Bellerophon 3 program [30] with default settings.

2.5. Statistical and Bioinformatic Analyses

Statistically significant differences among samples were tested using Analysis of Variance (ANOVA)
and subsequently by using the “post-hoc” pairwise comparisons based on the Fisher’s least significant
difference (LSD) procedure at the 95.0% confidence level, using the software Statgraphics x64 (Statpoint
Technologies, Inc., Warrenton, VA, USA). Diversity indices were calculated from standardized profiles of
individual rhizosphere samples, using the number and height of peaks in each profile as representations
of the number and relative abundance of phylotypes. The Gini-Simpson index [31] was calculated as:

1 − λ =
∑

(pi
2), (1)

where λ is Simpson diversity index and p is the proportion of an individual peak height relative to the
sum of all peak heights. The Shannon’s diversity index [32] was calculated as:

H’= −
∑

(pi) (ln pi), (2)

and this index is commonly used to characterize species diversity in a community. The Pielou evenness
index [33] was derived from Shannon’s diversity index and was calculated as:

J’ = H’/H’max, (3)

where H’max = ln (S) and S represents the total number of species. Fungal communities in different
samples were compared from T-RFLP profiles using height of fluorescence in individual T-RFs. These
data were subsequently used for the Principal Component Analysis (PCA) using the scores of the first
two principal components. Analysis of Similarities (ANOSIM) was used to determine if significant
effects occurred among sewage sludge doses and time of sample collection (Two-way ANOSIM), and
just among sewage sludge doses (One-way ANOSIM) with Euclidean distance measure. PCA and
ANOSIM were evaluated by using the PAST (PAleontological STatistics) software version 3.19 [34].
The Basic Local Alignment Search Tool (BLAST) of the National Center for Biotechnology Information
(NCBI) was used for searching of homologous sequences in the GenBank database. Phylogram based
on DNA sequences was constructed by the UPGMA method using the MAFFT Multiple Sequence
Alignment Software Version 7 [35].

2.6. GenBank Accession No.

DNA sequences of fungal clones from rhizosphere of control and sludge samples were deposited
into the GenBank database under the accession numbers MH249155–MH249247 (PopSet 1476021752).

3. Results

3.1. Fungal Genetic Diversity

Fungal richness was evaluated as the first parameter and was higher in August in both years.
In August 2014 richness was from 55 to 80 T-RFs and in November 2014 from 28 to 53 T-RFs. In August
and December 2015 fungal richness was 30–76 and 24–34 T-RFs, respectively. Statistically significant

https://www.ncbi.nlm.nih.gov/tools/vecscreen/
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differences were not detected among control, 5 t/ha and 15 t/ha samples in both years (ANOVA,
α = 0.05). There were detected only temporal changes in fungal richness between two sampling times
in each year (ANOVA, P = 0.0058 in 2014; P = 0.0008 in 2015).

The fungal alpha diversity, i.e., values of genetic diversity indices (Gini-Simpson, Shannon and
Evenness) had an upward trend between control and samples with SS only in August 2014 including
statistical differences detected between them (Table 2). In other collection dates, the values showed
a downward trend between control and samples with SS. Statistical differences among samples in
individual collection date and diversity indices are shown in Table 2.

Table 2. Alpha diversity indices of fungal communities detected in the rhizosphere of Arundo donax in
control and samples with sewage sludge (SS) in doses of 5 and 15 t/ha. The numbers behind the ± sign
represent standard deviation (n = 12). The different letters denote statistically significant differences
among samples evaluated, each sampling times separately (LSD, α = 0.05).

Year Month Dose of SS
(t/ha)

1-λ
Gini-Simpson

H
Shannon

EH
Evenness

2014

0 0.9286 ± 0.0542 a 3.5022 ± 0.6170 a 0.7599 ± 0.0671 a
August 5 0.9682 ± 0.0116 b 3.9654 ± 0.3958 b 0.8186 ± 0.0329 b

15 0.9652 ± 0.0141 b 3.9435 ± 0.4920 b 0.8135 ± 0.0454 b

0 0.9582 ± 0.0154 a 3.7126 ± 0.4006 a 0.7864 ± 0.0387 a
November 5 0.9344 ± 0.0339 ab 3.2978 ± 0.6258 ab 0.7577 ± 0.0526 a

15 0.9255 ± 0.0293 b 3.1817 ± 0.4973 b 0.7556 ± 0.0375 a

2015

0 0.8702 ± 0.1355 a 2.8653 ± 0.9912 a 0.7581 ± 0.1126 a
August 5 0.8497 ± 0.1411 a 2.6768 ± 0.8520 a 0.7070 ± 0.1282 a

15 0.8131 ± 0.0954 b 2.2390 ± 0.5040 a 0.6827 ± 0.0792 a

0 0.8484 ± 0.0696 a 2.4569 ± 0.5780 a 0.7043 ± 0.1075 a
December 5 0.8201 ± 0.0770 a 2.1926 ± 0.4296 a 0.7197 ± 0.1148 a

15 0.8143 ± 0.0831 a 2.1938 ± 0.5422 a 0.7144 ± 0.0844 a

3.2. T-RFLP and the Rhizosphere Fungal Communities

The principal component analysis which was used to detect differences among fungal communities
showed that control samples and samples with 5 t/ha and 15 t/ha were not grouped together in PCA
graphs (Figure 1). Even control samples showed higher variability among themselves than samples
with SS in 2014 (Figure 1a). This is less pronounced in 2015 (Figure 1b). Figure 1 shows that the areas
belonging to individual sample variant overlap each other, so differences in fungal communities from
control and samples with SS were insignificant. This finding was confirmed by ANOSIM which did
not detect statistical differences among control and samples with SS and between collection dates in
both years (Table 3).
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sludge in the soil, was also observed in 2015 (Figure 2b). These results from PCA analyzes were also 
confirmed by ANOSIM using all eight principal components and statistically significant differences 
were not detected (P = 0.2656 in 2014 and P = 0.4081 in 2015; Figure 3). 

Figure 2. The principal component analysis (PCA) constructed from T-RFLP fluorescent data of 
fungal communities from Arundo donax rhizosphere collected in (a) 2014 and (b) 2015 in control 
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Figure 1. The principal component analysis (PCA) constructed from terminal-restriction fragment
length polymorphism (T-RFLP) fluorescent data of fungal communities from Arundo donax rhizosphere
collected in (a) 2014 and (b) 2015 in two sampling times each year in control samples and samples
with sewage sludge (SS) in doses of 5 and 15 t/ha. PCA graphs explained a total of 27.12% and 48.32%
(respectively) of the variability in the data. Filled symbols correspond to the samples collected in
August 2014 and 2015; open symbols correspond to the samples collected in November 2014 and
December 2015; red—control sample; blue—sample with 5 t/ha of SS; green—sample with 15 t/ha of SS.

Table 3. The results of the Two-way ANOSIM derived from the obtained data using principal component
(PC) scores from principal component analysis in Figure 1 in 2014 and 2015 sampling years and two
collection dates in each year.

Similarity index Euclidean distance
Permutation N 9999

P-value
2014 2015

Dose of SS 0.5485 0.1699
Collection date 0.2936 0.3465

To determine whether sewage sludge alone has an effect on the genetic diversity of fungi in
the Arundo donax rhizosphere, the samples were statistically evaluated so that the sampling dates in
individual years were not taken into account. Principal component analysis suggests that there is an
obvious difference between control samples and samples with SS in 2014 (Figure 2a). First principal
component (PC) divided these samples and this distribution was maintained even when using with
PC1 the remaining principal components (PC3–PC8, data not shown). On the other hand, in the use of
PC2–PC8 principal components in various combinations, control samples with sludge samples were
overlapped (data not shown). Such overlapping of samples, irrespective of the presence of sludge in
the soil, was also observed in 2015 (Figure 2b). These results from PCA analyzes were also confirmed
by ANOSIM using all eight principal components and statistically significant differences were not
detected (P = 0.2656 in 2014 and P = 0.4081 in 2015; Figure 3).
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Figure 2. The principal component analysis (PCA) constructed from T-RFLP fluorescent data of fungal
communities from Arundo donax rhizosphere collected in (a) 2014 and (b) 2015 in control samples and
samples with sewage sludge (SS) in doses of 5 and 15 t/ha. PCA graphs explained a total of 37.56%
and 50.32% (respectively) of the variability in the data. PCA was made by combining data from two
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Figure 3. Box plots from One-way ANOSIM with Euclidean distance measure derived from the
obtained data using principal component (PC) scores from principal component analysis in Figure 2 in
(a) 2014 and (b) 2015 sampling years.

3.3. 18S rDNA Sequencing and the Rhizosphere Fungal Communities

Fungal communities from the control sample and from sample with SS in dose of 15 t/ha collected
in August 2014 were selected for constructing of 18S rDNA clone library. Each clone was analyzed
by T-RFLP to select clones with a specific T-RFLP profile from a large number of isolated plasmids.
Thirty-seven clones from the control sample and fifty-six clones from sample with SS in dose of 15 t/ha
with specific T-RFLP profiles were sequenced and compared with 18S rDNA sequences of the closest
fungal genera available in the GenBank database using Nucleotide BLAST (Tables 4 and 5).
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Table 4. Comparison of sequenced clones from the rhizosphere of Arundo donax without SS in the soil
with 18S rDNA sequences of fungi with the highest similarity using Nucleotide BLAST.

No. Clone Name
(GenBank ID)

GenBank ID with the
Highest Similarity GenBank Name Similarity

(%)
Phylogenetic

Group

1 1_1 (MH249155.1) FN429371.1 Glomus sp. 98 Glomeraceae
2 1_2 (MH249156.1) KY232490.1 Funneliformis 99 Glomeraceae
3 1_3 (MH249157.1) KY232610.1 Rhizophagus 99 Glomeraceae
4 1_4 (MH249158.1) EF154347.1 Ceratobasidium 95 Basidiomycota
5 1_6 (MH249159.1) KY979295.1 Glomus 98 Glomeraceae
6 1_8 (MH249160.1) KY979397.1 Glomus 100 Glomus
7 1_20 (MH249161.1) KJ209995.1 Glomus 97 Glomeraceae
8 1_24 (MH249162.1) KY436352.1 Rhizophagus irregularis 95 Glomeromycetes
9 1_26 (MH249163.1) KT291330.1 Glomus 99 Glomeraceae

10 1_27 (MH249164.1) KY232617.1 Glomus 96 Glomeromycetes
11 1_28 (MH249165.1) KX154254.1 Rhizophagus 99 Glomeraceae
12 1_30 (MH249166.1) LN715052.1 Glomus 93 Glomeromycetes
13 1_31 (MH249167.1) KJ867233.1 Mortierella sp. 99 Mortierellomycotina
14 1_33 (MH249168.1) HF954093.1 Glomus 98 Glomeraceae
15 1_34 (MH249169.1) MH047197.1 Mortierella elongata 98 Mortierellomycotina
16 1_35 (MH249170.1) KY979409.1 Glomus 100 Glomus
17 1_39 (MH249171.1) KY979298.1 Glomus 99 Glomeraceae
18 1_40 (MH249172.1) KY979360.1 Glomus 97 Glomeraceae
19 1_42 (MH249173.1) KY979298.1 Glomus 99 Glomeraceae
20 1_44 (MH249174.1) KY979361.1 Glomus 99 Glomeraceae
21 1_45 (MH249175.1) KY232615.1 Glomus 97 Glomeraceae
22 1_47 (MH249176.1) EU754099.1 Pyrenochaeta cava 86 Ascomycota
23 1_48 (MH249177.1) KY232490.1 Funneliformis 98 Glomeraceae
24 1_49 (MH249178.1) KY979384.1 Glomus 91 Glomeromycetes
25 1_50 (MH249179.1) GU353937.1 Glomus 89 Glomeromycetes
26 1_51 (MH249180.1) KY979297.1 Glomus 98 Glomeraceae
27 1_53 (MH249181.1) LN715041.1 Glomus 99 Glomeraceae
28 1_55 (MH249182.1) KY232490.1 Funneliformis 97 Glomeraceae
29 1_56 (MH249183.1) KC797120.1 Glomus 98 Glomeraceae
30 1_58 (MH249184.1) AB695021.1 Glomus 95 Glomeromycetes
31 1_62 (MH249185.1) KY232617.1 Glomus 99 Glomeraceae
32 1_66 (MH249186.1) JQ218167.1 Glomus 96 Glomeromycetes
33 1_67 (MH249187.1) EU350045.1 Ascomycota 97 Ascomycota
34 1_68 (MH249188.1) KY979360.1 Glomus 90 Glomeromycetes
35 1_69 (MH249189.1) KY232454.1 Glomus 99 Glomeraceae
36 1_71 (MH249190.1) JQ218180.1 Glomus 92 Glomeromycetes
37 1_72 (MH249191.1) KY979298.1 Glomus 97 Glomeraceae

As shown in Table 4, comparison of our clone sequences with GenBank homologous sequences
revealed that 32 clones (86.5%) from the control sample without SS belong to the arbuscular mycorrhizal
fungi to the subphylum Glomeromycotina and the other 5 clones (13.5%) belong to the Mortierellomycotina
(2 clones), Ascomycota (2 clones) and Basidiomycota (1 clone). Absolute (i.e., 100%) identity between
compared DNA sequences was observed in 2 clones that related to the genus Glomus. Three genera of
AM fungi were captured in the control sample—Glomus, Funneliformis and Rhizophagus. Their greatest
homology to the compared sequences was 100%, 99% and 99%, respectively and Glomus species were
represented at most times. The homology of our sequenced clones with AM fungi in the GenBank
database was from 89% up, while 23 clones out of 32 were homologous above 97%.

Table 5 shows that 39 clones (69.6%) belong to the AM fungi and Glomeromycotina group and
17 clones (30.4%) were outside this. Phylogenetic groups detected in addition to AM fungi were
Ascomycota (11 clones), Basidiomycota (3 clones), Mortierellomycotina (1 clone) and 2 clones without
further specification. Only 1 clone from all 56 sequenced showed 100% identity with GenBank sequence
and it was a representative of Glomus sp. Other species from AM fungi detected in the sample with
SS were Funneliformis and Septoglomus. Additionally, in this sludge sample Glomus, as a typical
representative of AM fungi, was the most frequently represented. The homology of our clones with
AM fungi in GenBank database was from 88% up and 24 clones from all 39 detected AM fungi were
homologous above 97%.
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Table 5. Comparison of sequenced clones from the rhizosphere of Arundo donax with 15 t/ha of SS in
the soil with 18S rDNA sequences of fungi with the highest similarity using Nucleotide BLAST.

No. Clone Name
(GenBank ID)

GenBank ID with the
Highest Similarity GenBank Name Similarity

(%)
Phylogenetic

Group

1 2_1 (MH249192.1) EU123462.1 Glomus 95 Glomeromycetes
2 2_2 (MH249193.1) KT291279.1 Glomus 98 Glomeraceae
3 2_3 (MH249194.1) EU350045.1 Ascomycota 99 Ascomycota
4 2_4 (MH249195.1) KT291330.1 Glomus 99 Glomeraceae
5 2_5 (MH249196.1) AB695021.1 Glomus 99 Glomeraceae
6 2_6 (MH249197.1) JF972676.1 Eukaryote 99 Eukaryota
7 2_7 (MH249198.1) KY232471.1 Glomus 99 Glomeraceae
8 2_8 (MH249199.1) KF186347.1 Chaetomium 99 Ascomycota
9 2_10 (MH249200.1) KU136413.1 Funneliformis mosseae 90 Glomeromycetes

10 2_17 (MH249201.1) KY232454.1 Glomus 94 Glomeromycetes
11 2_18 (MH249202.1) JN788493.1 Glomus 94 Glomeromycetes
12 2_20 (MH249203.1) KT291330.1 Glomus 96 Glomeromycetes
13 2_21 (MH249204.1) EU622843.1 Laetisaria arvalis 99 Basidiomycota
14 2_22 (MH249205.1) KJ209912.1 Glomus 93 Glomeromycetes
15 2_23 (MH249206.1) FR751250.1 Glomus mosseae 88 Glomeromycetes
16 2_24 (MH249207.1) JQ071733.1 Chaetothyriales 96 Ascomycota
17 2_25 (MH249208.1) KY979384.1 Glomus 99 Glomeraceae
18 2_28 (MH249209.1) EU123341.1 Ascomycota 95 Ascomycota
19 2_29 (MH249210.1) LN715042.1 Funneliformis 93 Glomeromycetes
20 2_30 (MH249211.1) KY979384.1 Glomus 98 Glomeraceae
21 2_31 (MH249212.1) KM602163.1 Glomeromycota 96 Glomeromycota
22 2_32 (MH249213.1) KY979384.1 Glomus 99 Glomeraceae
23 2_33 (MH249214.1) KY232497.1 Funneliformis 99 Glomeraceae
24 2_34 (MH249215.1) EU123373.1 Basidiomycota 96 Basidiomycota
25 2_35 (MH249216.1) EU350045.1 Ascomycota 98 Ascomycota
26 2_36 (MH249217.1) KY979355.1 Glomus 98 Glomeraceae
27 2_37 (MH249218.1) KY232438.1 Glomus 99 Glomeraceae
28 2_39 (MH249219.1) JN788427.1 Glomus 98 Glomeraceae
29 2_40 (MH249220.1) MH047197.1 Mortierella elongata 93 Mortierellomycotina
30 2_41 (MH249221.1) EU622843.1 Laetisaria arvalis 93 Basidiomycota
31 2_42 (MH249222.1) KY979376.1 Glomus 99 Glomeraceae
32 2_43 (MH249223.1) KY979386.1 Glomus 94 Glomeromycetes
33 2_44 (MH249224.1) AB698615.1 Glomus 88 Glomeromycetes
34 2_46 (MH249225.1) EU123343.1 Ascomycota 97 Ascomycota
35 2_48 (MH249226.1) KF186347.1 Chaetomium 96 Ascomycota
36 2_52 (MH249227.1) KY979298.1 Glomus 99 Glomeraceae
37 2_53 (MH249228.1) KF186347.1 Chaetomium 99 Ascomycota
38 2_54 (MH249229.1) KU707426.1 Septoglomus 92 Glomeraceae
39 2_55 (MH249230.1) KY232615.1 Glomus 99 Glomeraceae
40 2_56 (MH249231.1) AB534478.1 Uncultured fungus 96 Fungi
41 2_57 (MH249232.1) KT291330.1 Glomus 99 Glomeraceae
42 2_58 (MH249233.1) KY979398.1 Glomus 99 Glomeraceae
43 2_59 (MH249234.1) KF186347.1 Chaetomium 93 Ascomycota
44 2_60 (MH249235.1) KY232519.1 Glomus 99 Glomeraceae
45 2_61 (MH249236.1) KY232519.1 Glomus 99 Glomeraceae
46 2_62 (MH249237.1) KY232454.1 Glomus 99 Glomeraceae
47 2_63 (MH249238.1) KY979355.1 Glomus 99 Glomeraceae
48 2_64 (MH249239.1) KY979355.1 Glomus 96 Glomeraceae
49 2_65 (MH249240.1) KF186347.1 Chaetomium 99 Ascomycota
50 2_66 (MH249241.1) KY979298.1 Glomus 99 Glomeraceae
51 2_67 (MH249242.1) KY232519.1 Glomus 93 Glomeromycetes
52 2_68 (MH249243.1) AF202291.1 Labyrinthomyces sp. 95 Ascomycota
53 2_69 (MH249244.1) JN788544.1 Glomus 99 Glomeraceae
54 2_70 (MH249245.1) KY979355.1 Glomus 99 Glomeraceae
55 2_71 (MH249246.1) KY979298.1 Glomus 100 Glomus
56 2_72 (MH249247.1) EF041057.1 Glomus 92 Glomeromycetes

The phylograms constructed using 18S rDNA sequences from the control sample (Figure 4) and
from the sample with 15 t/ha sewage sludge in the soil (Figure 5) confirmed the classification of these
clones into individual phylogenetic groups as described above (Tables 4 and 5) with little exceptions in
the sample with SS. The largest group consisted of AM fungi, 86.5% in the Arundo donax rhizosphere
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in the control sample and 67.9% in the sample with SS in the soil. Higher diversity was observed in
the sample with SS than in the control sample. At the same time, phylogram constructed from 18S
rDNA fungal sequences from the sample with 15 t/ha SS included sequenced clones 2_3 (MH249194.1),
2_28 (MH249209.1), 2_35 (MH249216.1), and 2_46 (MH249225.1) to the subphylum Pezizomycotina
(Figure 5) whilst in Table 5 these clones were classified only as Ascomycota. A similar case is with
the clone 2_6 (MH249197.1). In Figure 5, this clone is assigned to the phylum Chytridiomycota while
Table 5 shows it is without further specification. On the other hand, two clones 2_1 (MH249192.1) and
2_68 (MH249243.1) were classified otherwise without further classification in Figure 5 than in Table 5.
Their greatest homology was with Glomeromycetes (95%) and Ascomycota (95%), respectively.
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4. Discussion

This study was designed to examine the impact of sewage sludge from two municipal wastewater
treatment plants (SS-A from Győr, Hungary and SS-B from Piešt’any, Slovakia) on the fungal
communities, with a greater focus on arbuscular mycorrhizal fungi in the rhizosphere of Arundo donax
L. using the molecular T-RFLP method and 18S rDNA sequencing. The experiment was carried out
for two consecutive years, 2014 and 2015, and the sludge was applied to the soil in concentrations of
5 t/ha and 15 t/ha. The addition of sewage sludge to the soil did not lead to changes in the fungal
richness among control and samples with SS. Significant differences were observed only in collecting
dates in both years with the higher richness in the summer period. Differences between 2014 and
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2015 were in the alpha diversity (Table 2) which may have been caused by different sludge used in
2014 (SS-A) and 2015 (SS-B) (Table 1). The content of macroelements in both SSs was more similar
than the content of microelements. The concentration of heavy metals in SS-A, as As, Cd, Cr, Cu, Ni,
and Zn was 2.6, 2, 2.4, 2.9, 1.9, and 1.5 times higher than in SS-B, respectively. Only the concentration
of Pb was 1.3 times higher in SS-B. This may be the reason for these differences in alpha diversity
between 2014 and 2015. The results of diversity indices from 2014 are more similar to our assumption,
which we made at the beginning of this research. The addition of sludge to the soil resulted in an
increase in all three diversity indices in August 2014. The opposite trend was recorded in November
2014. There was a gradual, statistically significant decline in the diversity index values from control to
sludge samples. In 2015, only one significant difference was detected in August between control and
15 t/ha samples. Our initial assumption was that the differences in alpha diversity would be more
significant between control and sludge samples, but this was not confirmed in 2015. Although the
used sludge contained heavy metals, their concentrations were well below the permitted limit under
the Act No. 188/2003 in the Slovak Republic. Actually, the fungal communities are able to accept even
greater concentrations of heavy metals in the soil [36,37], and changes in their communities are smaller
than in the bacterial communities [38–40]. On the other hand, the opposite effect was observed by
Mossa et al. [41] and Lin et al. [42]. They both found out that fungi were more sensitive than bacteria to
heavy metal contaminations and simultaneously, Lin et al. [42] observed that Ascomycota, Basidiomycota
and Zygomycota had strong tolerance to the heavy metals in the soil. Additionally, a ten-year sludge
application with increasing concentrations of heavy metals (still within the upper limits accepted by
the European Union) produced a significant decrease of total AMF spore numbers and the diversity of
AMF populations in soil [43]. Concurrently, De Val et al. [43] have found that sensitive and relatively
tolerant to high rates of heavy metals AMF ecotypes exist. It follows that AMF are able to tolerate a
diverse range of metal concentrations, and inoculation with tolerant AMF into plant roots has huge
potential to increase phytoaccumulation of heavy metals [44]. Even the high amounts of Cd added to
the soil in the form of ash did not have a negative effect on the AMF mycorrhizal status [45].

Our results indicate that shift in the rhizosphere fungal communities between control and samples
with SS, and between sampling times in both years based on PCA was not detected (Figures 1 and 2).
Even in 2014, greater variability in fungal communities was observed in control samples (Figure 1a).
ANOSIM analysis confirmed these observations based on PCA and no statistically significant differences
were detected between control and sludge samples or between sampling times in individual years
(Table 3). In assessing the impact of SS alone on the rhizosphere fungal communities and neglecting the
collection dates, PCA showed that in 2014 there is a significant shift in fungal communities. In Figure 2a
control samples show a positive correlation and the sludge samples show a negative correlation within
PC1 which determines the greatest degree of variability (19.77% in our case). These correlations of
control and samples with SS were maintained using PC1 with other principal components. However,
the use of the other principal components without PC1 showed that the differences in rhizosphere fungal
communities between control and samples with SS disappeared. Although the use of other principal
components is already with less variability, PC2 (17.79%) shows only slightly lower variability than
PC1 and variability decreases slowly across other principal components (data not shown). ANOSIM
confirmed these PCA assumptions and the fungal communities from the control samples did not show
a significant shift compared to the fungal communities in the samples with SS (Figure 3). Our findings
suggest that the short-term application of sewage sludge to the soil does not cause shift in the fungal
communities in the Arundo donax rhizosphere. However, the long-term application of sewage sludge
may produce opposite results. Mossa et al. [41] observed that more than 100 years of sewage sludge
application to the soil has caused a shift in the fungal communities in the bulk soil and rhizosphere
of “fodder maize”. They also found, by using T-RFLP, that Zn, unlike other heavy metals, can be
considered as a good indicator of historical sewage sludge loading whereas its concentration of 700–1000
mg/kg appeared to be optimal for maximum microbial diversity (300 mg/kg of zinc is the maximum
permitted concentration in the EU according to Council Directive 86/278/EEC). Tang et al. [46] in their
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review article assessed that the harmful effect of heavy metals on microorganisms depends on their
availability and speciation rather than their concentration. Additionally, they reviewed that heavy
metals after entering the soil can be affected by soil itself, thereby changing their toxicity [46]. Moreover,
the sludge type, i.e., digested and undigested, appeared to have the greatest impact on the soil fungal
community as sludge rich in heavy metals whose concentration exceeds the limits permitted by UK
legislation [36].

Our results from 18S rDNA sequencing confirmed the previously known fact about NS31 and
AM1 primers. These primers amplified, in addition to AMF, also non-AMF sequences to a small
extent [28,29,47–50], like Ascomycota and Basidiomycota with a higher incidence of Ascomycota (14% from
all sequences) in our case. However, many studies using these primers have significantly increased
our knowledge about AMF communities in various environments [51–56]. In our case, more than
86% of the DNA sequences in the control sample and more than 69% in the sludge sample belonged
to some group of AM fungi. The greatest homology of our sequences to those in the GenBank was
with a representative of Glomus sp. (Tables 4 and 5). Currently, there are around 60 well described
Glomus species at www.amf-phylogeny.com [57] (last update 25 August 2019) and this number is not
final. Additionally, the total number of AMF species described on this website, which is approximately
315 after this last update, is not final [57]. In addition to Glomus sp., Funneliformis, Rhizophagus
and Septoglomus as representatives of AMF have also been found in the Arundo donax rhizosphere
in control and sample with SS. AM fungi are microorganisms with very important and valuable
functions in the ecosystem. Their potential for Arundo donax is studied and focused on enhancement
of phytoremediation capabilities using arbuscular mycorrhiza [58], increase in photosynthesis and
plant biomass accumulation [59], improvement of plant performance and productivity [60], or the
acclimatization and establishment of Arundo donax plantlets [61,62]. However, the impact of sewage
sludge on the AM fungal communities in the Arundo donax rhizosphere was not investigated yet. In our
study, a greater spectrum of different fungal species was detected in the sample with SS than in the
control (56 vs. 37 clones in the control) (Table 5, Figure 5). This is probably caused by the presence
of sewage sludge in the soil which is a good source of valuable micro and macroelements as well
as organic matter in high content [63,64]. These factors can create a suitable environment for the
development and existence of various fungal taxa, other than AMF, which we were able to capture
using primers NS31 and AM1. In addition, the presence of heavy metals in the SS, and subsequently in
the soil, can promote and contribute to the presence of different taxa of soil fungi [42].

These presented results are from a two-year pot experiment, but it would be useful to investigate
rhizospheric microorganisms under natural environmental conditions and for more consecutive years
to further investigate the effect of sewage sludge. Furthermore, it would be beneficial also to investigate
arbuscular mycorrhizal fungi directly from the plant roots to determine whether the sludge affects the
mycorrhizal ability of these fungi.

5. Conclusions

The present study showed that short-term application of sewage sludge from municipal wastewater
treatments plants in Hungary and Slovakia into the soil did not cause a shift in the overall fungal
communities in the Arundo donax rhizosphere. Alpha diversity of fungal communities was more
affected by SS-A than SS-B. This was probably due to the higher heavy metal content in this sludge
although it was still well below the legal limit permitted in the EU. Sequencing of 18S rDNA showed
that more various fungal taxa were detected in the sample with sewage sludge than in the control.
At the same time, we confirmed that NS31 and AM1 primers that are used to amplify 18S rDNA from
arbuscular mycorrhizal fungi amplified also fungi from Ascomycota and Basidiomycota to a lesser extent.
However, from all detected fungi in the control and the sludge sample, Glomus sp. as a representative
of arbuscular mycorrhizal fungi was the most represented. Furthermore, Funneliformis in both samples
and Rhizophagus in control with Septoglomus in sludge samples were other representatives of AMF.

www.amf-phylogeny.com
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