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Abstract 

Background:  Most crop seeds are F1 hybrids. Seed providers and plant breeders must be confident that the seed 
supplied to growers is of known, and uniform, genetic makeup. This requires maintenance of pure genotypes of the 
parental lines and testing to ensure the genetic purity of the F1 seed. Traditionally, seed purity has been assessed with 
a grow-out test (GOT) in the field, a time consuming and costly venture. Early in the last decade, seed testing with 
molecular markers was introduced as a replacement for GOT, and Kompetitive allele specific PCR (KASP) markers were 
recognized as promising tools for genetic testing of seeds. However, the markers available at that time could be inac‑
curate and applicable to only a small number of accessions or varieties due to the limited genetic information and 
reference genomes available.

Results:  We identified 4,925,742 SNPs in 50 accessions of the Brasscia rapa core collection. From these, we identi‑
fied 2,925 SNPs as accession-specific, considering properties of flanking region harboring accession-specific SNPs 
and genic region conservation among accessions by the Next Generation Sequencing (NGS) analysis. In total, 100 
accession-specific markers were developed as accession-specific KASP markers. Based on the results of our validation 
experiments, the accession-specific markers successfully distinguised individuals from the mixed population including 
50 target accessions from B. rapa core collection and the outgroup. Additionally, the marker set we developed here 
discriminated F1 hybrids and their parental lines with distinct clusters.

Conclusions:  This study provides efficient methods for developing KASP markers to distinguish individuals from the 
mixture comprised of breeding lines and germplasms from the resequencing data of Chinese cabbage (Brassica rapa 
spp. pekinensis).
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Background
Most growers of vegetable crops rely on F1 hybrid seeds, 
and suppliers of these seeds must maintain genetically 
pure stocks. Not only do the suppliers need to keep seeds 
of known genetic makeup for sales but also for their 
ongoing breeding programs. Until the late 1990s, seed 
providers relied on what is known as the grow-out test 
(GOT), in which the seeds were planted in the field and 
the traits of the test plants were assessed by investigation 
[1]. However, this method is time consuming, requires 
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a large amount of land, and is partly subjective as plant 
phenotype can be affected by the environment [2]. Thus, 
precise and efficient tools to assess the genetic makeup 
and purity of hybrid seeds are sought by seed providers.

In response to these limitations of the GOT, vari-
ous types of molecular markers have been developed to 
characterize the genotypes of crop plants. This endeavor 
began in the early 1990s and has resulted in the identi-
fication of numerous types of markers. These include 
restriction fragments length polymorphism, ampli-
fied fragments length polymorphism, simple sequence 
length polymorphism, simple sequence repeat (SSR), and 
sequence tagged site (STS) markers. The PCR-based SSR 
or STS markers can be rapidly acquired, are easy to assay, 
and have been used for crop breeding or assessment of 
hybrid seeds in rice, maize, pigeon pea, and pepper [1–
4]. However, these markers were developed for specific 
breeding lines or varieties and are not sufficient to assess 
the purity of hybrid seeds.

Application of molecular markers to a wide range of 
situations that require accurate assessment of the genetic 
makeup of a plant must entail investigating genetic vari-
ants in both the core collections and commercial lines. 
Previous investigation of genetic variants of core collec-
tions and commercial crop lines was limited because of 
the expense of sequencing and the absence of reference 
genomes. With the advent of next-generation sequencing 
technology, reference genomes have been constructed 
for a number of crops, including tomato [5], pepper [6], 
cucumber [7], melon [8, 9], wheat [10], and Chinese cab-
bage [11]. Whole genome resequencing of various crops 

has also been undertaken. This has allowed the develop-
ment of widely applicable molecular markers, accom-
plished by resequencing analyses of core collections. 
Also, the development of the Kompetitive Allele Specific 
PCR genotyping (KASP) assay has permitted the devel-
opment of accession-specific markers for large-scale seed 
purity assessments [12–14].

Here, we present pipelines for the detection of acces-
sion-specific genetic variants and accession-specific 
markers from 50 Chinese cabbage accessions. The pipe-
lines were constructed with a combination of genetic 
variants calling, detection of accession-specific variants, 
and determination KASP marker candidate sequences. 
Accession-specific single nucleotide polymorphisms 
(SNPs) were identified from 50 Chinese cabbage core col-
lections, and 100 accession-specific KASP markers from 
50 accessions were developed from a pool of these SNPs. 
Then, evaluation of KASP markers was carried out using 
the core collection and 35 non-core collections. We have 
identified 100 KASP markers that we believe will be use-
ful in assessing hybrid seed purity.

Results
Identification and evaluation of accession‑specific variants
We performed genome resequencing analysis of 50 
accessions from the Brassica rapa core collection, with 
the goal of developing markers specific to each acces-
sion. This core collection is composed of five groups: 
non-pekinensis, Chinese, Japanese, Korean breeding 
lines, and others (Fig. 1 and Supplementary Table 1). We 
mapped the reads from the analysis of these accessions 

Fig. 1  Morphological features of eight representative accessions from four groups of the Brassica rapa core collection



Page 3 of 12Hong et al. BMC Genomics          (2022) 23:326 	

to the B. rapa reference genome (ver 3.0) [11] with the 
BWA-MEM (ver 0.1.17) using the default parameters. We 
detected a total of 4,925,742 SNPs from the 50 accessions 
(Table 1 and Supplementary Data 1). Since we wished to 
identify genetic variants from the B. rapa core collection, 
we constructed a variant-identification pipeline by com-
bining the calling and filtering variants (Supplementary 
Fig.  1). This entailed first detecting and merging SNPs 
of individual accessions in the joint variant calling step. 
Next, we identified homozygous alternative alleles for 
single accessions as accession-specific SNPs by compar-
ing the pattern of variants of each individual accession in 
the core collection. To develop KASP markers, we evalu-
ated each accession-specific marker by considering the 
non-redundant flanking sequences, overlapping of repeat 
sequences, and annotation of the SNPs. Finally, we iden-
tified SNPs with unique flanking sequences without over-
lapping repeat sequences as candidates for development 
of KASP markers. We identified 2,925 accession-specific 
SNPs as such candidates (Table  1), most of which were 

located in flanking gene sequences and 2,806 of which 
(approximately 95.9%), were in genic regions (Table 2). Of 
these 2,925 candidate SNPs, approximately 456, or 15.6%, 
resulted in non-synonymous mutations, and 19 variants 
led to abnormal termination of translation. These genetic 
variants may be important in future investigation of trait-
associated genes or markers. Our next step in the devel-
opment of accession-specific markers was to validate the 
SNPs with genome resequencing analysis, which we did 
with Sanger sequencing (Fig. 2).

We select eight flanking sequences of the accession-
specific SNP candidates from the four groups of the core 
collection and Sanger sequencing primers were designed 
(Supplementary Table  2). From the Sanger sequencing 
results, we concluded that seven of the SNP candidates 
were specific to a single accession (Fig.  2 and Supple-
mentary Figs. 2, 3, 4, 5, 6 and 7). Amplification by PCR 
for Sanger sequencing failed in one flanking sequence 
(Supplementary Fig. 8), leading us to conclude that SNPs 
with conserved flanking sequences were the best can-
didates for developing accession-specific markers with 
PCR. Also, candidate SNPs with highly conserved flank-
ing sequences that are suitable for primers may be neces-
sary for developing wide-ranging KASP markers that will 
apply to crops not in the core collection or to commercial 
cultivars. Determination of primer sites for KASP mark-
ers is important for the development of accession-spe-
cific KASP markers.

Development and evaluation of KASP markers
Our next venture was to develop accession-specific KASP 
markers for assessment of hybrid seed purity. Five of the 
accession-specific SNP candidates that we identified as 

Table 1  The single nucleotide polymorphisms (SNPs) that were 
identified from 50 B. rapa accessions

Group Numbers 
of 
accessions

Total number of
identified SNPs

Total number of 
accession-specific 
SNPs

Korean 34 4,095,628 1,314

Chinese 5 3,289,533 357

Japanese 3 2,191,837 325

Non-pekinensis 2 2,016,767 429

Others 6 3,044,951 500

Total 50 4,925,742 2,925

Table 2  Annotation of the accession-specific single nucleotide polymorphisms (SNPs) that were identified from the B. rapa core 
collection

Annotation of variants Type Accession-specific SNPs
(No.)

KASP markers
(No.)

Variant causes a codon that produces a different amino acid Exon 456 72

Variant causes a codon that produces the same amino acid Exon 189 18

Variant causes a STOP codon Exon 17 2

Variant causes start codon to be mutated into a non-start codon Exon 1 0

Variant causes stop codon to be mutated into a non-stop codon Exon 1 0

Variant causes stop codon to be mutated into another stop codon Exon 3 1

The variant hits a splice acceptor site Intron 5 0

The variant hits a Splice donor site Intron 4 0

Variant hits intron Intron 122 1

Downstream of a gene (default length: 5 K bases) Non-coding 459 0

The variant is in an intergenic region Non-coding 119 0

Upstream of a gene (default length: 5 K bases) Non-coding 1549 6

Total - 2,925 100
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described above were selected from individual acces-
sions for further analysis. Primer sites are important 
role in successful marker development, and we surveyed 
conserved flanking sequences of SNPs in our core collec-
tions (Fig. 3a). Flanking regions containing non-sequence 
sites, shown as N in the reference genome, were removed 
from the primer candidate sequences (Fig.  3b). Then, 
we selected five flanking sequences in each accession-
specific SNP for further evaluation of KASP markers. It 
was necessary to consider the genomic position of the 
SNP in the development of a wide range of markers, as 
overlapping genomic positions among markers may lead 
to inefficiency or false positive results when assessing 

seed purity. To avoid this redundancy, we investigated 
the genomic positions of five candidate SNPs from indi-
vidual accessions and selected the positions unique to 
the accessions (Fig.  4). In total, we selected two SNPs 
in each accession for validation of KASP markers (Sup-
plementary Table  3). Many of the KASP markers that 
were in genic regions caused non-synonymous varia-
tion, although almost all accession-specific SNPs were 
detected in the flanking regions of genes (Table 2).

Validation of KASP markers was carried out using 50 
accessions from core collection and 35 from non-core 
collections, and 190 breeding lines provided by (Dayi 
International Seed Co.) for their applicability to a wide 

Fig. 2  Validation of accession-specific single nucleotide polymorphisms (SNPs) (3,737,651 in chromosome 3) from accession 26,022 (from 
Chungnam National University) using the Brassica rapa reference genome (ver 3.0). (REF, reference genome; ACC, resequencing result of individual 
accession; Sanger, Sanger sequencing result)
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range of seed purity assessments (Fig.  5, Table  3, and 
Supplementary Data 2 and 3). Based on the results, we 
conclude that we successfully distinguished accession-
specific markers in individual accessions in both the 
core collection and the outgroup (Fig.  5, Supplemen-
tary Fig.  10, and Supplementary Data 3). We suggest 
that accession-specific markers developed using a large 
amount of individual resequencing data can be used to 
assess seed purity from non-sequenced accessions or 

cultivars. The accession-specific markers developed here 
should be useful in a wide range of seed purity assess-
ments in the B. rapa breeding and commercial seed 
production. We evaluated their ability to distinguish 
parental lines and F1 hybrids by testing two groups of 
parental lines and their F1 hybrid with the KASP marker 
A07_20012970. Results indicated that this marker suc-
cessfully distinguished parental lines and the F1 (Supple-
mentary Fig. 9). From these data, we suggest that KASP 

Fig. 3  Development of KASP markers. a Potential problem of primer alignments by possible sequence variation from core collection during KASP 
marker development, b Process for development of KASP markers
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Fig. 4  Genome distribution of accession-specific SNPs from the Brassica rapa core collection. The genomic positions of five accession-specific 
SNPs in each accession were investigated to develop KASP markers. (The marker positions with red color stand for SNPs used for KASP marker 
development)
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markers will be useful to plant breeders in assessing seed 
purity.

Discussion
Molecular markers are promising tools to identify seed 
genotypes but have some limitations at present, as 
discussed above. With the advent of next-generation 
sequencing technology, construction of high-quality ref-
erence genomes and genetic information for many dif-
ferent cultivars and species has been generated. This 
information should provide the background necessary for 
the development of molecular markers that will provide 
accurate information and will be useful in a wide range of 
applications. These will include studying genetic variants 
in individual accessions, varieties, and large populations 
[15]. Reference genomes also provide useful detailed 
information on genetic variants such as gene structures, 

repetitive sequences, and accurate positions of various 
genetic features. This technology also applies to corre-
lation analyses of phenotypes and may prove useful in 
analyses such as quantitative trait locus mapping and 
genome-wide association studies (GWAS) [16–18].

The marker screening step is used to select reliable 
markers among the candidate variants as part of the 
development of molecular markers for breeding. To 
develop KASP markers that distinguish different B. rapa 
genotypes, SNPs were identified from ten representa-
tive genotypes and selected by considering marker assay 
results such as reproducibility, missing rate, and genetic 
distribution [19]. However, these markers may not distin-
guish accessions that belong to the outgroup. To resolve 
this potential problem, we resequenced all accessions 
in our population, which covered different geographic 
origins (Supplementary Data 1). Accession-specific 

Fig. 5  Validation of KASP markers using the Brassica rapa core collection, non-core collection, and commercial varieties. (Red bar on the top of 
heatmap stands for core collection, and blue bar stands for outgroup.)
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SNPs were identified and verified by Sanger sequencing 
(Fig.  2 and Supplementary Figs.  2, 3, 4, 5, 6 and 7) and 
accession-specific KASP markers were developed and 
validated with the outgroup. We conclude that the acces-
sion-specific KASP markers identified here are reliable 
and applicable to a wide range of genotypes.

In the current study, we identified SNPs in the B. rapa 
core collection with genome resequencing (Fig. 1). From 
the examination of accession-specific genetic variants, 
we identified 4,925,742 SNPs in 50 accessions among 
these, we identified 2,925 SNPs that were specific to a 
single accession (Table  1). Most genetic variants were 
detected in flanking regions of genes, but KASP mark-
ers were developed from SNPs that caused non-synony-
mous variations and were in genic regions. Conservation 
of the genic regions may have maintained the function 
of the genes, accounting for our observation that the 
ratio of conserved sequences was greater than for the 
other regions. The non-synonymous mutations might 
be involved in phenotypic or morphological differences 
among accessions and should be useful in investigation of 
trait-associated genes or markers associated with traits.

Until quite recently, molecular markers had not been 
developed for crops or cultivars, and those that are avail-
able have limited application. We developed molecular 
markers using the core collection of B. rapa, in part, to 
address this problem: we sought to develop markers, con-
sidering conserved sequence for primer sites, for a wide 
range of applications. (Fig.  3). Furthermore, we investi-
gated genomic positions of accession-specific markers 
to avoid overlapping of the genomic positions of KASP 
markers (Fig.  4). In total, 100 accession-specific mark-
ers were developed as accession-specific KASP mark-
ers. Based on the results of our validation experiments, 
we are confident that we successfully distinguished the 
accession-specific markers in individual accessions in 
test populations from non-core or commercial cultivars 
(Fig.  5 and Supplementary Fig.  9). However, we did not 
develop enough KASP markers to guarantee their wide-
ranging ability to evaluate seed purity during breeding 
or seed production. To enhance this possibility, more 
accession-specific KASP markers will be developed 
from 50 accessions and resequencing analysis with non-
sequenced core collection will be conducted. These data 
suggested that seed assessments using KASP markers 
will contribute to B. rapa breeding by reducing breeding 
cycle time or seed production by maintaining high purity.

Conclusions
In this study, we present efficient methods for developing 
KASP markers to distinguish individuals from a mixture 
of breeding lines and germplasms. We have employed 
the resequencing data of Chinese cabbage (B. rapa spp. 

pekinensis) in the development of KASP markers. We 
show that the accession-specific SNPs identified by NGS 
data pipelines are feasible targets for the development 
of KASP markers. We anticipate that the KASP markers 
developed here will be applicable to assessment of seed 
purity in a wide variety of situations, and will be applica-
ble to core collections, other non-sequenced accessions, 
and commercial cultivars. These markers should also 
prove useful to breeding programs of B. rapa, facilitat-
ing the essential maintenance of pure parental lines. Fur-
thermore, the non-synonymous mutations detected here 
should aid investigations of genes or markers associated 
with traits and in functional studies of genes. This study 
should facilitate marker development for assessment of 
the seed purity of commercial F1 seed samples whether 
or not they were produced by unintended crossing.

Methods
Plant materials
We wished to develop accession-specific KASP mark-
ers. To this end, 50 accessions of Brassica rapa core col-
lections [20] were used in whole genome resequencing 
analysis. These accessions were characterized as inbred 
lines or doubled haploid lines. Thirty-five accessions (F1 
hybrids and germplasm) donated by Chungnam National 
University (CNU) were used as the control panel showing 
high heterozygosity to validate the KASP markers. The 
reliability of developed KASP markers was confirmed 
with 190 Chinese cabbage accessions provided by Korean 
seed company (Dayi International Seed Co.)

Genome resequencing of core collection
Truseq Nano DNA libraries were constructed accord-
ing to the manufacturer’s instructions. To generate a 
large 550 bp insert, 100 ng or 200 ng of high molecular 
weight genomic DNAwas sheared with the Covaris S2 
system to yield DNA fragments. Blunt-ended DNA frag-
ments were generated with a combination of fill-in reac-
tions and exonuclease activity. A single base A was then 
added to the blunt ends of each strand in preparation for 
ligation to the indexed adapters. Each adapter contained 
a single base T overhang for ligating the adapter to the 
A-tailed fragmented DNA. Ligated products were ampli-
fied with reduced-bias PCR. The quality of the amplified 
libraries was verified with capillary electrophoresis (Bio-
analyzer, Agilent). After QPCR using SYBR Green PCR 
Master Mix (Applied Biosystems), we combined index-
tagged libraries in equimolar amounts in the pool. Whole 
genome resequencing was performed with an Illumina 
NovaSeq 6000 system, following the protocols provided 
for 2 × 100 sequencing.



Page 10 of 12Hong et al. BMC Genomics          (2022) 23:326 

Identification of genetic variants
The FastQC (v.0.11.3) program was used to assess 
quality and to detect adaptor sequences of reads 
(https://​www.​bioin​forma​tics.​babra​ham.​ac.​uk/​proje​
cts/​fastqc/). Adaptor sequences and low-quality reads 
were filtered using Trimmomatic (ver 0.36) with the 
parameter ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10 
SLIDINGWINDOW:4:20 TRAILING:20 MINLEN:75 
[21]. Then, the filtered reads were aligned to the B. rapa 
reference genome (ver 3.0) [11] with Burrows Wheel 
Aligner (BWA) (ver 0.1.17), using the default param-
eter [22]. These results (*.sam) were converted to bam 
files using SAMtools (ver 1.9) [23] and low-quality reads 
(mapping quality < 30) were removed. We also removed 
reads duplicated by PCR, with MarkDuplicate in Picard 
tools (ver 2.21.1) (http://​broad​insti​tute.​github.​io/​pic-
ard/). To detect InDels, InDels of the reference genomes 
were detected with RealignerTargetCreator in GATK 
(ver 3.7) [24] and reads mapped InDels were re-aligned 
with IndelRealigner. We detected and filtered SNPs(read 
depth > 3, genotype quality > 30, homozygous allele only) 
with BCFtools (ver 1.9) [25]. Possible SNP positions in 
the core collection were identified by conducting joint 
variant calling for all possible SNP positions in each 
accession. Multiple allelic positions and low-depth gen-
otypes (read depth < 3) were filtered with VCFtools (ver 
0.1.13) [26].

Construction of a pipeline for accession‑specific variants 
calling
We selected positions of SNPs that had homozygous 
alternative alleles for one accession in the population 
variant call format (vcf ) file as accession-specific variants 
by an in-house perl script. To select KASP marker can-
didates from the accession-specific SNPs we had identi-
fied, we developed filtering steps, considering multiple 
properties of SNPs (Supplementary Fig.  1). To reduce 
the possibility of primer amplification for multiple loci, 
target sequence redundancy in the B. rapa genome was 
estimated with the megablast task of BlastN [27], and 
we detected 501  bp sequences harboring accession-
specific SNPs. Accession-specific SNPs without flanking 
sequence redundancy were selected for KASP primer 
design. Also, accession-specific SNPs with flanking 
sequence overlapping predicted repeat sequences were 
filtered out with a gff file provided by the B. rapa refer-
ence genome ver 3.0. Accession-specific variants of the 
exon region were given priority for KASP primer design 
after SNP annotation by snpEFF [28]. The candidates 
for Sanger sequencing were determined by selecting the 
top two SNPs of read depth and genotype quality in each 
accession from four groups with different geographi-
cal origins. Representative data from each accession are 

shown (Fig. 2 and Supplementary Figs. 2, 3, 4, 5, 6, 7 and 
8).

Construction of pipeline for KASP marker development
We sought to minimize the failure of primer amplifi-
cation that resulted from insertion or deletion on the 
marker target sites (Fig.  3a). This led us to develop a 
pipeline for producing KASP candidate sequences for 
accession-specific variants. The pipeline we developed 
generates flanking region sequences that harbor acces-
sion-specific variants from bam files of each accession 
and aligns them based on the reference genome sequence 
with ClustalW (-OUTPUT = CLUSTAL -TYPE = DNA 
-GAPOPEN = 10 -ENDGAPS -GAPDIST = 0.05) [29]. 
In the pipeline, the proportion of missing or alternative 
alleles from all of the aligned positions were evaluated 
and consensus sequences masking variable positions 
(non-reference allele for positions > 10%) with N were 
generated (Fig. 3b). Accession-specific variants located at 
251 bp on the consensus sequences were used directly for 
the KASP primer designed by the manufacture’s protocol 
(LGC Genomics, UK).

Evaluation and application of KASP markers
The KASP markers were validated with the Nexar sys-
tem (LGC Douglas Scientific, Alexandria, USA) at the 
Seed Industry Promotion Center of the Foundation of 
Agricultural Technology Commercialization and Trans-
fer (Gimje, Korea). An aliquot (0.8 L) of 2 × Master mix, 
0.02 L of 72 × KASP assay mix (both from LGC Genom-
ics), and 5  ng genomic DNA template from the 50 tar-
get B. rapa accessions of KASP markers and 35 B. rapa 
accessions in the outgroup were mixed into 1.6 L of 
KASP reaction mixture in a 384-well Array Tape. We ran 
duplicate reactions, and included non-template controls 
in each run. KASP amplification was performed with the 
following thermal cycling profile: 15 min at 94℃, a touch-
down phase of 10 cycles at 94℃ for 20 s and at 61℃-55℃, 
in which the temperature decreased by 0.6℃ per cycle, 
for 60 s, and 26 cycles at 94℃ for 20 s and 55℃ for 60 s 
(first PCR stage). Next, recycling was performed with 
three cycles of 94℃ for 20  s and 57℃ for 60  s (second 
PCR stage). Recycling was performed twice, and the fluo-
rescence value was used for KASP genotyping after PCR 
amplification.
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