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Mathematical modeling and 
stability analysis of Pine Wilt 
Disease with optimal control
M. A. Khan1, K. Ali2, E. Bonyah3,4, K. O. Okosun4, S. Islam2 & A. Khan5

This paper presents and examine a mathematical system of equations which describes the dynamics of 
pine wilt disease (PWD). Firstly, we examine the model with constant controls. Here, we investigate the 
disease equilibria and calculate the basic reproduction number of the disease. Secondly, we incorporate 
time dependent controls into the model and then analyze the conditions that are necessary for the 
disease to be controlled optimally. Finally, the numerical results for the model are presented.

The forest has a significant role in human life, therefore, it is necessary to put in place safety measure in order to 
protect the trees from being infected with diseases. The trees do not only provide greenery to the environment but 
also provide pleasant atmosphere for human community. The pine wilt disease (PWD) is one of the major threat 
to the forest and ecosystem. It is one of the dramatic disease, that kills, pine trees within a very short time and 
one of the symptom of this diseases is the red dish brown foliage. The North American native pinewood nema-
tode (Bursaphelenchus xylophilus) which is vectored by Monochamus alternatus (Japanese pine sawyer beetle, a 
species that transmits the nematode to healthy trees) is one of the causes of pine wilt disease1–5. This disease has 
been known since 1900s in Japan6, and 1980s7 in China and causes great economic and environmental loss to 
ecosystems worldwide.

This disease has three organisms: a pinewood nematode, a gymnosperm host, and an insect vector. During 
primary transmission, dauer juveniles (JIV stage) of Bursaphelenchus xylophilus are carried phoretically in the 
tracheae of their beetle host to young twigs of susceptible trees, where they enter through resin canals in wounds 
made during maturation feeding by the insect6, 8. The dead or dying conifer is a suitable breeding host for the next 
generation of Monochamus spp. vectors. Nematodes brought into the conifer during oviposition of the beetle 
(secondary transmission) will moult from the dauer juvenile stage and enter the propagative phase to grow and 
reproduce on secondary fungi that are present as the pine host dies. Then the cerambycid eggs hatch and develop 
through several larval instars while producing galleries, at first in the inner bark, cambium and outer sapwood 
and later in deeper woody tissue8–10. The pine wilt disease is caused by Bursaphelenchus xylophilus11, 12 and the 
vector is the pine sawyer beetles (Monochamus alternatus). The nematode are scattered by the vector beetles over 
pine healthy trees from space, while in the vector population the direct transmission can happen while vectors are 
mating13, 14. During breeding, mature beetles use healthy tree twigs mainly for feeding purposes while they focus 
on the infected trees only for copulation and oviposition15. The transmission of Bursaphelenchus xylophilus hori-
zontally between heterosexual vectors promotes multiple infections. The PWD’s first outbreak in 1905 occurred 
in Japan, the disease has spread throughout the country in the 1970s and only excluding the northern parts of 
Japan16. After a decade, PWD had spread to many parts of Asia, such as China, Taiwan, Hong Kong and South 
Korea and in 1999, the disease hit Europe (Portugal)17. Today, PWD has become one of the major threats all over 
the world to forests ecosystems.

Pine wilt disease is very disastrous and can within weeks kill affected trees. The death of the trees are actually 
caused by a microscopic pine wood nematodes (Bursaphelenchus xylophilus) and the management of pine wilt 
disease is limited to prevention primarily. There are no cures for the disease once a susceptible tree becomes 
infected with pinewood nematode and these parasitic nematodes do not associate with the plant roots, but to the 
aboveground parts of the pine trees. The spread of the nematode from trees to trees occur via the pine sawyer 
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beetle (Monochamus spp.) as they feed on healthy trees branches, the nematodes would then emerge and there-
after enter through the feeding wounds caused by the beetles into the trees. Infected trees thereafter are killed by 
nematodes feeding on cells surrounding the resin ducts.

During oviposition (egg laying), the adult sawyers are by preference only attracted to the dead or dying trees. 
And the tree age also influences the risk of pine wilt. Trees that are 10 years and above are the most affected, 
beetles feed and infest one or more trees with nematodes and then move to other susceptible area. But very often 
the disease only affects a tree in a group. This is due to the nematodes movement, which is not based on physical 
contact or water or through grafts of roots18, 19.

Some mathematical models have been presented on the dynamics of PWD. A mathematical model presented 
in ref. 20, examined the stability of pine wild disease and application of optimal control technique, where the 
population of pine trees were divided into two categories, that is, susceptible pine trees and infected pine trees, 
while the vector population (beetles) were divided into two classes; susceptible vector and infected vector20. Also, 
K. S. Lee and A. A. Lashari21 introduced a mathematical model that incorporated the exposed class in the pine 
trees population with a detailed discussion made on the stability and optimal control of PWD. Also, M. Ozair 
presented a mathematical model on the dynamics of PWD by dividing the host pine trees and vector beetles into 
susceptible and infected classes with nonlinear incidence and horizontal transmission22. Recently, K. S. Lee and 
D. Kim introduced a mathematical model that describe the dynamics of PWD by presenting its global stability 
with nonlinear incidence rates23.

It is necessary to make the community and forest safe from infectious diseases, with different control measure 
used. Such as optimal control technique and mathematical models are widely used to understand the complicated 
nonlinear phenomena of infectious diseases with different purposes24–27 which is helpful in analyzing biological 
models. In the literature, various articles on the dynamics of infectious disease with optimal control strategies are 
presented28–31 and the reference there in.

The aim of this paper is to present a mathematical model on the dynamics of Pine trees and vector (beetles) 
population. We first presented the detail mathematical study of the model, which is the local and global stability, 
asymptotical stability and backward bifurcation phenomena. Then, we applied the optimal control technique 
to minimize the population of exposed pine trees, infected pine trees, susceptible vector, exposed vector and 
infected vector (beetles) as well as to maximize the population of susceptible pine trees. Different control strate-
gies have been presented in order to reduce infection in the population of pine trees.

In the next, section Basic Model Formulation we give a detail analysis about the mathematical formulation 
of PWD. In section Stability analysis disease free a brief mathematical results are presented for disease free case 
and a backward bifurcation analysis. The stability analysis of the model at endemic equilibrium is presented in 
Section stability endemic equilibrium. Further, we apply the optimal control technique in section Optimal control 
problem while the numerical results and conclusion are presented in sections Numerical results and Conclusion 
respectively

Basic Model Formulation
The total population of pine wood trees is denoted by N(t) and we subdivide into four subclasses; the pine trees 
that are susceptible, SH(t), pine trees that are already exposed, EH, and the pine trees that are infected IH at any 
time t, with = + +N t S t E t I t( ) ( ) ( ) ( )H H H H .

The total population of vector (beetles) is denoted by NV, which is categorized further into subclasses, namely, 
the susceptible beetles, SV, the exposed vector beetles, EV(t) (which not carrying pinewood nematode), and 
infected vector beetles, IV(t)(which have the ability to carry pinewood nematode) at any time t, with 

= + +N t S t E t I t( ) ( ) ( ) ( )V V V V .
We are not interested to include the class RH(t) for pine wood trees population, this is because the infected pine 

wood tree dies in a year or may in a subsequent next years.
With the above assumptions, we present the model and their schematic diagram in Fig. 1 is follows:

Figure 1.  Flow chart for the transmission for the Pine wilt disease PWD.
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The parameter ΛH denotes the recruitment rate of pine trees that are susceptible and the parameter κ1 stands 
for the contact rate during maturation. The average number of contacts during maturation per day with vector 
adult beetles is denoted by ψ. The mass action term κ1ψSHIV represents the incidence rate. The parameter κ2, 
denote the probability that a nematode is being transmitted through oviposition by an infected beetle, and the 
average number of contacts per day when adult beetles oviposit is denoted by φ. The probability that pine trees 
that are susceptible cease oleoresin exudation without infected by the nematode is represented by α. We show the 
transmission through oviposition by κ2φα and hence, κ2φαSHIV denotes the number of new infections. The rate 
of progression from pine trees that are exposed to trees that are infected and the natural death rate of pine trees 
respectively denoted by δ and d1.

The vector pine beetle emergence rate is denoted by ΛV, while η measure the rate at which adult beetles that 
are escaping from dead trees carry the PWN with them and so the transmission via this route is denoted by 
ηSVIH. The transfer rate from Ev to Iv, the natural death rate and disease induced death rate for the vector beetles 
population are respectively denoted by μ, d2 and γ. The model (1) presents the pine wood trees and vector beetles 
populations, and it is understood that all the variables involved with parameters are nonnegative for nonnegative 
initial conditions.

So, the initials conditions for the model (1) is follows as: =S S(0)H H
o , =E E(0)H H

o , =I I(0)H H
o , =S S(0)V V

o, 
=E E(0)V V

o and =I I(0)V V
o.

The total population of pinewood trees is = Λ −dN dt d N/H H H1 . The total population of vector beetles is 
= Λ −dN dt d N/V V H2 .

When t → ∞, the total dynamics of pine wood trees and beetles approaches → Λ ΛN t N t d d( ( ), ( )) ( / , / )H V H V1 2 . 
Thus, the biological feasible region for model (1) is
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which is positively invariant and the global is attracted in Ψ.
The disease free equilibrium of the system (1) denoted by 0 and is given by = S S( , 0, 0, , 0, 0)H V0

0 0 .

Basic reproduction number.  Here, we will compute the basic reproduction number 0  of system (1). The 
concept of next generation matrix and basic reproduction number in refs 32, 33 will be used to obtain 0  for the 
proposed model (1). Hence, we define the new vector =x E I E I( , , , )H H V V  contains only the infected variables. 
Consider the following system:
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In the computation of 0 32, the necessary matrices involved are obtained as follows:
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The inverse of V equals
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Thus, the next generation matrix of system (2) is
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So the basic reproduction number is
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 represent respectively, the spectral radius, disease free equilibrium of trees and dis-

ease free equilibrium of vector. In the following, we show that 0  is the key threshold parameters whose values 
completely characterize the global dynamics of system (1).

Stability Analysis of Disease free Equilibrium
Let
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Define λ λ=s M max Re is an eigenvalue of M( ) { : }, so s(M) is a simple eigenvalue of M with a positive eigenvec-
tor34. It follows from ref. 32, that two equivalences hold: > ⇔ >s M1 ( ) 00 , < ⇔ <s M1 ( ) 00 .

Theorem 0.1. If < 10 , then the disease-free equilibrium 0  is locally asymptotically stable on Ψ1.

Proof: To show this results, we check the hypothesis present in ref. 32, namely (A1)–(A5). The hypothesis (A1)–
(A4) can be verified easily, while A5 could be satisfied if all the eigenvalues of the 6 × 6 matrix

=






J M

J J
0 ,K

3 40

have negative real parts, where J3 = −F,

δ
δ γ

µ
µ

=







− +
− +

− +
−







.J

d
d

d
d

( ) 0 0 0
( ) 0 0

0 0 ( ) 0
0 0

4

1

1

2

2

Calculated the eigenvalues of J4,

γ δ µ= − − − + − + − < .s J max d d d d( ) ({ , ( ), ( ), }) 04 1 1 2 2
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If  < 10 , then s(M) < 0 and  <( )s J 0
0

, the disease-free equilibrium 0 of system (1) is locally asymptotically 
stable.

Analysis of Backward Bifurcation
In this subsection, we analyze the existence of Backward bifurcation for the model (1). To analyze this, we use the 
center manifold theory as described in Castillo-Chavez and Song (2004) (Theorem 4.1)35, which is reproduced 
here below for convenience.

Theorem 0.2. (Theorem 4.1 of Castillo-Chavez and Song (2004))35 Consider the following general system of ordinary 
differential equations with a parameter φ.

R R R C R Rφ= × → ∈ ×
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dt

f x f and f( , ), : ( ) (3)
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 is the linearization matrix of (3) around the equilibrium point 0 with φ evaluated 

at 0. Zero is a simple eigenvalue of A and other eigenvalues of A have negative real parts;
•	 Matrix A has a right eigenvector w and a left vector v (each corresponding to the zero eigenvalue).
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The local dynamics of the system (3) around 0 is totally determined by the signs of a and b.

	 (i)	 a > 0, b > 0. When φ < 0 with φ  1, 0 is locally asymptotically stable, and there exists a positive unstable 
equilibrium; when φ< 0 1, 0 is unstable and there exists a negative and locally asymptotically stable 
equilibrium;

	(ii)	 a < 0, b < 0. When φ < 0 with φ  1, 0 is unstable; when φ< 0 1, 0 is locally asymptotically stable, and 
there exists a positive unstable equilibrium;

	(iii)	 a > 0, b < 0. When φ < 0 with φ  1 is unstable, and there exists a locally asymptotically stable negative 
equilibrium; when φ< 0 1, 0 is stable, and a positive unstable equilibrium appears;

	(iv)	 a < 0, b > 0. When φ changes from negative to positive, 0 changes its stability from stable to unstable. Corre-
spondingly a negative unstable equilibrium becomes positive and locally asymptotically stable.

Particularly, if a > 0 and b > 0, then a backward bifurcation occurs at φ = 0. If we choose κ1 as a bifurcation 
parameter, then at = 10 , we have
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Then, we make the following change of variables SH = x1, EH = x2, IH = x3, SV = x4, EV = x5 and IV = x6. In addition, 
using vector notation = x x x x x xx ( , , , , , )T1 2 3 4 5 6 , the PWD model can then be written in the form =dx dt F x/ ( ), 
with =F f f f f f f( , , , , , )T1 2 3 4 5 6 , as shown below:
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To follow the above method, we find the Jacobian matrix evaluated at disease free equilibrium 0  is given by
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The Jacobian matrix J( )0  has a simple zero eigenvalue evaluated at κ ⁎
1 . The Jacobian matrix J( )0  evaluated at κ ⁎
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has right and left eigenvector denoted by = w w w w w wW [ , , , , , ]T1 2 3 4 5 6  and = v v v v v vV [ , , , , , ]1 2 3 4 5 6  respectively, 
and obtain

δ δ
γ

δη
γ

δη
γ µ

δηµ
γ µ

= −
+

> =
+

= −
Λ

+

=
Λ

+ +
=

Λ
+ +

w w d
d

w w w
d

w w
d d

w w
d d d

w w
d d d

( ) , 0, ,
( )

,

( )( )
,

( )( )

V

V V

1
2 1

1
2 3

2

1
4

2

2
2

1

5
2

2 1 2
6

2

2
2

1 2

and

δ
δ

γ δ
δη

γ δ µ
δηµ

= = > =
+

=
+ +

Λ
=

+ + +
Λ

.

v v v v v d

v d v d d v d v d d d

0, 0, ( ) ,

( )( ) , ( )( )( )

V V

1 4 2 3
2 1

5
2 2 1 1

6
2 2 1 1 2

Computation of a:
To compute a, we find the following partial derivatives
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2
5

3 4

we obtain

δη κ µ γ δ ψ φα δ η µ
γ µ

= −
Λ + + + + +

+ +
.a w v d d d v d

d d d d
2 ( ( )( )( ) ( ))

( ) ( )
V2

2
1 2 1 1 1 5 2

1 2
2

1
2

2

Computation of b:
To compute b, we find the following partial derivatives

κ
ψ∂

∂ ∂
=

Λf
x d

H
2

2

6 1 1

we obtain

ψδηµ
γ µ

=
Λ Λ

+ +
b v w

d d d d( )( )
H V2 2

1 2
2

1 2

Obviously, the coefficient b is positive always so that, according to Theorem (0.2), it is the sign of the coefficient a 
which decides the local dynamics around the disease-free equilibrium for κ κ= ⁎

1 1 .

Theorem 0.3. If < 10 , then the disease-free equilibrium 0  is globally asymptotically stable on Ψ.

Proof: Consider the following lyapunov function:

∫ ∫=





−





+ + +





−





+ + .L w S
y

dy w E w I w S
y

dy w E w I1 1
S

S
H

H H
S

S
V

V V1

0

2 3 4

0

5 6
H

H

V

V

0 0

The derivative of L along the solution of model (1) is

′ =





−





′ + ′ + ′ +





−





′ + ′ + ′ .L w S
S

S w E w I w S
S

S w E w I1 1H

H
H H H

V

V
V V V1

0

2 3 4

0

5 6

where wi, for = …i 1, 2, 6 are positive constants to be chosen later.
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κ ψ κ φα

κ ψ κ φα δ

δ γ η

η µ µ

′ =





−





Λ − − −

+ + − +

+ − + +





−





Λ − −

+ − + + −

L w S
S

S I S I d S

w S I S I d E

w E d I w S
S

S I d S

w S I d E w E d I

1 [ ]

[ ( ) ]

[ ( ) ] 1 [ ]

[ ( ) ] [ ] (4)

H

H
H H V H V H

H V H V H

H H
V

V
V V H V

V H V V V

1

0

1 2 1

2 1 2 1

3 1 4

0

2

5 2 6 2

Using = ΛSH d
0 H

1
 and = ΛSV d

0 V

2
 in equation (6), we get

κ ψ κ φα

κ ψ κ φα δ δ

η η γ

µ µ

′ = − − + − +

+ + − + − +

+ − + − +

+ − + .

− −

Λ

Λ

L d w d w w w S I S I

w d w I w w d E

w w S I w w d I

w w d E

( )[ ]

[ ( ) ] [ ( )]

( ) [ ( )]

[ ( )] (5)

S S
S

S S
S H V H V

d V H

V H d H

V

1 1
( )

2 4
( )

2 1 1 2

1 1 2 2 6 3 2 1

5 4 4 3 1

6 5 2

H H

H

V V

V

H

V

0 2 0 2

1

2

Now cho os ing  t he  const ants  such  as  w 1 =  w 2 =  δ ,  w 3 =  (d 1 +  δ ) ,  = = γ δ
η

+ +
Λ

w w d d d
4 5

( )( )

V

2 1 1 , 

= γ µ δ
ηµ

+ + +
Λ

w d d d d
6

( )( )( )

V

2 1 2 1  and simplifying, we obtain



δ
γ δ

η

γ µ δ
ηµ

′ = −
−

−
+ +

Λ
−

−
+ + +

Λ
− .

L d S S
S

d d d S S
S

d d d d I

( ) ( )( ) ( )

( )( )( ) (1 )
(6)

H H

H V

V V

V

V
V

1

0 2
2
2

1 1
0 2

2
2

1 2 1
0
2

Thus, L′(t) is negative for ≤ 10  and zero if and only if =S SH H
0 , =S SV V

0, EH = IH = 0 and EV = IV = 0. Therefore 
the largest compact invariant set in Ψ is the singleton set 0 . So, the model (1) is globally asymptotically stable.

Stability Endemic Equilibrium
In this subsection, we investigate the stability results for the endemic case. The endemic equilibrium of the model 
(1) denoted by = ⁎ ⁎ ⁎ ⁎ ⁎ ⁎S E I S E I( , , , , , )H H H V V V1  and is given by

µ γ δ δη
δη µ µ ακ φ κ ψ

γ δ µ
δη δ µ µ ακ φ κ ψ

γ δ µ
η γ δ µ µ ακ φ κ ψ
γ δ µ µ ακ φ κ ψ

µ ακ φ κ ψ γ δ δη

γ δ µ
µ µ ακ φ κ ψ γ δ δη

γ δ µ
µ ακ φ κ ψ γ δ δη











=
+ + + + Λ

+ + Λ +

=
+ + + −

+ + + Λ +

=
+ + + −

+ + + + Λ +

=
+ + + + Λ +

+ + + + Λ

=
+ + + −

+ + + + + Λ

=
+ + + −

+ + + + + Λ

⁎

⁎

⁎

⁎

⁎

⁎

S d d d d d
d d d

E d d d d d
d d d d

I d d d d d
d d d d d

S
d d d d d

d d d

E d d d d d
d d d d

I d d d d d
d d d d d

( )( ( )( ) )
( ( ) ( ))

( )( )( )( 1)
( )( ( ) ( ))

( )( )( )( 1)
( )( )( ( ) ( ))

( )( )( ( ) ( ))
( )( ( )( ) )

( )( )( )( 1)
( ) ( )( ( )( ) )

( )( )( )( 1)
( )( )( ( )( ) )

H
H

V V

H
V

H
V

V
V V

V H

V
H

V
H

2 2 2 1 1

1 2 2 2 1

1 2
2

1 1 2 0

1 1 2 2 2 1

1 2
2

1 1 2 0

1 1 1 2 2 2 1

1 1 1 2 2 2 1

2 1 2 1 1

1 2
2

1 1 2 0

2 2 1 2 1 1

1 2
2

1 1 2 0

2 2 2 1 2 1 1









Lemma 0.1. A unique endemic equilibrium exists for model (1) whenever  > 10 .

Theorem 0.4. The endemic equilibrium of the model (1) is locally asymptotically stable when  > 10  and the 
conditions

•	 − >c c c 0,1 2 3
•	 − + − >c c c c c c c c( ) ( ) 0,3 1 2 3 1 5 1 4
•	 − − − − >c c c c c c c c c c( )( ) ( ) 01 2 3 3 4 2 5 5 1 4

2 .

are satisfied.

Proof: The jacobian matrix evaluated at 1 is
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δ
η η

η η
µ

=







− + −
−

−
− − +

−
−







.

⁎ ⁎

⁎ ⁎

⁎ ⁎

⁎ ⁎

J

d PI PS
PI Q PS

Q
S d I

S I Q
d

( ) 0 0 0 0
0 0 0

0 0 0 0
0 0 ( ) 0 0
0 0 0
0 0 0 0

V H

V H

V H

V H

V

1

1

2

2

3

2

1

The associated characteristics equation of J
0
 is

λ λ λ λ λ λ+ + + + + + =d c c c c c( )[ ] 0, (7)2
5

1
4

2
3

3
2

4 5

where

η
η

η η η η

η

η η η
η

η η
η η

η δη µ

= + + + + + +
= + + + + + + + +

+ + + + + + +
+ + +

= + + + + + + + +
+ + + + + +
+ + + + +
+ + + + +

= + + + + +
+ + + + + + +

= + + + .

⁎ ⁎

⁎ ⁎

⁎ ⁎ ⁎ ⁎ ⁎ ⁎

⁎ ⁎

⁎

⁎

⁎ ⁎ ⁎ ⁎ ⁎ ⁎

⁎ ⁎ ⁎

⁎ ⁎ ⁎ ⁎

⁎ ⁎ ⁎ ⁎

⁎ ⁎ ⁎ ⁎ ⁎

c d d I PI Q Q Q
c d d I Q Q Q d PI Q Q Q

Q I PI Q Q PI I Q I Q I
PQ I PQ I Q Q

c d d Q Q Q Q Q Q I Q Q Q Q Q
d P Q Q Q I Q Q Q Q Q

PQ I I PQ I I Q I PI Q Q
P Q Q I Q Q Q Q I PQ Q I

c Q Q d I d PI Q Q d I d PI
Q Q d d I PI d I d PI

c Q Q Q d I d PI P S I S

,
( ) ( )

( )
,

( ( ) ( ) ( ) )
( ( ) ( ))

( ( )
( ) ) ,
( )( ) ( ( )( )
( ( ) ( )( ))),

( )( )

H V

H V

H V H V H H

V V

H

V

H V H V H V

V H V

H V H V

H V H V

H V H V V V

1 1 2 1 2 3

2 1 2 1 2 3 2 1 2 3

3 1 2 1 2

1 2 1 2

3 1 2 1 2 3 1 2 3 1 2 1 2 3

2 1 2 3 2 3 1 2 3

1 2 3 1 2

1 2 1 2 2 1 2 1

4 1 2 2 1 3 1 2 1

2 1 1 2 2 1

5 1 2 3 2 1
2

and δ γ µ+ = + = + =d Q d Q d Q( ) , ( ) , ( )1 1 1 2 2 3 and κ ψ κ φα= +P ( )1 2 . In equation (7) one of the root −d2 
is clearly negative, for the remaining the roots we use the following Routh-Hurtwiz conditions. ci > 0 for 

= …i 1, 2, 5 where

= =






 =













=













=













.

H c H c
c c H

c
c c c
c c c

H

c
c c
c c c c

c c

H

c
c c c
c c c c c

c c c
c

, 1 ,
1 0

,

1 0 0
1 0

0 0

,

1 0 0 0
1 0

0 0
0 0 0 0 (8)

1 1 2
1

3 2
3

1

3 2 1

5 4 3

4

1

3 2

5 4 3 2

5 4

5

1

3 2 1

5 4 3 2 1

5 4 3

5

Here, all ci > 0 for = …i 1, 2, 5 and the parameters are positive. Thus, the given conditions in the theorem above 
ensure the local endemic stability of the endemic equilibrium of the model (1).

Global stability of Endemic Equilibrium
Here, we present the global stability of the system (1) at 1 by using the approach presented in refs 36–38. At the 
steady state the model (1) at 1 is

δ δ γ
γ δ

δ
η η µ

µ η
µ

µ

Λ = + + = = +
+ +

= Λ = + = +

= =
+

.

⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎

⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎

⁎ ⁎ ⁎ ⁎
⁎

PS I d S d E PS I E d I
d d I PS I S I d S S I d E

E d I S I d d I

, ( ) , ( )
( )( ) , , ( ) ,

, ( )
(9)

H H V H H H V H H

H H V V V H V V H V

V V V H
V

1 1 1

1 1
2 2

2
2 2

The above equations will be used in the following equations (10–15).

Theorem 0.5. If  > 10 , then the endemic equilibrium 1 is globally asymptotically stable.

Proof: Consider the lyapunove function:

∫ ∫ ∫

∫ ∫ ∫

δ
δ

µ
µ

=




−


 +





−


 +

+ 



−




+




−


 +





−


 +

+ 



−


 .

⁎ ⁎ ⁎

⁎ ⁎ ⁎

⁎ ⁎ ⁎

⁎ ⁎ ⁎

L S
x

dx E
x

dx d I
x

dx

S
x

dx E
x

dx d I
x

dx

1 1 ( ) 1

1 1 ( ) 1

S

S
H

E

E
H

I

I
H

S

S
V

E

E
V

I

I
V

1

2

H

H

H

H

H

H

V

V

V

V

V

V
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The derivative of L along the solutions of system (1) is

δ
δ

µ
µ

=





−





′ +





−





′ +
+ 




−





′

+





−





′ +





−





′ +
+ 




−





′ .



⁎ ⁎ ⁎

⁎ ⁎ ⁎

L S
S

S E
E

E d I
I

I

S
S

S E
E

E d I
I

I

1 1 ( ) 1

1 1 ( ) 1

H

H
H

H

H
H

H

H
H

V

V
V

V

V
V

V

V
V

1

2

By direct calculations, we have that:






−





′ =





−





Λ − −

=





−





+ − −

=





− −





+





−





−





−





=





− −





+





−





− +

⁎ ⁎

⁎
⁎ ⁎ ⁎

⁎
⁎

⁎ ⁎
⁎ ⁎

⁎

⁎
⁎

⁎ ⁎
⁎ ⁎ ⁎

S
S

S S
S

PS I d S

S
S

PS I d S PS I d S

d S S
S

S
S

S
S

PS I PS I S
S

d S S
S

S
S

S
S

PS I PS I PS I

1 1 [ ]

1 [ ]

2 1 1

2 1 ,
(10)

H

H
H

H

H
H H V H

H

H
H V H H V H

H
H

H

H

H

H

H
H V H V

H

H

H
H

H

H

H

H

H
H V H V H V

1

1 1

1

1

δ

δ δ

δ






−





′ =





−





− +

= − − + + +

= − − + +

⁎ ⁎

⁎
⁎

⁎
⁎ ⁎

E
E

E E
E

PS I d E

PS I PS I E
E

d E d E

PS I PS I E
E

d E PS I

1 1 [ ( ) ]

( ) ( )

( ) ,
(11)

H

H
H

H

H
H V H

H V H V
H

H
H H

H V H V
H

H
H H V

1

1 1

1

δ
δ

δ
δ

δ γ

δ δ

δ γ
δ

δ γ
δ






−





+ ′ =





−





+
− +

= + − +

−
+ +

+
+ +

⁎ ⁎

⁎

⁎

I
I

d I I
I

d E d I

d E d E I
I

d d I d d I

1 ( ) 1 ( ) [ ( ) ]

( ) ( )

( )( ) ( )( ) ,
(12)

H

H
H

H

H
H H

H H
H

H

H H

1 1
1

1 1

1 1 1 1

η

η η

η η η






−





′ =





−





Λ − −

=





−





+ − −

=





− −





+





−





− +

⁎ ⁎

⁎
⁎ ⁎ ⁎

⁎
⁎

⁎ ⁎
⁎ ⁎ ⁎

S
S

S S
S

S I d S

S
S

S I d S S I d S

d S S
S

S
S

S
S

S I S I S I

1 1 [ ]

1 [ ]

2 1 ,
(13)

V

V
V

V

V
V V H V

V

V
V H V V H V

V
V

V

V

V

V

V
V H V H V H

2

2 2

2

η µ

η η µ µ

η η µ η






−





′ =





−





− +

= − − + + +

= − − + +

⁎ ⁎

⁎
⁎

⁎
⁎ ⁎

E
E

E E
E

S I d E

S I S I E
E

d E d E

S I S I E
E

d E S I

1 1 [ ( ) ]

( ) ( )

( ) ,
(14)

V

V
V

V

V
V H V

V H V H
V

V
V V

V H V H
V

V
V V H

2

2 2

2

and



www.nature.com/scientificreports/

1 0Scientific Reports | 7: 3115  | DOI:10.1038/s41598-017-03179-w

µ
µ

µ
µ

µ

µ µ
µ

µ
µ

µ

µ
η η

η




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


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


 −






+
−

= + − + −
+

+
+

= + − − + .

⁎ ⁎

⁎
⁎

⁎ ⁎

⁎

⁎ ⁎ ⁎

⁎
⁎ ⁎

(15)

I
I

d
I

I
I

d
E d I

d E d E
I
I

d d
I

d d
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In equation (16),
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One can see that the largest invariant subset, =L 0 is 1. So, by LaSalle’s invariance Principle39, 1  is globally 
asymptotically stable whenever > 10 .

Optimal Control Problem
Here, we incorporate control measures into the system (1) by including the density effects respectively to modi-
fying the recruitment rate of the susceptible classes, that is, Λ → Λ + cNH H H and Λ → Λ NV V V , where the con-
stant c represent the density impact on recruitment rate40. Our main goal is to investigate the best control 
strategies with minimum cost of implementation. The force of infections in pine trees population is reduce by 
(1 − u1), where u1 measures the effort due to the precautionary measures, such as nematode tree-injection and 
vaccination. In order to prevent infection of the population of pine trees, a nematicide-injection preventative 
control is used. The deforestation of infected trees effort is denoted by the control variable u2. The destruction and 
removal of infected pine trees can drastically reduce further infection. This will further ensure that eggs, larvae 
and pupa that are inhabiting the pines are destroyed. While the control variable u3 is the effort due to eradication 
through aerial insecticide spraying. Here, we consider that the death rate of the population of adult vector (beetle) 
increases as u3 increases. The factor (1 − u3) measure the reduction in the population of adult beetles. We present 
the control model based on the assumptions and extensions made above,
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subject to non-negative initial conditions.
In system (17), we use three control variables = ∈u t u u u( ) ( , , )1 2 3  , which is define briefly above. The control 
variables = ∈u t u u u( ) ( , , )1 2 3  associate to the variables SH, EH, IH, SV, EV and IV are bounded and measure with
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Here, for the control problem we defined the objective functional as
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subject to the control system (17). The constants in (19), C1, C2, B1, B2 and B3 are the weight and balancing con-
stants. These constants C1, C2 and B1, B2, B3 measure respectively the relative cost of the interventions over the 
interval [0, T]. In order to find an optimal control, ⁎ ⁎ ⁎u u u, ,1 2 3 , such that

=⁎ ⁎ ⁎J u u u J u u u( , , ) min ( , , ) (20)1 2 3 1 2 3


where   is defined in (18) and subject to control system (17) with non-negative initial conditions. Next, we use 
the well known Pontryagin’s Maximum Principle to find the solution to the control problem and derive its neces-
sary conditions. Here, we show the existence for the control system (control problem). Let the variables SH(t), 
EH(t), IH(t), SV(t), EV(t) and IV(t) be represent the state variables with control associated control variables u1(t), 
u2(t) and u3(t). For existence, we rewrite the control problem (17) in the following form:
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and ′  represents the derivative with respect to time t. The system (21) is a nonlinear system with bounded coef-
ficient. By setting
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where Z is the positive constant, Z = max(Z1, Z2, Z3, Z4, Z5, Z6) is independent of the state variables. Also we have

   − ≤ −G G Z( ) ( ) , (24)1 2 1 2
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where Z = Z1 + Z2 + Z3 + Z4 + Z5 + Z6 + ||K|| < ∞. Thus, it follows that the function G( )  is uniformly Lipschitz 
continuous. From the definition of control variables we can see that a solution of the system (17) exists41.

Existence of the control problem.  Following the result in ref. 42 we prove the existence of an optimal 
control problem. In control system (17), the equations are obviously bounded above and so the result in ref. 42 
can be applied to the model (17), since the state variables and the set of control variables are nonempty, the set   
of the control variables is closed and convex. The right hand side of each equation in control problem (17) is con-
tinuous, bounded above by a sum of the bounded control and state, and can be written as a linear function of u 
with coefficients depending on time and state and there exists constants l1, l2 > 0 and m > 1 such that the inte-
grand L(y, u, t) of the objective functional J is convex and satisfies

≥ + + − .L y u t l u u u l( , , ) ( )
m
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2

2
2

3
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2

To satisfy the conditions mentioned above, we use the result given in ref. 43 to establish the existence of (17). The 
state variables and the set of control is obviously bounded and nonempty. The solutions are bounded, and convex. 
The system is bilinear in control variables (since the solutions are bounded). The last one can be verified as
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where C1, C2, B1, B2, B3, l1, l2 > 0 and m > 1. So, we get

Theorem 0.6. The objective functional (19) and the control set (18) subject to control system (17) there exists an 
optimal control =⁎ ⁎ ⁎ ⁎u u u u( , , )1 2 3  such that =⁎ ⁎ ⁎J u u u J u u u( , , ) min ( , , )1 2 3 1 2 3 .

In order to obtain the solution to the control problem, it is necessary to get the Lagrangian and Hamiltonian 
(17). Hence, the Lagrangian L for the control problem is expressed as
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and for the Hamiltonian H, by choosing =X S E I S E I( , , , , , )H H H V V V , = u u u( , , )1 2 3  and λ = (λ1, λ2, λ3, λ4, λ5, 
λ6), we have:
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Solution to the Optimal control problem.  To obtain the optimal solution of the control system (17), we 
use the well-known Pontryagin’s Maximum Principle44:

Letting ⁎u1 , ⁎u2  and ⁎u3  represent the solutions to the control problem (17), then, there exists the adjoint varia-
bles λi for i = 1, 2, 3, 4, 5, 6 satisfying the following conditions given below.

Notation Value References

ΛH 0.002021/day Assumed

c 0.001241/day Assumed

κ1 0.00166/day 48

κ2 0.0004/day 48

ψ 0.20/day 49

γ 0.00220/day Assumed

d1 0.0000301/day 50

δ 0.0133/day Assumed

α 0.0032/day assumed

η 0.00305/day 51

μ 0.01/day Assumed

ΛV 0.0132652/day Assumed

αo 0.21/day Assumed

φ 0.0023/day Assumed

d2 0.011764/day 52

Table 1.  Values of parameter used in numerical simulation of the optimal control system.
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Here, by applying the necessary conditions to the Hamiltonian H, the following is obtained:

Theorem 0.7. The given optimal controls ⁎ ⁎ ⁎u u u, ,1 2 3  and the solutions ⁎ ⁎ ⁎ ⁎ ⁎ ⁎S E I S E I, , , , ,H H H V V V  of the state system, 
there exists the adjoint variables λi for i = 1, 2, 3, 4, 5, 6

λ λ λ λ λ κ ψ λ λ κ φα

λ λ λ δ λ δ

λ η λ λ λ λ γ λ

λ λ λ λ η λ λ α

λ λ λ µ λ α λ µ

λ λ λ κ ψ λ λ κ φα
λ λ α

′ = − + + − − + − −
′ = − − + +
′ = − + − − + + + −
′ = − − Λ − + − − + +
′ = − − Λ − + + + −
′ = − + − − + − −

− Λ − + +

c d I u I u
c d

C S u u d c
C u I u d u
C u d u
C S u S u

u d u

( ) (1 ) ( ) (1 ),
( ),

(1 )( ) ( ) ,
(1 ) ( ) (1 ) ,
(1 ) ( ) ,

( ) (1 ) ( ) (1 )
(1 ) ( ), (28)

V V

V

V H o

V o

H H

V o

1 1 1 1 1 2 1 1 1 2 2 1

2 1 3 2 1

3 1 1 4 5 3 2 3 1 1

4 2 4 3 4 5 1 2 4 4 3

5 2 4 3 5 2 5 3 6

6 2 1 2 1 1 1 2 2 1

4 3 6 2 3

with transversality conditions
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Proof: To find the adjoint system (28) and the transversality conditions (29), we use H (26) by setting = ⁎S SH H, 
= ⁎E EH H, = ⁎I IH H, = ⁎S SV V , = ⁎E EV V  and = ⁎I IV V  and taking the time derivative of H with respect to SH, EH, IH, 

SV, EV, IV, we obtain (28). To find the optimal control characterization (30), we use =∂
∂

0H
ui

, for i = 1, 2, 3.

Figure 2.  Comparison of both the systems: without and with control.
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Numerical Simulations and Results
Here, we are investigating the numerical solutions of the system (17) and that of the model without control (1). 
For the solution of both systems (that is the control and without control) many method are available in the litera-
ture45, 46. In this simulation, the cases without control population are labeled with bold line and the control cases 
by a dashed line. The constants (weight) values in the objective functional are C1 = 0.01, C2 = 0.0036, B1 = 0.02, 
B2 = 0.3, B3 = 3. The parameters values used in the optimal control solution is chosen in such a way, that the num-
ber of infected trees, exposed trees, susceptible vector, exposed vector and infected vector decreased while the 
population of susceptible trees increased. These are given in Table 1. We adopted different control strategies to 
minimize the infection in pine trees population by considering = ≠ ≠u u u( 0, 0, 0)1 2 3 , ≠ = ≠u u u( 0, 0, 0)1 2 3 , 

≠ ≠ =u u u( 0, 0, 0)1 2 3 , and ≠ ≠ ≠u u u( 0, 0, 0)1 2 3 .

Figure 3.  Comparison of both the systems: without and with control.

Figure 4.  Comparison of both the systems: without and with control.
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Strategy 1: = ≠ ≠u u u( 0, 0, 0)1 2 3  In this strategy, we set the control variable u1 = 0 zero and the rest of the con-
trol variables are non-zero, this effect can bee seen in Fig. 2, (sub-figures (a–c)) and Fig. 3 (sub-figures, (a–d)). The 
population of susceptible trees increased while the exposed, infected trees and vector population decreased.

Strategy 2: ≠ = ≠u u u( 0, 0, 0)1 2 3  In this strategy, we set the control variable u2 = 0 and the rest of the control 
variables are non-zero, this impact can bee seen in Fig. 4, (sub-figures (a–c)) and Fig. 5 (sub-figures, (a–d)). The 
population of susceptible trees increased while the exposed, infected trees and vector population decreased. One 
can observe in Figs 2(c) and 4(c), that the infected trees population did not decrease compare to strategy 1.

Strategy 3: ≠ ≠ =u u u( 0, 0, 0)1 2 3  In this strategy, we set the control variable u3 = 0 and the rest of the control 
variables are non-zero, this effect can bee seen in Fig. 6, (sub-figures (a–c)) and Fig. 7 (sub-figures, (a–d)). The 

Figure 5.  Comparison of both the systems: without and with control.

Figure 6.  Comparison of both the systems: without and with control.
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population of susceptible trees increased sharply while the exposed, infected trees and vector population 
decreased. One can see that infected population significantly reduced, see Fig. 6(c).

Strategy 4: ≠ ≠ ≠u u u( 0, 0, 0)1 2 3  In this strategy, we activate all the control. The figures for this strategy can 
be seen in Fig. 8, (sub-figures (a–c)) and Fig. 9 (sub-figures, (a–d)). The population of susceptible trees increased, 
while the exposed, infected trees and vector population decreased. Thus, by comparing all the control stratigies 
from 1–4, one can observe that the strategy 4 is the best strategy to control infections in the pine trees 
population.

Figure 7.  Comparison of both the systems: without and with control.

Figure 8.  Comparison of both the systems: without and with control.
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Conclusion
We have considered a mathematical system of equation which describes the pine wilt disease. The analysis of the 
system is well established. The stability analysis of the disease free and endemic equilibria is presented on the basis 
of basic reproduction number 0 . Whenever the basic reproduction number  < 10 , the disease free equilibrium 
is stable both locally and globally. If the basic reproduction number  > 10 , then the endemic equilibrium equi-
librium is stable both locally and globally. A bifurcation analysis of the model is presented and a control problem 
is formulated by using three control variables, two control for pine trees population and one control for vector 
population. The mathematical results for the control problem with different control strategies are presented and 
concluded that the strategy 4 is the best control strategy for cost minimization in the population of pine trees 
diseases. This work generalized the work presented in ref. 21 by incorporating the exploded class EV in the vector 
population. In ref. 21, the optimal control solution is investigated without defining the control strategies. In this 
new work, we suggests different control strategies for the eradication of infection in Pine trees. So, this work com-
pared to the previous study is more helpful for the elimination of pine trees infections47.
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