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SUMMARY

Malignant cell transformation and the underlying reprogramming of gene expression require the 

cooperation of multiple oncogenic mutations. This cooperation is reflected in the synergistic 

regulation of non-mutant downstream genes, so-called cooperation response genes (CRGs). CRGs 

affect diverse hallmark features of cancer cells and are not known to be functionally connected. 

However, they act as critical mediators of the cancer phenotype at an unexpectedly high frequency 

>50%, as indicated by genetic perturbations. Here, we demonstrate that CRGs function within a 

network of strong genetic interdependencies that are critical to the malignant state. Our network 

modeling methodology, TopNet, takes the approach of incorporating uncertainty in the underlying 

gene perturbation data and can identify non-linear gene interactions. In the dense space of 

gene connectivity, TopNet reveals a sparse topological gene network architecture, effectively 
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pinpointing functionally relevant gene interactions. Thus, among diverse potential applications, 

TopNet has utility for identification of non-mutant targets for cancer intervention.

Graphical abstract

In brief

Malignant cell transformation requires the cooperation of multiple oncogenic mutations. Here, we 

demonstrate that non-mutated genes function within a network of strong genetic interdependencies 

that are critical to the malignant state. Our network modeling methodology, TopNet, reveals a 

sparse topological gene network architecture, effectively pinpointing functionally relevant gene 

interactions.

INTRODUCTION

Oncogenic mutations are critical for both cancer initiation and maintenance, which 

has driven efforts to inhibit targetable oncoproteins as an effective strategy for cancer 

treatment. Targetable mutations, however, are found only in a small fraction of cancers. 

Thus, broader strategies for cancer intervention need to be developed, such as targeting 

non-mutated proteins or molecular circuitry essential to cancer cells. The complexity 

of cell regulation and the profound cellular reprogramming associated with malignant 

transformation, however, provide formidable barriers to elucidating disease-critical genetic 

circuitry. We propose that linking genetic perturbation experiments with statistical modeling 

can provide inroads to the discovery of functionally relevant gene regulatory network 
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(GRN) architecture and thus valuable identification and validation of genetic interactions in 

cancer gene networks, which ultimately may inform the targeting of next-generation cancer 

interventions.

GRN modeling seeks to infer dependencies between genes and thereby provide insight 

into the regulatory relationships that exist within a cell. Early methods to estimate GRNs 

focused primarily on data arising from targeted experimental perturbations (Ideker et al., 

2000; Pe’er et al., 2001); however, these methods relied on simplifying assumptions to 

reduce the computational demands of these methods. As the size and scope of publicly 

available transcriptomic data rapidly increased due to the formation of large cancer consortia 

such as The Cancer Genome Atlas (TCGA), GRN modeling methodology transitioned to 

leveraging observational data, which rely on correlation structure in the data produced by 

natural biological covariation to infer regulatory relationships (Basso et al., 2005; Carro 

et al., 2010; Langfelder and Horvath, 2008; Margolin et al., 2006; Zhang and Horvath, 

2005). While the application of these methods has provided insights into the regulatory 

systems crucial to malignancy, these modeling approaches are hindered by technical sources 

of covariation, such as batch effects or variable sample composition, either masking or 

mimicking true biological dependencies (Zhang et al., 2021). In addition, modeling of 

GRNs remains inherently difficult due to high-order non-linear interactions and unmeasured 

sources of biological variability that influence the GRN.

Methodological and computational advances have greatly aided our ability to model GRNs, 

which in turn has advanced our understanding of the processes involved in both normal 

cellular function and disease progression. While much effort has been dedicated to estimate 

GRNs from observational data, experimental perturbations allow direct measurement of the 

effect that a change in one gene has on other measured genes, which greatly facilitates the 

estimation of GRNs (Markowetz and Spang, 2003; Werhli et al., 2006; Zak et al., 2003). 

Recent advances in computational hardware and parallelization provide an opportunity to 

revisit the potential of perturbation-based GRN estimation without the need to impose 

biologically implausible restrictions on these models.

In this article, we propose a GRN modeling procedure, called TopNet, based on underlying 

gene perturbation data that addresses the core challenges of GRN estimation: preprocessing 

and analysis of noisy experimental data, quantification of uncertainty in gene expression 

changes following perturbation, exploration of a vast model space to find networks 

supported by the gene perturbation data, and identification of robust, biologically relevant 

network features. Our approach adopts the ternary network modeling formalism proposed 

by Almudevar et al. (2011). Specifically, we consider a ternary network modeling procedure 

that samples networks for which the network attractors agree with the experimental data. In 

this article, we propose improvements in both the search algorithm and the manner in which 

agreement between the attractors and observed data is quantified.

Previously, we were able to identify non-mutant mediator genes critical to the cancer 

phenotype downstream of oncogenic mutations (Ashton et al., 2012; McMurray et al., 

2008). Our approach to find such mediators was based on the concept that the profound and 

multifaceted genetic reprogramming associated with malignant cell transformation requires 
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the cooperation of multiple oncogenic mutations (Hahn et al., 1999; Land et al., 1983), and 

that this transition is driven by synergistic modulation of downstream mediators (Lloyd et 

al., 1997; Sewing et al., 1997; Xia and Land, 2007). This class of functionally diverse and 

apparently unconnected genes was called cooperation response genes (CRGs). Functional 

analysis of CRGs revealed that >50% of the CRGs tested play an essential role in the cancer 

phenotype (McMurray et al., 2008) and that specific CRGs represented newly identified, 

cancer cell-specific vulnerabilities (Kinsey et al., 2014; Smith and Land, 2012; Smith et 

al., 2016). Given the functional diversity of CRGs and the robust and redundant nature 

of regulatory circuitry in mammalian cells, this high frequency of impact on the cancer 

phenotype by individual CRG perturbations is contrary to expectation, unless CRGs act 

in a concerted manner. Our work demonstrates that CRGs act within a strong network of 

unexpected genetic interdependencies that appears critical to the robustness of the malignant 

phenotype.

RESULTS

CRGs contribute to tumor formation capacity

Genetic perturbation of individual CRGs in cells transformed by p53175H and RasV12 

(mp53/Ras cells), aimed to re-establish levels of gene expression found in non-transformed 

parental young adult mouse colon (YAMC) cells, results in a reduction of tumorigenicity 

in the majority of cases (McMurray et al., 2008). The extensive analyses presented here 

recapitulate our earlier results. We now show an entirely new and much larger set of 

49 CRG perturbations (Figures 1, S1, and S2). Of these, 25 perturbations resulted in a 

significantly reduced tumor formation capacity of the target cells when implanted into 

immunocompromised mice. Together with our previous work, these data demonstrate that 43 

of the 75 CRGs tested (57%, adjusted p < 0.1) are critical to the cancer phenotype, including 

2 perturbations that increase tumor size (Figure 1A).

CRGs regulate diverse hallmarks of the malignant phenotype. The distribution of associated 

cell processes among those genes with a demonstrated role in tumor regulation is highly 

similar to the distribution across all CRGs but distinct from known oncogenes and tumor 

suppressors (Figure 1B). The genes whose perturbation affects tumor formation vary in their 

localization from nuclear to intracellular to extracellular function and are associated with 

numerous regulatory pathways (Figure 1C). Notably, many of the CRGs that are implicated 

in the control of tumor formation capacity are associated with processes such as metabolism 

and cell adhesion, regulators of which are not detected among frequently mutated oncogenes 

and tumor suppressor genes. Thus, we consider the CRGs as critical mediators of oncogene 

cooperation that transmit and carry out the effects of those oncogenic mutations.

Individual CRG perturbations affect expression of other CRGs

CRGs function in many diverse pathways and mechanisms (Figures 1B and 1C), and 

interrelationships between most of these genes have not been previously reported. In 

contrast, the high frequency by which CRG perturbations affect the cancer phenotype and 

the manner in which the CRGs themselves were identified, by virtue of their synergistic 

response to multiple oncogenic mutations, is consistent with the idea that CRGs function 
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within a regulatory gene network. We thus investigated the extent of mutual control of gene 

expression among 20 CRGs, which were selected to represent the spectrum of functional 

classes and tumor inhibitory effects observed in the full CRG set (indicated in Figures 

1A and 1C). Using a set of mp53/Ras cell populations, each harboring 1 of 20 individual 

CRG perturbations, we compared the mRNA expression profiles of perturbed cells with 

corresponding controls to detect changes in the expression of the selected CRGs. These 

perturbations varied in their effects on tumor growth (Figure 1A) and were chosen from 

genes up- or downregulated in transformed mp53/Ras cells as compared to the parental 

YAMC cells (Figure 2A). Expression profiles for all 20 CRGs were measured for multiple 

independent replicates of each CRG perturbation, revealing widespread changes in gene 

expression in the CRG cohort upon perturbation of individual CRGs (Figure 2B).

The high degree of connectivity between the selected CRGs is shown in Figures 2C and 

S3A. Key parameters that describe the interconnectedness of genes in such a graph are 

the out-degree (i.e., the number of children of a given gene) and the in-degree (i.e., the 

number of parents of a given gene). Of the 20 perturbations, 8 produced changes in the 

expression of R5 of the other CRGs, with 1 perturbation, restoration of HoxC13 expression, 

having the highest out-degree (i.e., affecting the expression of 9 other CRGs) (Figures 

S3A and S3B). Only two perturbations had an out-degree of zero, indicating that they did 

not produce a change in any other CRG in the network. Moreover, there was substantial 

variability in the in-degree among these CRGs, ranging from two CRGs not responding 

to any other perturbations, to the one CRG, Sfrp2, with the highest in-degree, responding 

to the perturbation of 8 other CRGs (Figures S3A and S3C). These results highlight the 

remarkably high connectedness of these 20 CRGs. Given the numerous interactions between 

this subset of CRGs, we needed to move beyond simple connectivity analyses to prioritize 

interactions for biological testing. Thus, we used statistical modeling to understand the 

flow of information in this gene regulatory network and estimate the associated network 

architecture.

TopNet reveals rules governing attractor states

To identify gene interactions relevant to the malignant phenotype, we developed TopNet, a 

ternary network modeling approach based on perturbations capable of up- or downregulation 

of gene expression that accounts for uncertainty in the underlying gene perturbation data. 

This appeared suitable, as CRGs comprise both up- and downregulated genes, including 

genes with very low expression levels (McMurray et al., 2008).

The estimation of a GRN typically focuses on inferring individual interactions (edges) 

between genes and/or proteins (nodes). The collective behavior of these interactions is 

then studied as an emergent property of the low-level network architecture. This is a 

natural strategy when inferring GRNs based on the measurement of pairwise interactions

—for example, transcription factor binding (either via ChIP-seq or promoter sequence 

motifs) or protein-protein interaction data. However, gene perturbation experiments 

remain the most reliable approach to investigate GRNs and to test cellular responses to 

interventions (Markowetz and Spang, 2003; Werhli et al., 2006; Zak et al., 2003). The 

gene expression changes in response to perturbation provide information not on the direct 
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interactions between genes but rather on the altered steady-state expression produced by the 

perturbation. In other words, the estimation procedure can be framed as a search through the 

vast space of network models for those that produce the observed data (Almudevar et al., 

2011).

To assess potential interdependence between the 20 CRGs selected for network estimation, 

we applied the TopNet algorithm, which uses a ternary network model that accounts for the 

dynamic, cyclic, and non-linear nature of GRNs and facilitates the evaluation of uncertainty 

(Almudevar et al., 2011). Specifically, TopNet assumes that changes in gene expression 

can be modeled by one of three states–downregulation (−), baseline expression (0), or 

upregulation (+1)–and that the network is governed by deterministic transition functions 

that encode the complex regulatory relationships between genes (examples are shown in 

Figures 3A–3D). Discretization captures the majority of information and inherently provides 

robustness (McCall et al., 2011; Parmigiani et al., 2002; Scharpf et al., 2003; Zilliox 

and Irizarry, 2007). Additional details of the TopNet modeling algorithm are described in 

Method details, and Methods S2 and S3.

Following any given perturbation, the network will eventually reach a steady state, called 

an attractor. This attractor may be a new state to which the cell is driven by the action of 

the gene perturbation, or it may represent a return to the baseline state–in this case that of 

a transformed mp53/Ras cell. Recall that the experimental data represent a measurement of 

the steady-state expression of the cells; therefore, the ability of a network model to represent 

experimental data can be assessed by comparing these gene expression measurements with 

the attractors produced by the network model (Almudevar et al., 2011). Specifically, starting 

from a null model, TopNet randomly proposes small changes in the network structure and 

scores the proposed new network based on the similarity between its attractors and the 

observed steady-state data (Figure 4; Method details, and Methods S1, S2, and S3). This 

iterative search algorithm can proceed quite rapidly because TopNet can easily compute the 

attractor for each perturbation and assess the similarity of the resulting attractors with the 

corresponding observed steady-state data. Ultimately, TopNet identifies a network model 

whose attractors match the observed data well.

Uncertainty quantification allows the identification of high-confidence features of the 
network topology

There are often many network models that fit the observed data equally well, and the model 

space is huge; for the network model presented here, there are ~2.48 × 10763 potential 

networks. To more efficiently explore this vast model space and avoid becoming trapped in 

local optima, we implemented a replica exchange Monte Carlo algorithm (Swendsen and 

Wang, 1986) that allowed us to parallelize the search over the nodes of a high-performance 

computing cluster. Unlike previous approaches, here, we have modeled and addressed non-

random missing data (McCall et al., 2014), batch effects, and uncertainty in estimates of 

differential expression (Methods S1 and S2).

Due to the vast number of potential networks, it is exceedingly unlikely that there exists 

a single ‘‘best’’ network; therefore, as previously proposed by Almudevar et al. (2011), 

TopNet repeats the estimation procedure many times to produce a sample of networks from 
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the space of models that explain the observed data well. This collection of network fits 

can then be used to quantify the degree of support for a given aspect of the network by 

calculating the proportion of networks in which a given feature or features are present. For 

example, based on the 4 network models shown in Figure 3, we could state that HoxC13 is 

likely a direct parent of Sms because that relationship is present in all 4 models, whereas we 

have less certainty about the relationship between HoxC13 and Id2 because it is only a direct 

parent in 3 of the 4 models, remembering that the 4 models shown are only a subsample of 

all that were computed.

Building upon previous work (Almudevar et al., 2011), TopNet implements several advances 

in modeling and computation (see Method details). These methodological improvements, 

including quantification of uncertainty, produced more reliable estimates of the network 

topology than previous methods (Figure S4 and Methods S2). In addition, we show that 

the selected in-degree threshold of 4 is flexible enough to produce network models that 

explain the observed data well without being so flexible that even random data can be 

modeled well (Figure S5 and Methods S2). Finally, we show general agreement in network 

topology for sufficiently complex models (Figure S6 and Methods S2). These improvements 

to data analysis and network modeling were crucial to identify high-confidence features of 

the network topology.

Modeling reveals robust topological features of the CRG regulatory network

The result of the TopNet network modeling procedure is a sample of network models, all 

of which explain the observed data well. Based on this sample of network models, we 

are able to form inferential statements about specific network features by averaging across 

the network models. For example, in the case of topological relationships, we calculate 

the proportion of networks in which a given gene is a parent of another gene. For the 

CRG network, we report results based on 100 independent network fits. In Figure 5, we 

show edges present in at least 80% of the network models, which represent regulatory 

relationships that are strongly supported by the observed data.

The network model provides both a sparse topology of gene interactions (Figure 5) and 

direction of gene responses, derived from the underlying transition functions (see examples 

in Figure 3). Based on this information, we are able to prioritize genetic perturbation 

experiments testing particular gene interactions and their role in maintaining or generating a 

given biological state (i.e., the malignant state). Here, we have focused on investigating the 

impact of multiple pairwise gene interactions relating to two central players common to all 

of the network models, HoxC13, the parent node with the most children, and Sfrp2, the gene 

affected by the largest proportion of perturbations (Figures 2C and S3).

Interdependency of functionally diverse mediator genes

To test whether the CRG parent-child relationships suggested by the network model reflect 

functional interdependencies between parent-child pairs, we chose an example in which 

perturbation of the upstream gene has a reproducible biological effect–in this case, inhibition 

of tumor growth in vivo. Notably, genetic perturbation (i.e., re-expression of HoxC13, 

a homeobox transcription factor) (Godwin and Capecchi, 1998; McMurray et al., 2008), 
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produced some of the strongest antitumor effects observed in our experiments. Next, 

we carried out double perturbations of parent-child pairs, aimed to limit the impact of 

perturbing parent gene expression. For double perturbations, we selected the parent-child 

relationships between HoxC13 and its high-confidence children: Sms, the gene encoding 

spermine synthase (Pegg and Michael, 2010); Id2, a gene encoding a member of the helix-

loop-helix only and inhibitor of DNA-binding protein family (Lasorella et al., 2001); and 

Sfrp2, encoding a member of the family of secreted Frizzled-related proteins, antagonists of 

Wnt signaling (Rattner et al., 1997) (Figure 6A). Note that the relationship between HoxC13 

and Id4, while specified by the network topology, is not observed in the connectivity graph, 

and thus an appropriate genetic perturbation to test this relationship remains unclear.

Our experiments testing relationships between HoxC13 and Sms, Id2, or Sfrp2 demonstrate 

that changes to the expression of these child nodes are required for the biological effects 

of the parent perturbation (Figures 6B–6D and S7). All of these relationships represent 

previously unknown genetic interdependencies, or functional epistatic relationships, critical 

to the cancer phenotype. Specifically, we find that the ability of HoxC13 to suppress 

the malignant state is curtailed when either low Sfrp2 levels or high Sms or Id2 levels 

are enforced. While double perturbation of HoxC13 with either Sms or Id2 appears 

to completely rescue tumor formation, combining HoxC13 re-expression with Sfrp2 

knockdown shows only a partial rescue. This may relate to additional complexity in 

the relationship between HoxC13 and Sfrp2, with other molecules playing a role in the 

phenotypic output, or it may relate to technical limitations of the experimental protocol. 

Our results, however, are sufficiently robust that they indicate biologically relevant gene 

interactions.

The GRN presented suggests specific interactions that may help to maintain the robustness 

of the network and ultimately the malignant state of the cells. However, parent-child 

relationships beyond those identified by modeling the GRN can be seen by direct 

examination of the impact of a perturbation on the other genes in consideration (Figures 

2 and 6A). Specific to HoxC13 as a parent, gene expression profiling reveals that the 

expression of Plac8, encoding a lysosomal protein critical for autophagosome-lysosome 

fusion in cancer cells (Galaviz-Hernandez et al., 2003; Kinsey et al., 2014), and Rgs2, 

which encodes a family member of regulators of G protein-coupled receptors (Kannangai 

et al., 2007), are each decreased by HoxC13 perturbation. However, these interactions are 

not necessary for the GRN to explain the steady-state observations of expression of all of 

the genes in the network and thus are not frequently observed in the topological mapping 

of the GRN. To test the relative importance of interactions identified by network modeling 

versus those observed by gene expression profiling, we generated double perturbations 

re-expressing HoxC13 together with either Plac8 or Rgs2. Remarkably, neither of these 

combinations revealed the dependence of the antitumor effects of HoxC13 on Plac8 or 

Rgs2 (Figures 6E and S7), although enforcing both HoxC13 and Plac8 expression had an 

enhanced antitumor effect, an interesting observation worthy of study in a different context. 

Testing of the biological dependence of HoxC13 on potential interactions suggested by the 

network model and those observed exclusively in the connectivity graph shows that the GRN 

prioritizes biologically relevant genetic interdependencies (Figure 5) among the densely 

populated space of relationships found in the connectivity graph (Figure 2B).
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Furthermore, we examined whether relationships between Sfrp2 and its parents, HoxC13, 

Notch3, and Wnt9a (Figures 5 and 6A) are critical to the malignant phenotype. As described 

above, the re-expression of HoxC13 does not significantly inhibit tumor growth when low 

Sfrp2 levels are maintained. Similarly, the tumor inhibitory effect of Notch3 expression is 

suppressed when Sfrp2 expression is maintained at low levels (Figures 6F and S7). The 

re-expression of Wnt9a has a small but statistically significant effect on tumor size (Figures 

1A and 6G). In contrast to HoxC13 and Notch3 re-expression, increased Wnt9a expression 

decreases Sfrp2 mRNA levels (Figure 2A). When Sfrp2 and Wnt9a expression were both 

increased, we observed a modest but significant reduction in tumor growth compared to 

controls (p = 0.029, unadjusted Wilcoxon signed-rank test) but increased tumor growth 

compared to Sfrp2 expression alone (Figures 6G and S7). This observation is consistent with 

the idea that Sfrp2 and Wnt antagonize each other both at the levels of gene expression and 

Wnt signaling activity (Rattner et al., 1997).

Here, we demonstrate that CRGs function within a gene regulatory network that contributes 

to the malignant phenotype. Our results reveal that numerous tumor regulatory interactions 

are detected via attractor-based ternary GRN modeling through the TopNet algorithm. 

Notably, high-confidence topological features of the network model are frequently found 

to be biologically relevant, and thus the network model effectively pinpoints previously 

unknown gene interdependencies critical to the cancer phenotype.

DISCUSSION

Here, we show that apparently unrelated mediators of the cancer phenotype are linked by a 

strong network of genetic interactions and thus maintain robustness of the malignant state. 

Critical to this discovery, we developed and applied TopNet, an approach to GRN estimation 

capable of identifying a biologically relevant topological model of highly complex genetic 

interdependencies. In contrast to the connectivity graph, TopNet can accurately model 

cellular responses to perturbations, produce testable hypotheses regarding non-linear multi-

gene interactions, and identify control points in the network architecture. This involves 

searching through a massive number of potential network models to identify those instances 

consistent with the observed data. By combining the information from many network 

models, TopNet prioritizes aspects of the GRN that are most strongly supported by the 

experimental data.

TopNet is capable of pinpointing key architectural features of cancer cells. The application 

of TopNet to genetic perturbation experiments involving 20 CRGs has identified high-

confidence multi-gene interactions involved in the maintenance of the cancer phenotype. 

Furthermore, experimentation confirmed all of the tested interactions identified by TopNet 

as previously unknown genetic interdependencies. In fact, all of the relationships between 

HoxC13 and its children Sms, Sfrp2, or Id2, reported here, were experimentally confirmed 

to be contributing to the tumor-inhibitory activity of HoxC13, which is downregulated 

in transformed cells as compared to non-transformed parental controls (McMurray et al., 

2008). Our data suggest that HoxC13 inhibits the pathways downstream of Sms and Sfrp2 

(i.e., polyamine metabolism and Wnt signaling) and Id2 function, all of which is consistent 

with our observation of reduced tumor growth capacity of transformed cells in which 
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HoxC13 expression has been elevated to resemble levels observed in non-transformed 

parental cells. Similarly, we demonstrated functional relevance for all of the interactions 

between Sfrp2 and its high-confidence parents Notch3 and Wnt9A, indicating that the 

tumor-inhibitory activity of Notch3 is dependent on Sfrp2 and that Wnt9A can downregulate 

Sfrp2 expression and thus neutralize Sfrp2-mediated tumor inhibition, consistent with the 

activation of Wnt signaling. We expect that further experimentation, especially combined 

perturbations of >2 genes, would likely reveal additional complexity. The feasibility of such 

studies, however, is limited by current technologies.

In addition to identifying high-confidence dependencies via examination of the network 

topology, TopNet provides the corresponding transition functions that determine the nature 

of dependencies between parent and child nodes (e.g., Figure 3). However, one should not 

assume that either the summarized network topology or the transition functions necessarily 

represent direct mechanistic relationships in the cell. In fact, the functional diversity of 

the 20 CRGs examined in this work suggests that most of the identified interactions and 

dependencies act through unmeasured intermediaries. Nevertheless, armed with information 

on critical interactions in the cell, one can then dedicate effort to understanding such 

interactions at a mechanistic level.

A major strength of our work is the use of data from gene perturbation experiments as 

the input for TopNet modeling. While a number of network modeling approaches have 

been proposed to identify and understand epistatic interactions in cancer cells, many of 

these modeling approaches are hindered by being observational in nature, as they rely on 

correlation structure in the data produced by natural biological covariation (van de Haar 

et al., 2019). In contrast, network modeling based on perturbation experiments allows 

prioritization of cause-effect relationships before experimental validation. This has led to 

increased interest in perturbation experiments as a means of modeling biological systems, 

such as the use of Perturb-seq (Adamson et al., 2016; Dixit et al., 2016; Jaitin et al., 2016; 

Schraivogel et al., 2020) to measure the effect of perturbations at single-cell resolution.

While high-throughput perturbation approaches such as Perturb-seq are currently limited 

by their reliance on gene extinction as the means for gene perturbation, as well as the 

reduced sensitivity of single-cell RNA sequencing technology, we are intrigued by the 

possibility of adapting our GRN estimation methodology to larger and potentially more 

complex networks. The extension of TopNet to such data would allow one to move 

beyond associative analyses and identify non-linear gene interactions underlying cancer 

cell robustness. Several computational and statistical challenges will need to be addressed 

in this context, such as the increased feature space, decreased sensitivity, and unidirectional 

perturbations. In the near term, targeted Perturb-seq (Schraivogel et al., 2020), in which 

some of these challenges are lessened, is ideally suited for initial methods development 

and testing. Our general modeling approach has the potential to extract rich biological 

interactions from these data and open new avenues of biological inquiry.

The complexity and strength of the CRG network revealed by TopNet are both remarkable 

and unexpected. CRGs comprise a diverse set of genes functioning in a multitude of 

diverging pathways involved in regulating cell signaling, metabolism, gene expression, 
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adhesion, and survival. In addition, biologically relevant genetic interactions between any of 

the 20 CRGs investigated here, to our knowledge, have not been reported. Our observations 

thus suggest a fundamental role for genetic networks in supporting the robustness of the 

malignant state and reveal network stability per se as a target for cancer intervention. 

Combination perturbations that disrupt network robustness may be needed for successful 

intervention. One could imagine that such an approach would be advantageous in the 

context of emerging treatment resistance. In addition, the examination of gene regulatory 

network architecture also has the potential to uncover an unexpected wealth of cancer cell 

vulnerabilities controlled by non-mutated genes and ultimately identify druggable targets to 

guide novel intervention strategies. For example, targeting a metabolic enzyme such as Sms 

could serve as a convenient alternative to intervention at the level of HoxC13, as inhibition 

of Sms expression is similarly effective in tumor inhibition as HoxC13 reactivation. In 

addition, molecular mechanisms underlying the Sms-HoxC13 interaction would be worth 

exploring further. TopNet, as shown here, thus can effectively be used for the identification 

of suitable targets accessible to pharmacological intervention in a largely non-druggable 

GRN environment.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Matthew McCall 

(matthew_mccall@urmc.rochester.edu).

Materials availability—Plasmids generated in this study are available upon request.

Primer sequences and TaqMan probe sets are tabulated in Tables S1–S3.—
There are restrictions to the availability of YAMC cells due to materials transfer agreement.

Data and code availability

• All qPCR data are available in this paper’s supplemental information. Tumor 

volume data reported in this paper will be shared by the lead contact upon 

request.

• All original code to reproduce all statistical analyses is available in the crgnet R 

package included in this paper’s supplemental information as Methods S1 and 

the ternarynet R/Bioconductor package, available at: https://bioconductor.org/

packages/release/bioc/html/ternarynet.html.

• The pseudocode for the network modeling algorithm is supplied in Methods S3, 

while a reproducible workflow of the analyses in this paper is included as the 

vignette of the crgnet package (Methods S1).

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cells—Low-passage polyclonal young adult mouse colon (YAMC) cells were originally 

derived from males and females of the Immorto-mouse (H-2Kb /tsA58 transgenic mouse) 

and gifted to the Land laboratory by a gift from R. Whitehead and A.W. Burgess (D’Abaco 

et al., 1996; Whitehead et al., 1993). YAMC cells express temperature sensitive simian virus 

40 large T (tsA58) under the control of an interferon γ inducible promoter were maintained 

at the permissive temperature (33°C) for large T in the presence of interferon γ to support 

conditional immortalization in vitro. This permits expansion of the cells in tissue culture. 

In contrast, exposure of YAMC cells to the non-permissive temperature for large T (39°C) 

in the absence of interferon g leads to growth arrest followed by cell death, indicating 

the absence of spontaneous immortalizing mutations in the cell population. The cells were 

cultured on Collagen IV-coated dishes (1μg/cm2 for 1.5 hr at room temp; Sigma) in RPMI 

1640 medium (Invitrogen) containing 10% (v/v) fetal bovine serum (FBS) (Hyclone), 1 

× ITS-A (Invitrogen), 2.5 μg/ml gentamycin (Invitrogen), and 5 U/ml interferon γ (R&D 

Systems). All experiments testing the effects of RasV12 and p53175H were carried out at the 

non-permissive temperature for large T function (39°C) and in the absence of interferon γ.

Animals for allograft tumor assays—Tumor formation was assessed by sub-cutaneous 

injection of perturbed or control cells into nulliparous female adult CD-1 nude mice 

(Crl:CD-1-Foxn1nu, Charles River Laboratories, purchased at 6 – 8 weeks of age). 

Animals were housed 3 – 5 per cage in micro-isolator conditions, necessitated by their 

immunocompromised status. Cells were implanted at a dosage of 5×105 per injection in 

RPMI 1640 media with no additives. For each gene perturbation three to six biological 

replicates were performed; 4 – 8 injections were performed for each replicate of perturbed 

cells and vector controls. Two cell implantations were performed on each mouse in the 

left and right flanks; animals received exclusively perturbed cells or vector control cell 

populations. Tumor size was measured by caliper at 2, 3 and 4 weeks post-injection. Tumor 

volume was calculated by the formula volume = (4/3)πr3, using the average of two radius 

measurements. Tumor reduction was calculated based on the difference of average tumor 

volume following each gene perturbation as compared to the vector control tumors from 

the same batch of perturbations. Statistical significance of difference in average tumor size 

was calculated by the Wilcoxon signed-rank test with Benjamini-Hochberg multiple testing 

correction (Hochberg and Benjamini, 1990).

METHOD DETAILS

Cells—Young adult mouse colon (YAMC) cells and derivation of transformed cells with 

multiple oncogenic lesions were derived and are used as described elsewhere (McMurray 

et al., 2008; Whitehead et al., 1993). Briefly, polyclonal cell populations harboring mutant 

forms of p53 (p53175H) and Ha-Ras (RasV12) (abbreviated as mp53/Ras) were derived 

by retroviral infection of low-passage polyclonal YAMC cells. YAMC cells were cultured 

on Collagen IV-coated dishes (1 μg/cm2 for 1.5 hr at room temp; Sigma) in RPMI 1640 

medium (Invitrogen) containing 10% (v/v) fetal bovine serum (FBS) (Hyclone), 1 × ITS-A 

(Invitrogen), 2.5 μg/ml gentamycin (Invitrogen), and 5 U/ml interferon γ (R&D Systems). 

All experiments testing the effects of genetic perturbations were carried out at the non-

permissive temperature for large T function (39°C) and in the absence of interferon γ.
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Genetic perturbation of gene expression—cDNAs expressed via pBabe retroviral 

vectors or pLenti6 lentiviral vectors and shRNA delivered via pSuper-retro retroviral vectors 

or pLKO lentiviral vectors were used to generate gene perturbations. These were tested by 

comparison of RNA expression levels in empty vector-infected cells and cells subjected to 

gene perturbation via SYBR Green qPCR with gene-specific primers.

cDNA clones were obtained from the IMAGE consortium collection, distributed by Open 

Biosystems, or PCR-cloned from murine cDNA using sequence-specific primers except 

for murine Jagged2 (Jag2) and Notch3-intracellular domain (Notch3-ICD) (gifts of Dr. L. 

Milner). All cDNAs were sequence-verified prior to use and were cloned into the retroviral 

vector pBabe-puro (Morgenstern and Land, 1990).

shRNA molecules were designed using an algorithm (Yuan et al., 2004), available at 

http://sirna.wi.mit.edu/home.php, for cloning into the pSuper-retro vector (Oligoengine) or 

purchased as clones in the pLKO vector. Target sequences for pSuper-retro cloning were 

synthesized as forward and reverse oligonucleotides (IDT), which were annealed and cloned 

into the vector. For each upregulated gene, we identified two or three independent shRNA 

target sequences yielding at least 50% reduction in gene expression with the goal to guard 

against off-target effects (Figure S2). For this purpose between four and six shRNA targets 

for each gene were tested. In the case of SerpinB2, only one shRNA target sequence yielded 

appropriate levels of knock-down, reducing mRNA expression to levels comparable to those 

in YAMC cells.

Retroviruses were produced following transient transfection of ΦNX-eco cells, while 

lentiviruses were produced following transient transfection of 293T cells. Infections were 

carried out in media with 8 μg/mL polybrene. Selection with 5 μg/mL puromycin, and where 

applicable, 200 μg/mL hygromycin B, was used to generate polyclonal populations of cells 

stably expressing the indicated cDNAs and/or shRNAs. To test reproducibility of the effects 

of CRG gene perturbations on tumor formation 2–4 independent replicates of such cell 

populations were derived (Figure S2).

For combined perturbations, cDNA or shRNA for one gene in the pair was sub-cloned 

into the appropriate pBabe-hygro or pSuper-retro-hygro retroviral vector, allowing for 

consecutive, independent selection for each gene perturbation introduced.

Quantitation of gene perturbation—The efficiency of gene perturbations was tested 

by comparison of RNA expression levels in empty vector-infected mp53/Ras cells and 

cells subjected to gene perturbation. Re-expression or knock-down was also compared with 

the respective levels of RNA expression in YAMC control cells. For collection of RNA, 

mp53/Ras cells were grown at the 39°C for 2 days, followed by serum withdrawal for 24 

hr. Total RNA was extracted from cells following the standard RNeasy Mini Kit protocol for 

animal cells, with on-column DNase digestion (QIAGEN).

SYBR Green-based quantitative PCR was run using cDNA produced as described below for 

TLDA, with 1x Bio-Rad iQ SYBR Green master mix, 0.2 μM forward and reverse primer 

mix, with gene-specific qPCR primers for each gene tested. Primers were identified using 
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the Primer Bank database15, available at https://pga.mgh.harvard.edu/primerbank/index.html 

or designed using the IDT PrimerQuest tool (https://www.idtdna.com/Scitools/Applications/

Primerquest/). Differential gene expression was calculated by the ∆∆Ct method, described 

below, using RhoA as an endogenous reference gene. Reactions were run on the iCycler 

(Bio-Rad), as follows: 5 min at 95°C, 45 cycles of 95°C for 30 s, 58 to 61°C for 30 s, 68 to 

72°C for 45 s to amplify products, followed by 40 cycles of 94°C with 1°C step-down for 30 

s to produce melt curves.

As expected, the magnitude of perturbation varies between cDNAs and replicates, and falls 

into the following groups. For tumor-inhibitory CRGs, all replicates express cDNAs at levels 

below, at or moderately above YAMC mRNA expression levels with the exception of Pvrl4, 

for which we cannot exclude the possibility that its tumor inhibitory effects are due to 

overexpression of the cDNA. For non-tumor-inhibitory CRGs, cDNA expression levels were 

found at or above the levels of the corresponding YAMC mRNAs (Figure S2).

Allograft assays—Tumor formation was assessed by sub-cutaneous injection of cells into 

CD-1 nude mice (Crl: CD-1-Foxn1nu, Charles River Laboratories). Murine mp53/Ras cells 

were grown at 39°C for 2 days prior to injection and implanted via sub-cutaneous injection 

of 5×105 mp53/Ras in RPMI 1640 with no additives. For each gene perturbation three to six 

biological replicates were performed; 4 – 8 injections were performed for each replicate of 

perturbed cells and vector controls. Tumor size was measured by caliper at 2, 3 and 4 weeks 

post-injection. Tumor reduction was calculated based on the difference of average tumor 

volume following each gene perturbation as compared to the vector control tumors from 

the same batch of perturbations. Statistical significance of difference in average tumor size 

was calculated by the Wilcoxon signed-rank test with Benjamini-Hochberg multiple testing 

correction (Hochberg and Benjamini, 1990).

TLDA QPCR

Expression values for each of the CRGs were derived from TaqMan Low-Density QPCR 

Array (TLDA) data. The TaqMan Low-Density Array (Applied Biosystems) consists of 

TaqMan qPCR reactions representing the cooperation response genes and control genes 

(18S rRNA, GAPDH) in a microfluidic card. TLDA were used to measure gene expression 

patterns following genetic perturbation of CRGs. To generate cDNA for qPCR analysis, 

quadruplicate samples of mRNA from mp53/Ras cells harboring CRG perturbations were 

isolated and 10 μg/sample were mixed with 1x SuperScript II reverse transcriptase buffer, 

10 mM DTT, 400 μM dNTP mixture, 0.3 ng random hexamer primer, 2 μL RNaseOUT 

RNase inhibitor and 2 μL of SuperScript II reverse transcriptase in a 100 μL reaction (all 

components from Invitrogen). RT reactions were carried out by denaturing RNA at 70°C for 

10 minutes, plunging RNA on to ice, adding other components, incubating at 42°C for 1 

hour and heat inactivating the RT enzyme by a final incubation at 70°C for 10 minutes.

For each sample, 82 μL of cDNA was combined with 328 μl of nuclease free water 

(Invitrogen) and an equal volume of TaqMan Universal PCR Master Mix No AmpErase 

UNG (Applied Biosystems). The mixture was loaded into each of 8 ports on the card at 

100 μL per port. Each reaction contained forward and reverse primer at a final concentration 
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of 900 nM and a TaqMan MGB probe (6-FAM) at 250 nM final concentration. The cards 

were sealed with a TaqMan Low-Density Array Sealer (Applied Biosystems) to prevent 

cross-contamination. The real-time RT-PCR amplifications were run on an ABI Prism 

7900HT Sequence Detection System (Applied Biosystems) with a TaqMan Low Density 

Array Upgrade. Thermal cycling conditions were as follows: 2 min at 50°C, 10 min at 

94.5°C, 40 cycles of 97°C for 30 s, and annealing and extension at 59.7°C for 1 minute. 

Each individual replicate cDNA sample was processed on a separate card.

QUANTIFICATION AND STATISTICAL ANALYSIS

TopNet: Our approach to topological network analysis consists of the following specific 

steps:

1. Non-detect imputation through application of an ECM algorithm to non-random 

missing data (McCall et al., 2014)

2. Calculation of z-scores for each perturbation based on ∆∆Ct values to 

standardize expression fold changes.

3. Calculation of the probability of up- or downregulation in response to each 

perturbation by fitting a uniform/normal/uniform mixture model to the z-scores 

calculated in step 2.

4. Identification of ternary network models (Almudevar et al., 2011) which 

minimize the L1 distance between the network attractors and the estimated 

probabilities from step 3. For the network model presented in this manuscript 

there are approximately 2.48 × 10763 potential networks, so we use a specific 

implementation of replica exchange Monte Carlo (Swendsen and Wang, 1986) 

to search the model space in parallel across the nodes of a high-performance 

computing cluster.

5. Summarization of network topology by reporting parent-child relationships that 

are present in the vast majority, here at least 80 out of 100, of independent 

network fits.

6. Generation of testable hypotheses regarding interdependencies among genes in 

the network via examination of the network topology and the biological effects 

of perturbation of the genes in the network, in this manuscript inhibition of tumor 

growth in vivo.

Several of these steps are described in more detail in the following subsections.

Preprocessing of gene expression data—Gene expression values were derived using 

SDS 2.0 and 3.0 software packages (Applied Biosystems). As previously reported in 

other datasets, we observed a strong dependency between the proportion of non-detects 

(those reactions failing to produce fluorescence values above a certain threshold) and the 

average observed expression value. Non-detects were treated as non-random missing data 

and imputed using the R/Bioconductor package non-detects (McCall et al., 2014). The R/

Bioconductor HTqPCR package (Dvinge and Bertone, 2009) was used to normalize the data 

to Becn1 expression, which was shown to have relatively low variability across replicate 
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control samples, and accounts for much of the technical variability between samples 

(detailed in Methods S1).

Differential gene expression was calculated by the ∆∆Ct method. Briefly, using threshold 

cycle (Ct) for each gene, change in gene expression was calculated for each sample 

comparison by the formulae:

ΔCt test sample = Ct target gene,test sample − Ct reference gene,test sample

ΔCt control sample = Ct target gene,control sample − Ct reference gene,control sample

ΔΔCt = ΔCt test − ΔCt calibrator

In order to incorporate uncertainty into subsequent analyses, we estimate the probability that 

a gene is up- / downregulated in response to each perturbation by fitting a uniform / normal / 

uniform mixture model to approximate z-scores for each perturbation. This approach is 

similar to the probability of expression (POE) algorithm (Parmigiani et al., 2002).

Gene regulatory network reconstruction—The methodology used to estimate the 

GRN uses the theoretical framework developed in Almudevar et al. (2011). One aspect 

of TopNet’s approach to GRN modeling is a method of scoring the networks based on a 

measure of uncertainty in the differential expression estimates. Specifically, the network 

models are scored by summing the absolute value of the differences between probabilities of 

up- or downregulation and the attractors and subtracting the best theoretically possible score. 

This allows the network model to give more weight to data points with higher certainty 

(probabilities closer to 0 or 1). As an added benefit, the ability to produce non-integer 

network scores eased transitions between network models and significantly decreased 

computational time. Another aspect of TopNet is an improved search algorithm that uses 

replica exchange Monte Carlo (Swendsen and Wang, 1986) to parallelize the search across 

many nodes of a high-performance computing cluster. This allowed us to avoid becoming 

trapped in local optima and to fit larger more complex networks in substantially less time. 

Results presented in this manuscript are based on network fits each run for 1,000,000,000 

cycles in parallel across 20 processors with temperatures ranging from 0.001 to 1. We have 

also examined the transition functions, attractors, and trajectories all stored in the fits object, 

available within Methods S1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A network of non-mutated genes is critical to the malignant state

• TopNet can accurately model cellular responses to genetic perturbations

• TopNet is capable of pinpointing key architectural features of cancer cells

• TopNet has utility for identification of non-mutant targets for cancer 

intervention
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Figure 1. Impact of CRG perturbations on tumor formation
(A) Waterfall plot indicates percentage change in endpoint tumor volume of allografts 

following perturbation of individual CRGs in mp53/Ras cells. Perturbations significantly 

altering tumor size, as compared to matched controls are shown in gold (p < 0.1, Wilcoxon 

signed-rank test with Benjamini-Hochberg adjustment). Others are shown in gray. Arrows 

indicate genes chosen for inclusion in gene regulatory network modeling.

(B) Pie charts indicate the proportions of functional gene annotations according to the Gene 

Ontology database for all CRGs, tumor-inhibitory CRGs, and classical oncogenes and tumor 

suppressors, respectively. Colors signify biological processes, as indicated.

(C) Scheme summarizes the cellular localization and cell biological functions of proteins 

encoded by CRGs, colored as in (B). CRGs chosen for inclusion in gene regulatory network 

analysis are indicated by bold, underlined text.
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Figure 2. CRG connectivity
(A) Bar graph showing the expression levels of each CRG selected for network analysis, 

as compared to their baseline expression in non-transformed parental YAMC cells. Genes 

upregulated in mp53/Ras versus YAMC are shown in red, while downregulated CRGs 

are shown in blue. Measurements were made by TaqMan Low-Density Array (TLDA) for 

multiple replicates of each gene perturbation.

(B) Probability of change in expression of each CRG in response to individual CRG 

perturbations indicated, computed based on mRNA levels detected on TLDA for multiple 

replicates of each gene perturbation. Red denotes a likely increase in the expression of the 

downstream gene and blue denotes a likely decrease in expression. Note that the diagonal 

indicates the direction of perturbation, intended to restore levels of gene expression found in 

parental YAMC cells for each perturbed gene.
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(C) Connectivity graph showing the influence of given CRGs on the expression of other 

CRGs. Arrows indicate parent-child connections with |probability| > 0.5, colored as in (A) to 

indicate likely direction of change in the child. Nodes are colored as in Figure 1 to indicate 

tumor inhibitory effects of perturbation of the indicated CRGs (gold = inhibitory, gray = no 

significant change). Placement of nodes was chosen for comparison to Figure 5.
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Figure 3. Transition functions encode network behavior
Paths from perturbation of parent node HoxC13 to its possible children are diagrammed. 

Four network fits of 100 computed are represented. Marginal effects (single parent) and 

joint effects (multiple parents) are shown with transition function tables. For simplicity of 

visualization, the maximum in-degree shown here is 2, but the models applied allow for up 

to 4 parents to influence a given child node’s expression. Red nodes indicate that the gene 

increases its expression, while blue denotes reduced expression.
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Figure 4. Gene regulatory network reconstruction process
The network modeling algorithm begins with a null network in which no gene affects any 

other gene (top left). This produces a set of null attractors wherein the perturbation of 

any gene does not produce a change in any other gene. The network models are scored 

by summing the absolute value of the differences between the probabilities of up- or 

downregulation and the attractors, which are then standardized by subtracting the best 

theoretically possible score. Comparing the null attractors to the calculated probabilities 

results in substantial differences, which produce a score of 40.36, indicating that the 

network model does not explain the observed data well. Random changes in topology and/or 

transition functions are made to the network model and the process is repeated. Here, we 

show snapshots of the process after the first 10,000 steps, the next 10,000 steps, then after an 

additional 1 million steps, and finally after 1 billion more steps, at which point, the network 

model produces attractors that match the probabilities calculated from the data very well.
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Figure 5. Summary of CRG network topology
The network models produced by 100 independent fits are mapped by reporting the 

proportion of networks in which an edge (parent-child relationship) appears in >80% of the 

network models. The node color indicates the effect of perturbation of that node on tumor 

formation capacity (as shown in Figure 1 and used in Figure 2, gold = tumor inhibitory 

perturbation, gray = no significant change). Experimentally tested epistatic interactions are 

indicated by green arrows.
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Figure 6. Epistatic CRG interactions affecting cancer phenotype
(A) Diagram of a subnetwork of the GRN shown in Figure 5, whose edges are indicated 

by solid lines, with the addition of 2 edges seen only in the connectivity graph but not in 

the topological map (dashed lines). Red arrows indicate that perturbation of the parent gene 

increases the expression of the child, while blue arrows denote reduced expression of the 

child in response to the parent perturbation. Nodes are colored as in Figures 2 and 5.

(B–G) Boxplots show tumor growth in response to indicated single and double perturbations 

targeting parent node HoxC13 and its predicted children, or child node Sfrp2 and its parents. 

KD denotes knockdown perturbations; all other perturbations induce overexpression. 

Perturbations significantly decreasing tumor size, as compared to matched controls are 

indicated by an asterisk (*p < 0.05, unadjusted Wilcoxon signed-rank test). Double gene 

perturbations showing significantly different tumor size as compared to individual gene 
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perturbations are indicated by a hash mark (#, p < 0.1, unadjusted Wilcoxon signed-rank test 

versus each individual perturbation).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

pBabe retroviral vector containing either puromycin, blasticidin 
or hygromycin resistance genes

Addgene pBabe-puro: pBabe-hygro: pBabe-blast

pSuper retroviral vector containing puromycin resistance gene Oligoengine pSuper.retro.puro

pLKO lentiviral vector containing puromycin resistance gene Addgene pLKO.1 puro

pLenti/UbC/V5 lentiviral vector containing puromycin 
resistance gene

Invitrogen pLenti6/UbC/V5

Chemicals, peptides, and recombinant proteins

RPMI 1640 media Invitrogen 11875119

Fetal bovine serum Hyclone SH30071

ITS-A Invitrogen 51300044

Gentamycin Invitrogen 15750060

Interferon gamma R&D Systems 485MI

Rat tail derived collagen IV Corning 354236

Polybrene Sigma-Aldritch H9268

Puromycin Sigma-Aldritch P7255

Hygromycin Invitrogen 10687010

Blasticidin Invitrogen R21001

Critical commercial assays

Please see Table S3 for listing of TaqMan qPCR assays utilized 
in TaqMan Low Density Array (TLDA) assays

Applied Biosystems N/A

RNeasy Mini Kit with on-column DNase digestion QIAGEN 74106

High Capacity cDNA Reverse Transcription Kit Applied Biosystems 4368814

iQ SYBR Green qPCR Master Mix Bio-Rad 1708884

Experimental models: cell lines

Young adult mouse colon cells derived from the H-2Kb / tsA58 
transgenic mouse

Gift of R. Whitehead and A.W. 
Burgess

YAMC cells

“Phoenix” cells producing murine ecotropic virus (ΦNX-ECO 
or Phoenix-ECO)

ATCC Phoenix-ECO

Human embryonic kidney 293 cells expressing SV40 T antigen ATCC HEK293T

Experimental models: organisms/strains

Crl: CD-1-Foxn1nu female mice Charles River Laboratories Crl: CD-1-Foxn1nu

Oligonucleotides

Please see Table S2 for listing of primers for SYBR-green 
qPCR

IDT N/A

Recombinant DNA

Please see Table S1 for listing of plasmids generated for these studies

Software and algorithms

Sequence Detection System (SDS) software, versions 2.0 and 
3.0

Applied Biosystems N/A

Non-detect imputation algorithm (nondetects package) Bioconductor https://doi.org/10.18129/
B9.bioc.nondetects
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REAGENT or RESOURCE SOURCE IDENTIFIER

TopNet algorithm (ternarynet package) Bioconductor https://doi.org/10.18129/
B9.bioc.ternarynet

Reproducible workflow for this paper (crgnet package) This paper Methods S1
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