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Abstract  
Ilexonin A is a compound isolated from the root of Ilex pubescens, a traditional Chinese medicine. Ilexonin A has been shown to play a 
neuroprotective role by regulating the activation of astrocytes and microglia in the peri-infarct area after ischemia. However, the effects of 
ilexonin A on astrocytes and microglia in the infarct-free region of the hippocampal CA1 region remain unclear. Focal cerebral ischemia 
models were established by 2-hour occlusion of the middle cerebral artery in rats. Ilexonin A (20, 40 or 80 mg/kg) was administered im-
mediately after ischemia/reperfusion. The astrocyte marker glial fibrillary acidic protein, microglia marker Iba-1, neural stem cell marker 
nestin and inflammation markers were detected by immunohistochemistry and western blot assay. Expression levels of tumor necrosis 
factor-α and interleukin 1β were determined by enzyme linked immunosorbent assay in the hippocampal CA1 tissue. Astrocytes were 
activated immediately in progressively increasing numbers from 1, 3, to 7 days post-ischemia/reperfusion. The number of activated astro-
cytes further increased in the hippocampal CA1 region after treatment with ilexonin A. Microglial cells remained quiescent after ischemia/
reperfusion, but became activated after treatment with ilexonin A. Ilexonin A enhanced nestin expression and reduced the expression of 
tumor necrosis factor-α and interleukin 1β in the hippocampus post-ischemia/reperfusion. The results of the present study suggest that 
ilexonin A has a neuroprotective effect in the hippocampus after ischemia/reperfusion, probably through regulating astrocytes and microg-
lia activation, promoting neuronal stem cell proliferation and reducing the levels of pro-inflammatory factors. This study was approved by 
the Animal Ethics Committee of the Fujian Medical University Union Hospital, China. 
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Graphical Abstract   

Ilexonin A has a neuroprotective effect in the hippocampus after ischemia/reperfusion
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Introduction 
The hippocampus is one of the most vulnerable brain areas 
post-ischemia, especially its CA1 region. Pyramidal neurons 
in the hippocampal CA1 region were selectively lost 2 to 3 
days after global cerebral ischemia, whereas other neurons in 
the same area were unaffected (Duan et al., 2011; Yan et al., 
2012; Sun et al., 2018). In recent findings, neuronal damage 
was also observed in the hippocampal CA1 region after mid-
dle cerebral artery occlusion (MCAO), a condition that does 
not directly affect the hippocampus (Uchida et al., 2010; Jiao 
et al., 2011). The underlying mechanisms remain poorly un-
derstood. Previous studies, including our own, suggested that 
after transient focal cerebral ischemia astrocytes and microg-
lia are swiftly activated and play complex roles in the infarct 
and peri-infarct regions, with both beneficial and detrimental 
effects (Jiao et al., 2011; Hu et al., 2012; Xu et al., 2016). This 
phenomenon has also been found in the hippocampal CA1 
region after global ischemia (Lee et al., 2010; Rauš et al., 
2013). However, it is not known how or when astrocytes and 
microglia change and what effect they exert in the hippocam-
pal CA1 region after transient focal cerebral ischemia.

Under normal conditions, astrocytes and microglia are 
ubiquitously distributed, quiescent cell populations that re-
side in the central nervous system. One of the main charac-
teristics of astrocytes and microglia is their swift activation 
in response to various pathologies, such as trauma, neuro-
degenerative diseases and ischemia. The hallmarks of their 
activation include proliferation, morphological changes and 
the release of cytokines and growth factors (Yuan et al., 2007; 
Uchida et al., 2010). Both cell types can be either neuropro-
tective or neurotoxic, depending on their morphology and 
their releasing factors (Chvátal et al., 2007; Wang et al., 2013). 

Ilexonin A, extracted from the root of pubescent holly, 
Ilex pubescens, is a 3β-succinyl-18-dehydro-disodic ursolate 
(Figure 1), which has been clinically used as cardiovascular 
drug. Our group has done a lot of research on the neuropro-
tective effect of ilexonin A. It has been shown to reduce the 
infarction volume and to improve neurological deficits after 
focal brain ischemia in adult rats (Zheng et al., 2011; Xu et 
al., 2016). Ilexonin A acts as a neuroprotector by promoting 
neural regeneration, enhancing the secretion of neuro-
trophic factors and mitigating cerebral edema (Sheng et al., 
2009; Zheng et al., 2011). Our previous research shows that 
ilexonin A plays a neuroprotective role by regulating the ac-
tivation of astrocytes and microglial cells in the peri-infarct 
area post-ischemia (Xu et al., 2016), and by activating wnt 
and notch signaling pathways (Zhang et al., 2016; Han et al., 
2018). A previous study has shown that curcumin, another 
herbal component, had similar effects to ilexonin A, improv-
ing GFAP and nestin protein levels in the hippocampal CA1 
region after ischemia (Zhang et al., 2011). In this study, we 
established the role of ilexonin A in activating astrocytes and 
microglia in the hippocampal CA1 region of the ipsilateral 
brain and determined the expression of nestin, TNF-α and 
IL-1β after ischemia/reperfusion. This study tested doses of 
20, 40, and 80 mg/kg ilexonin A to develop a therapeutic 
strategy. 

Materials and Methods
Animals and drug administration
Male clean Sprague-Dawley rats aged 6–8 weeks old and 
weighing 250 ± 10 g were purchased from the Shanghai 
SLAC Laboratory Animal Co., Ltd., China (license No. 
SCXK (Hu) 2007-0005). These rats were randomly divided 
into six groups: (1) control, (2) sham, (3) ischemia, and 
ischemia groups treated with ilexonin A at (4) 20 mg/kg, (5) 
40 mg/kg, or (6) 80 mg/kg. Each group has four subgroups 
(n = 6/subgroup) for each of the time following MCAO (1, 
3, 7, and 14 days). Two rats in each subgroup were intraper-
itoneally injected with either 20, 40, or 80 mg/kg ilexonin 
A (Guangdong Boro Pioneer Pharmaceutical Group Co., 
Ltd., Huizhou, Guangdong Province, China; Product No.  
Z44023366) after ischemia/reperfusion. Rats in the control, 
sham and ischemia groups were intraperitoneally injected 
with an equal volume (2 mL) of saline. Our study was ap-
proved by the Animal Ethics Committee of Union Hospital 
of Fujian Medical University, China.

Procedure of transient focal cerebral ischemia
Transient focal cerebral ischemia was induced by MCAO us-
ing the method developed by Longa et al. (1989). Rats were 
intraperitoneally anesthetized with 10% chloral hydrate (300 
mg/kg). Blunt separation of the left common carotid artery, 
internal carotid artery and external carotid artery was per-
formed through a ventral midline incision of the neck. The 
distal end of the external carotid artery branches was ligated 
and dissociated by electric coagulation. A nylon monofila-
ment suture (diameter 0.26 mm) with a paraffin-rounded 
tip was inserted from the external carotid artery into the in-
ternal carotid artery for 18 ± 0.5 mm, to occlude the middle 
cerebral artery. The nylon suture was fixed and the incision 
was closed. After 2 hours of ischemia, the suture was with-
drawn for reperfusion. Rats in the sham group underwent 
identical surgery, without the nylon suture that induced 
ischemia. Rats in the control group did not undergo surgery. 
The method of 2,3,5-triphenyltetrazolium chloride staining 
of MCAO was as published in our previous study (Xu et al., 
2016).

Criteria for MCAO modeling
Following ischemia/reperfusion, neurological findings were 
evaluated at five levels of behavior based on Longa’s method 
(Zhang et al., 2011), as follows: 4, no spontaneous walking 

Figure 1 Chemical structure of ilexonin A.
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with a depressed level of consciousness; 3, falling down to 
the right; 2, circling to the right; 1, failure to extend right 
forelimb fully; 0, no deficit. MCAO was considered success-
ful in rats scoring 1–3 points. Dead or non-compliant ani-
mals were removed from the experiment.

Immunohistochemistry 
Rats were intraperitoneally anesthetized with 10% chloral 
hydrate (300 mg/kg)  and lavaged with 100 mL of saline, fol-
lowed by 200 mL of 0.1 M phosphate-buffered 4% parafor-
maldehyde, pH 7.4. Brains were isolated, fixed in the same 
fixative for 24 hours, and dehydrated in 15%, 20%, and 30% 
sucrose gradient in 0.1 M phosphate buffer, pH 7.4. These 
8 µm-thick sections, cut by a cryomicrotome (MICROM 
HM525, Walldorf, Germany), were used for immunohis-
tochemical examination. Immunohistochemistry was car-
ried out according to the protocol provided by Elivision kit 
(1110219901, Fuzhou Maixin Biotechnology Development 
Co., Ltd., Fuzhou, China), with 1:5000 rabbit polyclonal 
anti-GFAP antibody (ab7260; Abcam, Cambridge, UK) to 
mark astrocytes, 1:100 goat polyclonal anti-Iba-1 antibody 
(ab5076; Abcam) to mark microglia, and 1:100 mouse 
monoclonal anti-rat nestin antibody (sc‑33677; Santa Cruz 
Biotechnology, Dallas, TX, USA) to mark neural progenitor 
cells. After incubation overnight at 4°C, a negative control, 
0.01 M phosphate-buffered saline was used in place of the 
primary antibody. The enzyme-labeled anti-mouse/rabbit 
polymers in the kit were incubated at room temperature for 
30 minutes. A 3,3′-diaminobenzidine kit (Zhongshan Bio-
technology, Beijing, China) was used to visualize the results. 
An optical microscope (CX40; Olympus, Tokyo, Japan) was 
used for image acquisition. Three sections of each brain 
of each group (n = 6) were viewed, and positive cells were 
evaluated by Imagine Pro Plus 5.0 (Media Cybernetics, Inc., 
Rockville, MD, USA) in 400× microscopic fields for each 
section in the middle part of the hippocampal CA1 region. 

Western blot assay 
Rats were lavaged with 100–200 mL saline after anesthesia 
with 10% chloral hydrate (300 mg/kg, intraperitoneally) and 
their brains were isolated. The hippocampal CA1 regions 
were disassociated in 10 µg/mL radioimmunoprecipitation 
assay lysis buffer containing phenylmethyl sulfonylfluoride 
(final concentration 0.01 M). The supernatant was collected 
after sonication and centrifugation at 14,000 × g at 4°C for 
5 minutes. A 100 μg sample of total protein, as quantified 
by bicinchoninic acid protein quantitation, was diluted with 
lysis buffer, boiled for 5 minutes, and resolved on sodium 
dodecyl sulfate polyacrylamide gels with various percent-
ages, depending on the molecular weight of the target pro-
tein. Following electrophoresis, proteins were transferred to 
nitrocellulose membranes at a constant current of 250–300 
mA for 2 hours. The membranes were blocked in 5% non-fat 
milk in Tris-buffered saline/Tween-20 (pH 7.5, Tris-HCl 0.1 
M, 0.05% Tween-20 and 0.9% NaCl) at room temperature 
for 1 hour and then incubated with the primary antibodies: 
rabbit polyclonal anti-GFAP (ab7260, 1:20,000; Abcam), 

goat polyclonal anti-Iba-1 (ab5076, 1:200; Abcam), mouse 
monoclonal anti-nestin (sc-33677, 1:300; Santa Cruz Bio-
technology), or mouse monoclonal anti-β-actin (sc-47778, 
1:2000; Santa Cruz Biotechnology) at 4°C overnight. After 
Tris-buffered saline/Tween-20 washes, membranes were in-
cubated with 1:6000 peroxidase-conjugated rabbit anti-goat 
IgG (ZB-2306; Beijing Zhongshan Golden Bridge Biotech-
nology Co., Ltd., Beijing, China) at room temperature for 
2 hours. Enhanced chemiluminescence detection reagents 
(KPL, Gaithersburg, MD, USA) were used to visualize the 
result. The band absorbance was measured using ImageMas-
ter® VDS gel imaging and analysis systems (alpha Innotech 
Corporation, San Leandro, USA), and normalized to the ab-
sorbance of the β-actin band, using grey levels.

Enzyme-linked immunosorbent assay 
Levels of TNF-α and IL-1β in collected supernatants (see 
above) were determined by standard enzyme-linked immu-
nosorbent assay (ELISA), as per the supplier protocol (Boster, 
Wuhan, China). All assays were carried out in duplicate. 

Statistical analysis
All data, expressed as the mean ± SD, were analyzed by 
one-way analysis of variance using the SPSS 17.0 Software 
package (SPSS, Chicago, IL, USA). The differences between 
groups were analyzed using the least significant difference 
test for homogeneity of variance. A value of P < 0.05 was 
considered statistically significant. 

Results
Astrocyte activation in the hippocampal CA1 region in an 
ischemia/reperfusion rat model with ilexonin A treatment
GFAP-positive cells in CA1 were scattered in the control 
and sham groups. Astrocytes were activated swiftly after 
ischemia/reperfusion and their morphology changed: the 
soma swelled, the cytoplasm stained darkly and cell pro-
cesses grew and thickened. Following ilexonin A treatment, 
the number of GFAP-positive cells increased at 1, 3, and 
7 days post-ischemia/reperfusion, peaked at 7 days in the 
subgroup treated with 80 mg/kg ilexonin A, and had signifi-
cantly decreased at 14 days (Figure 2A and B). Western blot 
assay results confirmed the results of immunohistochemis-
try (Figure 2C and D). Compared with the ischemia group, 
GFAP expression was significantly increased in the ilexonin 
A 40 mg/kg and 80 mg/kg groups (P < 0.05). There were no 
significant differences in GFAP expression among the 20, 40 
and 80 mg/kg ilexonin A groups. Changes in astrocyte mor-
phology and protein expression were consistent with those 
observed in the peri-infarct region (data not shown). 

Microglial activation in the hippocampal CA1 region in 
an ischemia/reperfusion rat model with ilexonin A 
administration 
Microglial cells in the hippocampal CA1 region remain qui-
escent after ischemia/reperfusion. Following treatment with 
ilexonin A, Iba-1 positive cells became activated and distrib-
uted in a specific pattern in the pyramidal layer (Figure 3A 
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and B). Compared with the ischemia group, the number of 
Iba-1 positive cells in the ilexonin A 40 mg/kg and 80 mg/kg 
groups were increased at the time points of 3, 7 and 14 days 
(P < 0.05). This change was most obvious in the ilexonin A 
80 mg/kg group at 7 days after ischemia/reperfusion com-
pared with the ilexonin A 20 mg/kg or 40 mg/kg groups (P < 
0.01). The morphology of reactive microglia in the ilexonin 
A-treated groups did not change into a macrophage-like 
shape, but rather into bushy shapes. Western blot analysis of 
Iba-1 protein is shown in Figure 3C and D.

Proliferation of neuronal stem cells in the hippocampal 
CA1 region in an ischemia/reperfusion rat model after 
ilexonin A treatment
No nestin-positive cells were observed in the hippocam-
pal CA1 region of either the control or sham groups. The 
number of nestin-positive cells increased significantly after 
ischemia/reperfusion, increasingly more with increasing 
doses of ilexonin A (Figure 4A and B). Compared with the 
ischemia group, the number of nestin-positive cells was sig-
nificantly different in the ilexonin A 80 mg/kg group at each 
time point (P < 0.05). The number of nestin-positive cells in 
the ilexonin A 80 mg/kg group was also significantly greater 
than those in the ilexonin A 20 mg/kg or 40 mg/kg groups 
(P < 0.05). Two types of nestin-positive cells were detected, 
characterized by different morphology, different distribution 
and different activation (Figure 5A). The first type stained 
lighter and had hypertrophic soma and slender cellular pro-
cesses. They were observed mostly in the ischemia group 
and with only a few in the ilexonin A 20 mg/kg group at 3 
days after ischemia/reperfusion. They were specifically dis-
tributed in the pyramidal cell layer of the hippocampal CA1 
region but also appeared in different parts of the CA1 region 
at different times after ischemia/reperfusion. Nestin-posi-
tive cells appeared increasingly closer to the center line of 
the brain from 3 to 14 days, while the total number of cells 
decreased over the same period of time (Figure 5B). The 
second type of cells stained darker and had smaller soma 
and thicker cellular processes, similar to astrocytes. They 
were non-specifically distributed around the CA1 region. 
After treatment with ilexonin A, the number of the second 
type of nestin-positive cells was significantly increased in 
the hippocampal CA1 region, especially in the ilexonin A 80 
mg/kg group at 3 and 7 days post-ischemia/reperfusion. The 
two types of nestin-positive cells did not co-localize spatial-
ly and temporally, but rather had appeared sequentially in 
the reperfused tissue. The first type peaked at 3 days, where-
as the second peaked at 7 days after treatment with ilexonin 
A. Changes in nestin protein levels are shown in Figure 4C 
and D.

TNF-α and IL-1β concentrations in the hippocampal 
tissue in an ischemia/reperfusion rat model after ilexonin 
A administration
The concentrations of TNF-α and IL-1β in the hippocampal 
tissue increased continuously with time after reperfusion. 
TNF-α and IL-1β concentrations were significantly inhibited 

by ilexonin A, especially after administration at 80 mg/kg 
dose, compared with the ischemia group (P < 0.01; Figure 6). 
The effect in the ilexonin A 80 mg/kg group was significantly 
greater than that in the ilexonin A 20 mg/kg and 40 mg/kg 
groups at 14 days (P < 0.05). 

Discussion
Unlike global cerebral ischemia or forebrain ischemia, 
transient focal cerebral ischemia induced by MCAO does 
not primarily affect the hippocampus. However, delayed 
neuronal death occurred in the pyramidal layer of the hip-
pocampal CA1 region (Uchida et al., 2010; Jiao et al., 2011). 
Previous studies have suggested that neuroglial cells undergo 
dynamic changes: microglia were immediately activated and 
specifically distributed in the pyramidal layer, while astro-
cytes were activated later and distributed around the pyra-
midal layer. These changes were strongly associated with the 
delayed neuronal death that occurred following global cere-
bral ischemia (Duan et al., 2011; Yan et al., 2012; Lee et al., 
2019). In our study, gliocytes that responded to delayed neu-
ronal death after transient focal cerebral ischemia, showed 
different characteristics from those mentioned above. This 
may be due to the microenvironment created by the combi-
nation of blood reperfusion and ilexonin A. 

Results from our study showed that astrocytes were ac-
tivated rapidly around the pyramidal layer after ischemia/
reperfusion, which is consistent with previous studies (Uchi-
da et al., 2010; Jiao et al., 2011). However, the intensity of 
astrocyte activation in the hippocampus is weaker than in 
other peri-infarct regions. Ilexonin A plays a dual role, by ei-
ther enhancing the activation of astrocytes in the early stages 
(1, 3, 7 days post-MCAO) or reducing the formation of glial 
scars at a later stage (14 days post-MCAO). It is accepted 
that reactive astrocytes can play a protective role in brain 
ischemia (Jeong et al., 2013). Some astrocytes acquire stem 
cell properties after injury and hence may differentiate to cell 
types needed to initiate repairs (Shin et al., 2013). They re-
lease neurotrophic factors such as glia-derived neurotrophic 
factor, neurotrophin receptors such as TrkB (a receptor for 
brain-derived neurotrophic factor), antioxidants and extra-
cellular matrix proteins to promote functional repair (Lin et 
al., 2006; Tonchev et al., 2008; Ding et al., 2009). They were 
also shown to be involved in the neurovascular remodeling 
after ischemia/reperfusion (Hayakawa et al., 2010; Jing et al., 
2013). The infarct volume expanded 2–3 fold when the acti-
vation of astrocytes was rescinded in deficient mutant mice 
(Li et al., 2008). However, reactive astrocytes proliferating in 
later stages played an key role in the formation of the glial 
scar, which promoted morphological repair of the central 
nervous system, but inhibited functional recovery (Davies et 
al., 1999). Therefore, the dual effects of ilexonin A provide a 
favorable condition for neuronal restoration. 

Microglia are activated and proliferate swiftly after isch-
emia/reperfusion in the peri-infarction region and their 
morphology changes to rod-like or to amoeba-like cells, 
which are difficult to distinguish from blood-derived mac-
rophages. After treatment with ilexonin A, the number of 
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Figure 2 Astrocyte activation in 
the hippocampal CA1 region after 
ischemia/reperfusion and ilexonin A 
treatment. 
(A, B) GFAP immunostaining (arrows) 
in the hippocampal CA1 region at 
different time points after ischemia/
reperfusion and treatment with 80 
mg/kg ilexonin A (IA). (a–d) Isch-
emia group at 1, 3, 7 and 14 days 
post-reperfusion; (e–h) Ilexonin A 80 
mg/kg group at 1, 3, 7 and 14 days (d) 
post-reperfusion (400×, scale bar: 50 
µm). (C, D) The GFAP protein in the 
hippocampus was detected by western 
blot analysis (C) and analyzed in (D) 
using β-actin protein as an internal 
reference. a1, 3, 7, 14: Ischemia group 
at 1, 3, 7 and 14 days post-reperfusion; 
b1, 3, 7, 14: Ilexonin A 20 mg/kg group 
at 1, 3, 7 and 14 days post-reperfusion; 
c1, 3, 7, 14: Ilexonin A 40 mg/kg group 
at 1, 3, 7 and 14 days post-reperfusion; 
d1, 3, 7, 14: Ilexonin A 80 mg/kg group 
at 1, 3, 7 and 14 days post-reperfusion. 
Data are expressed as the mean ± SD. 
*P < 0.05, vs. ischemia group (one-way 
analysis of variance followed by the 
least significant difference test). 

Figure 3 Microglial activation in 
the hippocampal CA1 region after 
ischemia/reperfusion and ilexonin 
A treatment.   
(A, B) Iba-1 immunostaining (ar-
rows) in the hippocampal CA1 
region at different time points after 
ischemia/reperfusion and treatment 
with 80 mg/kg ilexonin A (IA). (a–d) 
Ischemia group at 1, 3, 7 and 14 days 
post-reperfusion; (e–h) Ilexonin 
A 80 mg/kg group at 1, 3, 7 and 14 
days post-reperfusion (400×, scale 
bar: 50 µm). The Iba-1 protein in 
the hippocampus was detected by 
western blot assay (C) and analyzed 
in (D) using β-actin protein as an 
internal reference. a1, 3, 7, 14: Isch-
emia group at 1, 3, 7 and 14 days (d)  
post-reperfusion; b1, 3, 7, 14: Ilexo-
nin A 20 mg/kg group at 1, 3, 7 and 
14 days post-reperfusion; c1, 3, 7, 14: 
Ilexonin A .40 mg/kg group at 1, 3, 7 
and 14 days post-reperfusion; d1, 3, 
7, 14: Ilexonin A 80 mg/kg group at 
1, 3, 7 and 14 days post-reperfusion. 
Data are expressed as the mean ± 
SD. *P < 0.05, vs. ischemia group; 
#P < 0.01, vs. IA 20 and IA 40 mg/kg 
groups (one-way analysis of variance 
followed by the least significant dif-
ference test).
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Figure 4 Neuronal stem cell 
proliferation in the hippocampal CA1 
region after ischemia/reperfusion and 
administration of ilexonin A.  
(A, B) Nestin immunostaining (arrows) in 
the hippocampal CA1 region at different 
time points after ischemia/reperfusion 
and administration of ilexonin A (IA). (a–
d) Ischemia group at 1, 3, 7 and 14 days 
post-reperfusion; (e–h) Ilexonin A 80 mg/
kg group at 1, 3, 7 and 14 days post-reper-
fusion (scale bar: 50 µm). The nestin 
protein in the hippocampus was detected 
by western blot analysis (C) and analyzed 
in (D) using β-actin protein as an internal 
reference. a1, 3, 7, 14: Ischemia group at 
1, 3, 7 and 14 days post-reperfusion; b1, 
3, 7, 14: Ilexonin A 20 mg/kg group at 1, 
3, 7 and 14 days post-reperfusion; c1, 3, 
7, 14: Ilexonin A 40 mg/kg group at 1, 3, 
7 and 14 days post-reperfusion; d1, 3, 7, 
14: Ilexonin A 80 mg/kg group at 1, 3, 7 
and 14 days post-reperfusion. Data are 
expressed as the mean ± SD. *P < 0.05, vs. 
ischemia group; #P < 0.05, vs. IA 20 and 
IA 40 mg/kg groups (one-way analysis of 
variance followed by the least significant 
difference test). 

Figure 5 Characteristics of nestin-positive cells in the hippocampal 
CA1 region. 
(A) Different morphologies of nestin-positive cells (arrows) in the isch-
emia group at 14 days. (B) Nestin-positive cells (arrows) appeared in 
different parts of the CA1 region at different time points after ischemia/
reperfusion. (a–c) 3, 7, 14 days after MCAO. Original magnification: 
400×; scale bars: 50 µm. IA: Ilexonin A. MCAO: middle cerebral artery 
occlusion.

Figure 6 Concentration of TNF-α and IL-1β in the hippocampal 
tissue after ischemia/reperfusion and IA administration as 
determined by enzyme linked immunosorbent assay.  
TNF-α (A) and IL-1β (B) concentrations were measured at 1, 3, 7 and 
14 days after ischemia/reperfusion. Data are expressed as the mean ± 
SD. *P < 0.01, vs. ischemia group (one-way analysis of variance fol-
lowed by the least significant difference test). #P < 0.05, vs. IA 20 and IA 
40 mg/kg groups. IA: Ilexonin A; IL-1β: interleukin 1β; TNF-α: tumor 
necrosis factor-α.
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amoeba-like cells remarkably decreased, but the number of 
rod-like cells increased (Xu et al., 2016). Unlike microglia 
in the peri-infarction region, those in the hippocampal CA1 
region were not activated after ischemia/reperfusion, but 
were activated after subsequent administration of ilexonin 
A. Previous studies indicated that different brain injuries led 
to microglia showing different phenotypes and performing 
different functions (Hu et al., 2012). It has been suggested 
that their functions (neurotoxic or neuroprotective) could 
be configured by the equilibrium among various microglial 
factors (Ekdahl et al., 2009; Wang et al., 2013). Recent in 
vivo and in vitro studies have suggested that activation and 
proliferation of resident microglia were essential for neu-
ronal survival. Selective ablation of proliferating microglia 
or attenuated acute activation of microglia exacerbated the 
ischemic injury. Possibly linked to a reduction in the secre-
tion of neurotrophic factors and neuronal plasticity proteins, 
such as glial cell-derived neurotrophic factor and insulin-like 
growth factor-1 (Montero et al., 2009; Arroba et al., 2011; 
Wang et al., 2013). These activated rod-like microglial cells 
may play a protective role against cerebral ischemia/reperfu-
sion injury, however, further research is required to establish 
this role. Iba-1 labelling of microglia does not clearly differ-
entiate between M1 and M2 microglial cell types; therefore, 
we plan to use CD86 and CD206 as markers to investigate 
the microglial cell type in a future study.

Neural stem cells are static in the intact brain. After brain 
injury, they begin to proliferate, undergo targeted migration, 
and differentiate into neurons or gliocytes necessary for neu-
ral regeneration and neurologic recovery (Liu et al., 2009). 
Previous findings suggested that new neurons were observed 
in the dentate subgranular zone, rostra subventricular zone 
and, recently, in the cerebral cortex after ischemia/reperfu-
sion (Kim et al., 2009; Yao et al., 2009). Furthermore, ilex-
onin A enhanced the cortical differentiation of neural stem 
cells following transient focal cerebral ischemia (Zheng et al., 
2011).

In this study, we found two types of nestin-positive neu-
rons with different morphology distribution, and temporal 
expression after ischemia/reperfusion. Cerebral ischemic 
injury has induced mature neurons in the cerebral cortex 
to return to a naive state and re-express embryonic phase 
proteins (Schmidt-Kastner et al., 1997; Shen et al., 2008; 
Matsuda et al., 2013). Therefore, the first type of nestin-pos-
itive cells, found only in the ischemic model groups, may 
be mature neurons that start expressing nestin protein. This 
indicates that neurons may have a self-defense mechanism 
against ischemic injury. The spatio-temporal distribution of 
the second type of nestin-positive cells in the ischemic hip-
pocampus mirrored that of astrocytes after ischemia/reper-
fusion and treatment with ilexonin A (Tao et al., 2014). Pre-
vious studies have indicated that reactive astrocytes assisted 
with neural stem cell proliferation and differentiation and 
even acquired the capacity to generate neurons (Kronenberg 
et al., 2010; Shin et al., 2013). Axonal growth cones grew 
only in the presence of healthy astrocytes but not in areas of 
injured astrocytes (Takano et al., 2009; Jing et al., 2013). This 

further confirms the neuroprotective effect of reactive astro-
cytes immediately after ischemia/reperfusion and indicates 
that ilexonin A may promote neuronal damage repair in the 
hippocampal CA1 region by inducing the proliferation of 
neural stem cells. However, it is unclear why the two types of 
nestin-positive cells do not co-localize. 

TNF-α and IL-1β are factors secreted by activated glio-
cytes and monocytes/macrophages, which migrated from 
the peripheral blood due to increased permeability of the 
blood-brain barrier after ischemia/reperfusion. TNF-α and 
IL-1β promote and aggravate post-ischemic inflammation, 
via direct damage or indirectly by inducing the expression of 
other inflammation mediators. Blockers against both TNF-α 
and IL-1β remarkably reduced the volume of infarction after 
ischemia/reperfusion (Intiso et al., 2004; Caso et al., 2007). 
Our study also indicated that inflammation may play an 
important role in the delayed neuronal death occurring in 
the hippocampal CA1 region and that this inflammation is 
inhibited by ilexonin A. This result further confirms that re-
active astrocytes and microglia exert neuroprotective effects 
after focal cerebral ischemia/reperfusion. 

Our previous studies found that ilexonin A exerted the 
strongest neuroprotective effect in the peri-infarct region 
after focal cerebral ischemia/reperfusion at the dose of 40 
mg/kg (Zheng et al., 2011; Xu et al., 2016). However, in this 
study, ilexonin A produced the best results at 80 mg/kg. This 
suggests that cells around the ischemic core may be more 
sensitive than those of the hippocampus, after the ischemia 
has occurred.

In conclusion, activation of astrocytes and microglia is 
associated with neuronal damage in the hippocampal CA1 
region and may play a neuroprotective role after transient 
focal cerebral ischemia. Ilexonin A has a neuroprotective ef-
fect, probably through regulation of astrocyte and microglial 
activation, and thus promotes neural stem cell proliferation 
and reduces secretion of pro-inflammatory factors. 
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