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ABSTRACT: Nuclear magnetic resonance (NMR) chemical shifts are a
direct probe of local atomic environments and can be used to determine the
structure of solid materials. However, the substantial computational cost
required to predict accurate chemical shifts is a key bottleneck for NMR
crystallography. We recently introduced ShiftML, a machine-learning model
of chemical shifts in molecular solids, trained on minimum-energy geometries
of materials composed of C, H, N, O, and S that provides rapid chemical shift
predictions with density functional theory (DFT) accuracy. Here, we extend
the capabilities of ShiftML to predict chemical shifts for both finite
temperature structures and more chemically diverse compounds, while
retaining the same speed and accuracy. For a benchmark set of 13 molecular
solids, we find a root-mean-squared error of 0.47 ppm with respect to experiment for 1H shift predictions (compared to 0.35 ppm for
explicit DFT calculations), while reducing the computational cost by over four orders of magnitude.

■ INTRODUCTION
The atomic-level structures of solid materials are of high
interest across many areas of chemistry. While X-ray diffraction
(XRD) is the most well-established method for determining
the structure of crystalline compounds, many materials lack the
long-range order required to perform single-crystal XRD.
Solid-state nuclear magnetic resonance (NMR) directly probes
local atomic environments and so does not require a long-
range order, making it a popular method for studying the
structure of microcrystalline and disordered solids. Notably,
combining solid-state NMR experiments with chemical shift
calculations, a process typically referred to as NMR
crystallography, allows determination of a wide range of
structures,1−4 from pharmaceuticals5−7 to capping groups on
nanoparticle surfaces8 to the spacer layers in two-dimensional
hybrid perovskite materials.9 Striking recent examples include
the determination of the structures of drug molecules in
pharmaceutical formulations,10,11 and the precise determina-
tion of the structure of active sites in enzyme reaction
pathways12,13 and of the disordered structure of an amorphous
drug.14

A key step in NMR crystallography is the computation of
chemical shifts for candidate structures. Here, high accuracy is
required in order to capture the effect of the particular
conformation and packing of the molecular building blocks on
the chemical shifts and to allow the identification of the correct
structure among a set of potential candidates based on a
comparison between computed and measured chemical
shifts.15−19 With the current best calculations, the root-mean-

square error (RMSE) between the experiment and calculation
can be as low as 1.5 ppm for 13C and 0.2 ppm for 1H.2,18,20−22

Plane-wave density functional theory (DFT) methods using
the gauge including projected augmented wave (GIPAW)
formalism23−25 generally offer a good tradeoff between
accuracy and computational cost for computing chemical
shifts in small periodic structures. Consequently, DFT has
been widely used in NMR crystallography to determine the
structure of powdered solids.1−3,26 However, the computa-
tional cost of DFT methods severely limits the size of systems
accessible, preventing the study of large or disordered systems.
In recent years, machine-learning models have proven a

powerful tool for supplementing and bypassing intensive
quantum-mechanical calculations of molecular and atomic
properties. In particular, NMR chemical shifts have been
modeled using kernel methods27−29 and neural networks.30−35

Such approaches have proven able to yield chemical shifts to
within DFT accuracy at a fraction of the computational cost,
allowing applications to large ensembles of large systems.
We have previously introduced ShiftML,15,36 a machine-

learning model of chemical shifts trained on GIPAW DFT data
for 3,546 structures from the Cambridge structural database
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(CSD),37 allowing fast and accurate predictions of chemical
shifts for any molecular solid containing C, H, N, O, and S
atoms. We have further demonstrated how this model can be
used to enable new approaches in NMR crystallography. It has
enabled structure determination of amorphous materials
through chemical shift computations of molecular dynamics
(MD) snapshots containing thousands of atoms14 and enabled
accounting for the effects of thermal and quantum-mechanical
nuclear motion on the experimentally observable chemical
shifts of crystalline solids based on path-integral molecular
dynamics (PIMD) simulations.19 Moreover, it has allowed on-
the-fly chemical shift calculations in a chemical shift-driven
direct structure determination protocol.38 ShiftML also opens
up the possibility to transform databases of crystal structures
into databases of chemical shifts, which we have used, for
example, to build a Bayesian framework to assign the NMR
spectra of organic crystals.39

Although ShiftML constitutes a powerful method for
computing chemical shifts with high accuracy and at a low
computational cost, two important limitations prevent its more
widespread use. First, the model is currently limited to
compounds containing only C, H, N, O, and S atoms. While
these elements are among the most prevalent in the CSD,
numerous organic crystals contain elements outside of this set,
leaving them beyond the scope of ShiftML. Second, the
training set of ShiftML only contains structures that were
geometry-optimized using DFT, resulting in lower accuracy for
predictions on finite temperature or distorted structures, or for
structures that are geometry-optimized using other methods
(such as semi-empirical electronic structure calculations40,41).
Here, we present ShiftML2, an updated version of ShiftML,

trained on GIPAW DFT chemical shifts for an extended set of
over 14,000 structures containing any of 12 common elements
(H, C, N, O, S, F, P, Cl, Na, Ca, Mg, and K) and composed of
roughly equal amounts of relaxed and thermally perturbed
structures of crystals extracted from the CSD. ShiftML2 shows
slight improvements over the previous versions of ShiftML on
DFT-relaxed structures (1H RMSE of 0.47 ppm against 0.51
ppm for the ShiftML model described in ref 15, which we refer
to as ShiftML1 here). More importantly, it effectively retains
this accuracy for distorted structures, for which the perform-
ance of ShiftML1 degrades dramatically, while additionally
allowing chemical shift computations for more chemically
diverse structures.

■ METHODS
Configurational Sampling. In order to construct suitable

reference data for an accurate and robust ShiftML2 model, we
first extracted all crystal structures from the CSD with unit cells
containing no more than 200 atoms (for which high-
throughput first-principles calculations are comparatively
affordable) and including H and C, but no additional elements
other than N, O, S, F, P, Cl, Na, Ca, Mg, and K. We note that
we initially allowed the presence of Br and I atoms but later
discarded the structures containing these atoms due to the
need for relativistic corrections to obtain accurate shieldings
for atoms in their vicinity. After extracting a random selection
of 1,000 molecular crystals as a test set, the selection of the
training set was performed by farthest point sampling (FPS)42

of the remaining 140,373 structures based on the kernel-
induced pairwise distances.

= +D X X k X X k X X k X X( , ) ( , ) ( , ) 2 ( , )i j i i j j i j (1)

Here, the kernel function k( · , · ) = (Xi · Xj)2 measures the
similarity of the average smooth overlap of atomic positions
(SOAP) power spectra43 of the constituent atoms within a
crystal structure, Xi, computed using the hyperparameters
specified in Supplementary Table S1. The first 10,000 FPS-
sorted (most structurally diverse) structures were selected as
the training set.
All training and test structures were relaxed using DFT-fixed

cell geometry optimizations using the Quantum ESPRESSO
(QE) electronic structure package44,45 with the PBE density
functional,46 a Grimme D2 dispersion correction,47,48 wave-
function and charge density energy cut-offs of 60 and 240 Ry,
respectively, and ultrasoft pseudopotentials with GIPAW
reconstruction.49,50 To render this computation efficient,
only the Gamma point was accounted for. Further details
may be found in the SI.
Subsequently, short constant-volume MD simulations of 500

fs were performed using i-PI51,52 to drive the dynamics, and the
above QE setup to evaluate energies and forces. We used a
timestep of 1 fs and a Generalized Langevin equation
thermostat53,54 to equilibrate the system at 300 K.
Finally, we collected two structures for each molecular

crystal in the training and test sets, the relaxed structure, and a
thermalized MD structure (the last in the trajectory) and
proceeded to compute the associated GIPAW-DFT chemical
shieldings for all 22,000 resulting structures.
GIPAW-DFT Chemical Shieldings. The GIPAW NMR

calculations were performed using the QE code with the same
DFT parameters as for the structure relaxation above but using
refined plane wave and charge density energy cut-offs of 100
and 400 Ry, respectively, a Monkhorst−Pack k-point grid55

with a maximum spacing of 0.06 Å−1, and the ultrasoft
pseudopotentials with GIPAW reconstruction from the USSP
pseudopotential database v1.0.0.
Finally, all structures were discarded, which displayed at least

one outlier shift (defined as being outside the range of
chemical shifts between the 1st and 99th percentile of all shifts
of that element by at least 1.5 times that range), or where the
calculation failed. Overall, 2650 structures were discarded
because the self-consistent loop did not reach the high level of
convergence needed for reliable GIPAW calculations, we
removed 3313 additional structures containing Br or I atoms,
and we discarded 24 structures that displayed outlier
shieldings. This led to final training and test sets containing
14,254 and 1759 structures, respectively.
Machine Learning Model.We use kernel ridge regression

(KRR)56 to predict the isotropic chemical shielding of an atom
based on its local atomic environment as follows:

= = ·X wk X X w X X( ) ( , ) ( )
i

N

i i
i

N

i
T

i
(2)

where X and Xi are symmetry-adapted descriptors, which
encode the local atomic environment around the atom of
interest and those in the training set, respectively, and wi
denotes the regression weight associated with training sample i.
k(·,·) is the kernel function that defines the similarity between
two atomic environments. Here, we measure the similarity
between two environments as the scalar product between the
vectors corresponding to their descriptor, raised to a power ζ.
Training a KRR model involves determining the weights wi
such that eq 2 is best satisfied for the training data, with an
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additional regularization term that reduces the magnitude of
regression weights. Further information is available in the SI.
Uncertainty Estimation. Uncertainty estimation is

performed using a resampling approach to generate a
committee of M = 32 KRR models,57 trained on random
two-fold splits of the training data. The final prediction for a
sample i in the test set, σ̂i, is given by the mean of the
prediction for each model, and the estimated uncertainty is
defined as the standard deviation si of the prediction of each
model, rescaled by a factor α given by57

= +
M

M
M N s

1 3
1

1 ( )

i

i i

itest test

2

2
(3)

where Ntest is the size of the test set, and the sum runs over all
test samples.
Local Atomic Environment Descriptor. We describe

local atomic environments using smooth overlap of atomic
positions (SOAP) power spectra43 as implemented in
librascal.58 We use a sparse implementation of the SOAP
descriptors, making use of the sparsity of elements in local
environments around individual atoms.
The relevant hyperparameters were optimized by five-fold

cross-validation performed on the 1H environments of a subset
of 1000 training structures, selected at random other than
including all training structures containing Na, Ca, Mg, or K.
The latter ensures that these elements are represented during
hyperparameter optimization, despite their low abundance in
the training data. The structures selected for hyperparameter
optimization contain a total of 27,802 1H environments. In
each cross-validation fold, the training data were partitioned
into three equal parts, and a KRR model was trained on each
part. This was done in order to reduce the computational
resources required to train the models for each split. The
selection of descriptor parameter values was based on the
RMSE obtained on the validation data. The explored and
selected hyperparameter values can be found in the SI. We
note that ref 15 found almost identical hyperparameters to be
optimal for H, C, N, O, and S through independent
optimizations for the different elements. We therefore apply
the hyperparameters optimized for 1H to the other elements
without further optimization, except for the optimal radial
basis,59 which was constructed individually with the complete
final training data for each element.
Farthest Point Sampling of Training Environments.

The training data were sorted using FPS42 based on distances
between pairs of environments Xi and Xj defined as in eq 1.
This serves two purposes: first, it permits the removal of
duplicate environments arising from, for example, equivalent
atomic sites related by the crystal symmetries in relaxed
structures. Second, it identifies the most structurally diverse set
of training environments.
To eliminate redundant environments and distill a computa-

tionally manageable number of informative environments, we
split the training data into randomly selected batches of 50,000
samples (atomic environments) (because FPS is not computa-
tionally feasible on the whole set). FPS was then used on each
batch and stopped once the minimum distance between FPS-
selected samples reached 10−2 for 1H and 10−3 for all other
elements. The FPS selection was then repeated after shuffling
the environments, recombining them into different batches of
50,000 samples and increasing the distance threshold in each

batch by steps of 10−3, until a total of fewer than 100,000
environments remained.
Outlier Detection and Model Training. When required,

the FPS-selected training environments were randomly
selected to a maximum of 216 samples in order to limit the
size of the kernel required to predict chemical shifts. Then,
five-fold cross-validation was performed. For each fold, a
committee of eight KRR models was trained. To this end, the
training split was further subsampled, training each KRR model
on a random selection of half of the training split for a given
fold. For each fold, the predictions and associated uncertainty
estimates for the validation split were used to identify and
discard outlier environments. In practice, environments were
discarded if the residual error exceeded both the standard
deviation of the shifts in the training data and twice the
associated uncertainty estimate. After removing these outliers,
32 KRR models were trained on randomly selected environ-
ments making up half of the remaining curated data to
construct the final model of shifts. The rescaling factor α for
uncertainty estimation was obtained from the predictions on
the test set.
Atom Type Identification. The different atom types,

defined here as hybridization and formal charge, in the training
and test structures were identified using the RDKit60 Python
package on the asymmetric unit of the crystals extracted using
the CSD Python API.37 The structures where RDKit failed to
identify bonds and/or formal charges were discarded from the
atom-type analysis. Carbon atoms identified as charged were
set to a neutral charge, as well as nitrogen atoms identified with
a negative charge and oxygen atoms identified as positively
charged. This was done upon visual inspection of a subset of
crystal structures displaying such unusual atom types,
confirming that such atom types were incorrectly determined
by the package. In total, atomic types of 6,960 out of the
10,593 final training structures and 1,443 out of the 1,759 test
structures were identified.
Comparison with Experimental Chemical Shifts. To

further test the resulting models, we performed plane-wave
DFT calculations for 13 structures with assigned experimental
chemical shifts with the same level of theory as for the
computation of DFT shieldings of the training and test sets.
Comparison between computed (or predicted) shieldings and
experimental chemical shifts was performed by linear
regression of the shieldings computed with the corresponding
experimental shifts, using average values of chemically
equivalent shifts and resolving any assignment ambiguity by
selecting the assignment resulting in the minimum RMSE.

■ RESULTS AND DISCUSSION
Training Set Selection and Model Training. Because of

the lack of large databases of experimental chemical shifts in
molecular solids, we trained the model on shielding values
computed by DFT, as was done previously for ShiftML1.15,36

This ensures both consistency in the training data as well as the
ability to perform high-throughput computations to obtain a
substantial amount of training data in reasonable time. The
training structures were chosen to be as diverse as possible
through FPS. Because computed shieldings are related to
chemical shifts by a simple linear relationship, we use the two
terms interchangeably.
High quality of the training data is key to producing an

accurate machine learning model. In addition, the kernel
model framework used here has a linear time and memory
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complexity with respect to the training set size for inference. It
is thus important to reduce the amount of training data while
retaining diverse atomic environments and removing outliers
to obtain both fast and accurate predictions of chemical shifts.
To this end, we performed an iterative, batched FPS of the
chemical environments, as described in the Methods section.
Figure 1A shows the first and last FPS iterations on typical

batches. The significant drop in minimum distance between
FPS-selected samples after selecting 30,000 of the 50,000
environments in an initial batch corresponds to symmetrically
equivalent atomic sites in relaxed crystal structures. After
gathering the FPS-selected environments from all batches after
the final iteration, we obtained 67,535 1H environments.
Figure 1B, C highlights the outliers among the selected 1H

training environments identified following the scheme
described in the Methods section. In total, 145 1H environ-

ments were considered as outliers because they exhibit both
relatively large prediction error and comparatively small
prediction uncertainty (red points and lines in Figure 1C).
Among the final 1H training environments, 86% were from
distorted structures and 14% from relaxed structures. This
highlights the importance of the presence of distorted
structures in the training data in order to obtain a uniform
sampling of the space of possible atomic environments.
The final model was constructed by training 32 models on

random half splits of the remaining training environments.
Prediction uncertainties were estimated as the rescaled
standard deviation of the 32 predictions to fit the error
distribution, as described in ref 61.
Model Evaluation and Comparison to ShiftML1.

Figure 2 shows correlation plots between predicted and
DFT-computed 1H shieldings in the test set as well as the
associated distribution of prediction errors. We obtain an
RMSE of 0.52 ppm and an R2 coefficient of 0.97, with 95% of
the predictions having an error below 1 ppm. The RMSE was
found to be slightly lower in relaxed structures (0.48 ppm)
compared to MD structures (0.53 ppm). The presence of
sodium or magnesium in crystal structures was found to raise
both the prediction error (Figure 2C) and, to a lesser extent,
uncertainty (Figure 2D). We attribute that to the relatively low
number of structures containing these elements in the training
set (226 structures containing Na, 65 containing Mg), coupled
to the high charge density of these ions which induces a large
change in the shielding on neighboring atomic sites. Although
calcium and potassium are not significantly better represented
in the training set (145 structures containing Ca, 176
containing K), their reduced charge densities compared to
Mg and Na induce lower perturbations of the shielding of
neighboring atomic sites, which are better captured by the
kernel.
We observe a reduced prediction uncertainty and error for

shieldings above 20 ppm (see Supplementary Figure S8). This
behavior is expected considering that 90% of the training data
have DFT shieldings computed above 20 ppm, which
corresponds to typical chemical shifts of aliphatic and aromatic
CH protons (<10 ppm). The reduced density of training data
at lower shieldings (corresponding to higher chemical shifts)
results in increased error and uncertainty of the predictions.
To compare ShiftML1 and ShiftML2, we apply both models

to the ShiftML1 test set, as well as all structures from the
current test set which contain exclusively H, C, N, O, and S
atoms (i.e., those for which ShiftML1 is applicable). Figure 3
shows the 1H shift predictions of the two models for the
ShiftML1 test set (Figure 3A, B) and for the relaxed (Figure
3C,D) and finite temperature (Figure 3E,F) structures from
the ShiftML2 test set, which only contain H, C, N, O, and S
atoms. Table 1 summarizes the results obtained by both
models. There are two striking conclusions that are illustrated
by the figure and table. First, overall, ShiftML2 displays slight
improvements over ShiftML1 for relaxed structures (0.47 ppm
RMSE compared to 0.49 ppm on the ShiftML1 test set, and
0.47 ppm RMSE compared to 0.51 ppm on relaxed structures
from the ShiftML2 test set), indicating that the increase in the
number of training environments was sufficient to avoid
deterioration of the accuracy despite the greater chemical
diversity. Second, ShiftML2 is substantially more accurate for
finite temperature structures (0.53 ppm RMSE for ShiftML2
compared to 0.98 ppm for ShiftML1), highlighting the greater
robustness of a model trained on finite temperature structures

Figure 1. (A) First (blue) and last (red) FPS selection step for a
batch of up to 50,000 1H environments. The blue and red dashed
lines show the threshold for the minimum distance between FPS-
selected samples set to select environments in the first and last FPS
selection steps, respectively. (B) Comparison of DFT-computed 1H
shieldings and predictions for the training environments obtained
through 5-fold cross-validation. (C) Comparison of the absolute error
of the prediction and predicted uncertainty for the training
environments selected by FPS. The red lines indicate the criteria
used to discard outliers (red points in B and C).
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when predicting atomic properties for distorted structures. To
confirm the robustness of ShiftML2 toward distorted
structures, we evaluated the error against DFT-computed 1H
shieldings for up to 50 snapshots taken every 100 fs from MD
simulations of the crystal structures of cocaine, AZD5718 and
form 4 of AZD8329. We found that the average RMSEs along
the MD trajectories were only slightly above the RMSEs
obtained for the relaxed structures (0.58 ppm against 0.55 ppm
RMSE for AZD5718, 0.50 ppm against 0.45 ppm RMSE for
form 4 of AZD8329, and 0.49 ppm against 0.42 ppm RMSE for
cocaine, see Supplementary Figure S9).
This is a key improvement compared to the previous

ShiftML version because it allows accurate predictions of
chemical shifts beyond relaxed structures and yields a better
description of shifts in (PI)MD snapshots, and for
intermediate structures during structural optimization.
The ability of the model to generalize to distorted structures

is key in many applications of NMR crystallography. In
particular, it allows accurate computation of chemical shifts on
structures that are geometry optimized with different levels of
theories (e.g., force fields or DFTB), which is important for the
accurate description of shifts in MD simulations of materials.14

It also enables more confident on-the-fly computations of
chemical shifts of intermediate structures during the
optimization of crystal structures in chemical-shift driven

structure determination protocols, resulting in a potentially
more powerful driving force toward the experimental
structure.38

Figure 4 shows the prediction error for different types of
protons in the test set. The two most common proton types
H−C(sp3) and H−C(aromatic), making up 90% of the test
set, yielded chemical shift RMSEs below 0.5 ppm. All other
proton types displayed chemical shift RMSEs below 0.9 ppm,
with the exception of alkyne protons, for which the RMSE was
found to be 5.3 ppm. Such a high error is explained by the
presence of only two alkyne protons identified in the final
training data. Interestingly, we find that protons attached to
nitrogens in charged groups display a lower error compared to
their neutral counterparts. Molecular salts were found to
display comparable shift RMSEs to neutral compounds. H-
bonded protons yielded a chemical shift RMSE of 0.79 ppm.
Experimental Benchmark Set and Polymorphs. We

evaluate the accuracy of the model with respect to
experimental 1H chemical shifts using a benchmark set of 13
molecular crystals made up of cocaine, form 4 of AZD8329,
theophylline, uracil, naproxen, the co-crystal of 3,5-dimethy-
limidazole, 4,5-dimethylimidazole, AZD5718, furosemide,
flutamide, the co-crystal of indomethacin and nicotinamide,
flufenamic acid, the potassium salt of penicillin G, and
phenylphosphonic acid.14,26,36,62−65 Figure 5A compares the

Figure 2. (A) Comparison of DFT-computed 1H shieldings and ShiftML2 predictions on the test set. (B) Histogram of the of prediction error
between ShiftML2 predictions and DFT-computed shieldings for 1H environments. Comparison of 1H (C) chemical shift RMSE and (D) average
prediction uncertainties on test structures containing (blue) or lacking (red) a given element. Comparison of DFT-computed 1H shieldings and
ShiftML2 predictions on (E) relaxed and (F) MD structures in the test set. Black lines in (A, E, and F) show perfect correlations.
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predicted and experimentally measured shifts for this set. We
obtain a RMSE of 0.47 ppm, compared to 0.35 ppm using
DFT. For reference, the RMSE obtained on the experimental
benchmark set for ShiftML1 (containing the six first molecular
solids mentioned previously) is 0.41 ppm for ShiftML2,
compared to 0.39 ppm for ShiftML1 and 0.36 for DFT. This
further highlights that the accuracy of ShiftML1 for relaxed
structures has been retained by ShiftML2, while extending the
capabilities of the model to predict shifts for more chemically
and structurally diverse structures. Notably, within the limits of
the small experimental set used here, the accuracy against
experimental shifts is found to decrease when including

structures containing F, Cl, P, or K atoms, while DFT
remained at the same level of accuracy. Because no such
deterioration is observed for the structures in the test set (see
Figure 2C), we attribute this to the chemical environments in
the experimental set, which are not well represented in the
training data.
Computing DFT chemical shifts for the 13 structures

required over 56 CPU days, while ShiftML2 required less than
20 CPU minutes to predict the shifts of all atoms in the
structures considered. If only 1H chemical shifts are required,
this time is reduced to less than four CPU minutes, which
corresponds to a more than 24,000-fold speedup compared to
DFT shift computation.
The ability to determine the correct structure from among a

set of candidates based on comparison between experimental
and computed shifts is key to NMR crystallography. Figure
5B−D shows the RMSE between experimental and predicted
1H shifts for different sets of candidate structures for cocaine,
form 4 of AZD8329, and AZD5718. The correct candidates
systematically yielded a chemical shift RMSE below 0.6 ppm
and corresponded to the lowest RMSE among the sets of
candidates for form 4 of AZD8329 and AZD5718 and to the
second lowest RMSE for cocaine.
Models for Other Nuclei. In addition to 1H, we

constructed models for all the other nuclei present in the

Figure 3. Comparison of DFT-computed 1H shieldings and predictions using ShiftML1 (A, C, E) or ShiftML2 (B, D, F) on (A, B) the ShiftML1
test set, (C, D) relaxed structures containing only H, C, N, O, and S in the ShiftML2 test set, and (E, F) MD structures containing only H, C, N, O,
and S in the ShiftML2 test set. Black lines show perfect correlations.

Table 1. Chemical Shift Root-Mean-Square Error (RMSE),
Mean Absolute Error (MAE), and R2 Coefficient of
ShiftML1 and ShiftML2 Compared to DFT-Computed
Shieldingsa

test set RMSE [ppm] MAE [ppm] R2

ShiftML1 0.48/0.46 0.37/0.35 0.98/0.98
ShiftML2, relaxed only 0.51/0.47 0.38/0.35 0.98/0.98
ShiftML2, MD only 0.98/0.53 0.71/0.40 0.91/0.97
ShiftML2, all 0.78/0.50 0.54/0.38 0.94/0.98

aThe values are given for ShiftML1 and ShiftML2, separated by a
slash.
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training data. Figure 6, Supplementary Figure S7, and Table 2
compare the resulting predictions for the nuclei beyond 1H to

GIPAW DFT shieldings. We note that although we refer to a
particular nucleus (e.g., 15N), the isotropic chemical shift of all

Figure 4. Chemical shift RMSE for different types of (A) 1H, (B) 13C, (C) 31P, (D) 15N, (E) 17O, (F) 33S, and (G) 35Cl in the test set. The number
of environments (or structures) in the test set contributing to each bar is indicated next to it.

Figure 5. (A) Comparison between predicted and experimental 1H shifts for 13 molecular solids. Black line shows perfect correlation. Chemical
shift RMSE obtained by ShiftML2 (blue) and DFT (red) against experimental shifts for candidate structures of (B) cocaine, (C) AZD8329 form 4,
and (D) AZD5718. The correct crystal structure is indicated by the gray zone. The black horizontal lines indicate the expected RMSE between
ShiftML2 predictions and experimental shifts (0.47 ppm).
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NMR-active isotopes of a particular element can be predicted
with the same accuracy, by adapting the offset (and slope)
used to convert computed shieldings into chemical shifts. We
obtain strong correlations (R2 > 0.95) for 13C, 15N, 17O, 19F,
and 35Cl. This indicates that ShiftML2 can accurately predict
chemical shifts for these elements, although the absolute error
is higher than that for 1H because of the larger chemical shift
ranges for these nuclei (see Table 2). The lower number of
training environments for 31P, 23Na, 43Ca, 25Mg, and 39K was
found to lead to lower correlation with DFT-computed shifts.
While we still provide models for these nuclei, we acknowledge
that more accurate models based on more extensive training
data would be required to obtain more accurate predictions for
these elements. We reiterate that the main purpose of
including these elements in the training data was to allow
prediction of 1H, 13C, or 15N chemical shifts for structures
containing such elements. Detailed ShiftML2 prediction
accuracies for different types of 13C, 15N, 17O, 31P, 33S, and
35Cl nuclei are shown in Figure 4B−G. As for 1H, we observe a

loss of accuracy for sp-hybridized 13C and 15N. The other
nuclei (19F, 23Na, 43Ca, 25Mg, and 39K) each displayed a unique
atomic type across the test set.

■ CONCLUSIONS
We have presented a machine learning model of chemical
shifts that improves on our previously published model16 in
two key ways. First, the chemical diversity covered by the
model has been extended from 5 to 12 elements, meaning that
shifts for a much larger space of compounds can now be
accessed. Second, finite temperature structures have been
included in the training data, allowing reliable chemical shift
predictions for distorted structures.
Compared to GIPAW DFT, we obtain R2 correlation

coefficients above 0.95 for 1H, 13C, 15N, 17O, 19F, and 35Cl
shifts, and a chemical shift RMSE below 0.5 ppm for 1H. The
model is able to massively accelerate the computation of shifts
in molecular solids while retaining DFT-level accuracy with
respect to experimental shifts for 1H (0.47 ppm RMSE).
Importantly, the cases of cocaine, form 4 of AZD8329, and
AZD5718 demonstrate that ShiftML2 permits fast and reliable
NMR crystal structure determination for complex organic
molecular crystals.
The capacity to calculate shifts for distorted structures is

important for two reasons. First, it allows reliable shifts to be
calculated for structures that are not geometry-optimized using
DFT, such as structures optimized using (semi-)empirical
approaches such as DFTB and for structures from MD
simulations. Second, it means that shifts calculated for
structures generated in a simulated annealing structure
determination protocol38 will be accurate even when the trial
structure is not in an energy minimum, potentially providing a
much more efficient driving force toward the correct
structures, and this will be the subject of future studies. The
model presented here scales linearly with respect to the
number of local atomic environments in a structure of interest,
making shifts for large ensembles of large structures accessible.

Figure 6. Comparison of DFT-computed and predicted (A)13C, (B) 15N, (C) 19F, and (D) 35Cl chemical shifts in the test set. Black lines show
perfect correlation.

Table 2. Training and Test Size, Chemical Shift RMSE,
MAE, and R2 Coefficient for ShiftML2 Models Trained on
Nuclei beyond 1H

nucleus
training set
size

test set
size

RMSE
[ppm]

MAE
[ppm] R2

13C 65,498 60,406 4.53 3.12 0.99
15N 65,506 6514 15.02 9.99 0.98
17O 65,488 11,330 23.18 16.21 0.98
19F 23,958 865 9.70 6.85 0.97
33S 18,509 1470 57.53 35.12 0.87
31P 5337 235 32.61 17.64 0.70
35Cl 15,780 757 23.58 17.02 0.97
23Na 728 14 5.77 4.58 0.57
43Ca 386 8 13.01 10.77 0.99
25Mg 186 10 12.27 8.21 0.94
39K 632 9 9.33 7.07 0.39
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The new model will thus accelerate NMR crystallography by
allowing large-scale computations for candidate structures,
either from MD trajectories or in direct optimization methods.
The models are freely available on https://dx.doi.org/10.

5281/zenodo.7097427.
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