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Abstract
Epigenetic alterations are a hallmark of aging and age- related diseases. Computational 
models	 using	DNA	methylation	data	 can	 create	 “epigenetic	 clocks”	which	 are	pro-
posed	to	reflect	“biological”	aging.	Thus,	 it	 is	 important	to	understand	the	relation-
ship	between	predictive	clock	sites	and	aging	biology.	To	do	this,	we	examined	over	
450,000	methylation	 sites	 from	 9,699	 samples.	We	 found	 ~20% of the measured 
genomic cytosines can be used to make many different epigenetic clocks whose 
age prediction performance surpasses that of telomere length. Of these predictive 
sites,	 the	 average	methylation	 change	 over	 a	 lifetime	was	 small	 (~1.5%)	 and	 these	
sites were under- represented in canonical regions of epigenetic regulation. There was 
only	a	weak	association	between	“accelerated”	epigenetic	aging	and	disease.	We	also	
compare tissue- specific and pan- tissue clock performance. This is critical to applying 
clocks	both	to	new	sample	sets	in	basic	research,	as	well	as	understanding	if	clinically	
available	tissues	will	be	feasible	samples	to	evaluate	“epigenetic	aging”	in	unavailable	
tissues	(e.g.,	brain).	Despite	the	reproducible	and	accurate	age	predictions	from	DNA	
methylation	data,	 these	 findings	 suggest	 they	may	have	 limited	utility	 as	 currently	
designed in understanding the molecular biology of aging and may not be suitable as 
surrogate endpoints in studies of anti- aging interventions. Purpose- built clocks for 
specific tissues age ranges or phenotypes may perform better for their specific pur-
pose.	However,	if	purpose-	built	clocks	are	necessary	for	meaningful	predictions,	then	
the utility of clocks and their application in the field needs to be considered in that 
context.
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1  |  INTRODUC TION

Predicting age from molecular data has been a long- standing interest 
in aging research because it implies that we can identify the correla-
tive/causal	factors	behind	aging.	By	extension,	if	molecular	changes	
associated	with	age-	related	diseases	can	be	identified,	hypotheses	
about	 potentially	 effective	 interventions	 that	 extend	 biological	
life and healthspan can be made. The first molecular predictors of 
chronological	age	included	telomere	length	and	p16INK4A	levels(T-
sygankov	 et	 al.,	 2009)	 but,	 recently,	 “epigenetic	 clocks”	 have	 sup-
planted	 them	 in	accuracy	and	precision(Horvath,	2013),	as	well	as	
their	 ability	 to	predict	 all-	cause	mortality	 risk	 (Perna	et	 al.,	 2016).	
Since	these	original	reports	on	mortality	risk,	studies	have	increas-
ingly	used	epigenetic	clocks	to	evaluate	interventions	that	may	ex-
tend	lifespan	in	both	mice(Wang	et	al.,	2017)	and	humans(Fahy	et	al.,	
2019).	Epigenetic	clocks	that	can	quantify	a	“biological	age”	that	is	
distinct	 from	 chronological	 age,	 could	 have	 a	 profound	 impact	 on	
aging	research.	However,	such	clocks	depend	upon	understanding	
the degree to which epigenetic changes at clock sites reflect altered 
physiological	states,	versus	solely	the	passage	of	time	which,	outside	
of	forensic	applications,	is	already	known.

Epigenetic clocks are multivariate machine learning models that 
predict age using methylation levels from a set of genomic cytosine 
sites.	A	downside	of	the	machine	learning	approach	inherent	to	epi-
genetic	clocks	is	that	the	behavior	of	individual	sites	across	time,	as	
well	 as	 the	 biological	 regulation	 and	 impact,	 is	 often	 obscured.	 In	
addition,	the	ability	to	build	equivalent	performing	clocks	from	the	
same data through small algorithmic differences does not provide a 
prioritization	for	biological	relevance	of	the	clock	 loci.	 Indeed,	any	
machine	learning	method	exhibits	a	“black	box”	nature	which	can	ob-
scure the biological relationship between methylation and variables 
of	interest.	Based	upon	the	training	data,	which	includes	chronolog-
ical age and CpG methylation levels at specific loci in a set of sam-
ples,	algorithmic	“learning”	weighs	each	data	point	and	combination	
of data points to choose sites whose methylation pattern best lin-
early	correlates	with	chronological	age.	Unlike	telomere	shortening,	
which	has	a	fairly	straightforward	biological	impact	to	understand,	
there is no obvious biological interpretation of the relevance of sites 
used by epigenetic clocks to predict age. Prior studies demonstrate 
enrichment	 for	 some	 functionally	 relevant	 features,	 such	 as	 poly-
comb	repressor	targets	(Horvath,	2013)	and	even	that	clocks	can	be	
trained	on	data	from	just	these	targets	(Yang	et	al.,	2016).	This,	how-
ever,	leaves	open	the	question	of	whether	epigenetic	marks	in	these	
regions	are	causative	of	aging,	or	 if	 “reversing”	epigenetic	aging	 is	
sufficient	 to	ameliorate	age-	associated	dysfunctions.	Nonetheless,	
the	field	has	extrapolated	that	epigenetic	clock	predicted	ages	that	
are older or younger than the individual's chronological age may rep-
resent	“accelerated”	and	“decelerated”	biological	aging	(Fahy	et	al.,	
2019;	Fransquet	et	al.,	2019;	Horvath	&	Raj,	2018).	Thus,	 it	 is	be-
coming increasingly important to better understand how epigenetic 
clocks work and the biological relevance of the sites used.

Epigenetic clocks have been built using a wide variety of differ-
ent genomic loci to predict age. Clocks can vary from three sites 

(Weidner	et	al.,	2014)	to	any	number,	with	the	most	popular	epigen-
etic	clock	built	by	Horvath	using	353	sites	 (Horvath,	2013).	These	
clocks	do	have	some	overlap	in	sites	chosen,	but	they	are	predom-
inantly	 composed	 of	 unique	 genomic	 sites	 (Horvath	&	Raj,	 2018).	
The fact that different clocks can arrive at similar accuracy using 
many	different	loci	in	the	genome	raises	at	least	two	questions.	First,	
just how much of one's epigenome changes with age and to what 
extent?	To	this	end,	prior	work	has	identified	many	potentially	age-	
related	loci	in	blood	(Slieker	et	al.,	2016),	but	the	extent	of	changes	
in	pan-	tissue	models	and	outside	of	array	data	is	unknown.	Second,	
if	multiple	regions	are	equally	predictive,	then	do	they	have	anything	
in	common	biologically?

A	 key	 biological	 insight	 from	many	 of	 the	 epigenetic	 clocks	 is	
found	in	their	ability	to	identify	loci	that	molecularly	“age”	similarly	
across	 tissues,	 that	 is,	 pan-	tissue	 clocks.	 Epigenetic	 clocks	 select	
loci	that	predict	age	regardless	of	their	tissue	source,	implying	some	
pan- tissue mechanism is driving epigenetic aging. This is despite the 
established role of methylation in determining cell types and large 
methylome differences between tissues. In order to be used as an 
effective	biomarker	of	clinical	aging,	epigenetic	clocks	must	be	able	
to	predict	aging	using	tissues	that	can	be	sampled	pre-	mortem	(e.g.,	
blood)	and	reflect	changes	in	tissues	affected	by	aging	(e.g.,	brain).	If	
these age- predictive epigenetic changes are not common across tis-
sues,	we	must	find	a	way	to	translate	within	individuals	if	clocks	are	to	
be used to evaluate interventions that prevent age- related diseases. 
Since	epigenetic	age	“acceleration”	is	predictive	of	all-	cause	mortal-
ity	using	just	blood	samples(Perna	et	al.,	2016),	we	hypothesize	that	
the age- predictive methylation changes will be similar across tissues. 
However,	prior	work	studying	the	relationship	between	pan-	tissue	
clocks and neurodegenerative disease has found the potential for 
“false	positives”	coming	from	these	pan-	tissue	signals	that	warrant	
even	further	scrutiny	(Shireby	et	al.,	2020).

While	 methylation	 differences	 between	 tissues	 are	 large,	 we	
found epigenetic clock sites change by only 1.5% on average be-
tween	young	(<35	years	of	age)	and	aged	(>65	years	of	age)	samples.	
Applications	 of	 epigenetic	 clocks	 in	 the	 field	 often	use	pan-	tissue	
clocks	 to	 evaluate	 tissue-	specific	 “biological	 aging”(Levine	 et	 al.,	
2016;	McKinney	et	 al.,	 2018;	Ward-	Caviness	et	 al.,	 2016).	Tissue-	
specific clocks may be necessary for clock models to predict age 
with loci that will also correlate with age- related dysfunction in that 
tissue.	Because	the	process	of	aging	comes	with	predictable	pheno-
types	and	increased	risk	of	age-	related	diseases,	when	methylation	
changes	are	hypothesized	to	reflect	“biological	aging,”	they	should	
have	a	relationship	to	the	cellular	aging	of	the	examined	tissues.	This	
leads	us	to	two	hypotheses.	First,	that	samples	from	individuals	with	
age-	related	 diseases	 would	 be	 epigenetically	 “older”	 than	 control	
counterparts.	Second,	age-	predictive	loci	should	be	consistent	when	
training clocks across the lifespan and tissue types.

Elastic	net	regression,	used	to	create	epigenetic	clocks,	is	predi-
cated	on	selecting	the	best	set	of	unique	predictors,	not	necessarily	
all age- predictive sites in the genome. Epigenetic clocks using other 
genomic	 sites	 have	 been	 developed	 for	 cellular	 senescence	 (Lowe	
et	al.,	2016),	obesity	(Sargent,	2015),	cancer	(Zheng	et	al.,	2016),	and	
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even	 spawned	 their	 own	 theories	 of	 aging	 (Horvath	&	 Raj,	 2018).	
Taken	 together,	 all	 of	 these	 clocks	 suggest	 methylation	 at	 a	 large	
number of sites in the genome can be indicative of health and disease 
and	that	there	are	commonalities	across	tissues.	However,	the	actual	
age-	related	variation	in	methylation	at	clock	loci	is	very	small	(<5%).	
Thus,	 the	 detected	methylation	 changes	with	 age	 could	 be	 attrib-
utable to changes in cellular abundance of a relatively rare cell sub-
type	in	examined	tissues	(e.g.,	infiltrating	macrophages)	rather	than	
an	epigenetic	change	in	the	resident	cells	of	a	tissue.	Alternatively,	
there could be a common form of age- related cellular change across 
cell	types	and	tissues	(e.g.,	cellular	senescence).	Or	worse,	the	cor-
relation	could	be	spurious.	Quoting	Calude	and	Longo(Calude,	2017),	
"One of the main ideas supporting data analytics is that a series of 
correlations will continue or iterate similarly along the chosen pa-
rameter	(recurrence).	If,	for	example,	time	is	the	main	parameter	[...],	
then	the	correlation	will	extend	into	the	future	by	iterating	a	similar	
“distance”,	 typically,	 between	 the	 chosen	 observables."Algorithmic	
identification of potentially interesting patterns within large datasets 
holds	 great	 potential	 for	 advancing	 scientific	 understanding.	 It	 is,	
however,	not	a	substitute	for	it.	Mathematically,	the	larger	a	dataset,	
the	more	arbitrary	correlations	it	will	contain	(Calude,	2017).	Thus,	
once	identified,	it	is	incumbent	upon	us	to	identify	how	(and	if)	such	
patterns inform our current understanding. To assay the breadth of 
sites	 in	the	genome	that	are	associated	with	age,	potential	mecha-
nisms	that	could	explain	 the	ability	 to	generate	a	clock	model,	po-
tential	interacting	partners	of	DNA	methylation-	modifying	enzymes	
that	influence	changing	methylation	with	age,	and	understand	what	
pathways	may	be	affected	by	age-	related	methylation	changes,	we	
conducted a large- scale analysis of human methylation data using 
the	Illumina	450k	methylation	array	platform,	for	which	we	collected	
9,699	samples	of	adults	(aged	25+)	with	age	and	tissue	descriptions	
using	our	automated	sample	annotation	approach	(Giles	et	al.,	2017).

2  |  RESULTS

2.1  |  Epigenetic changes with age are small in 
magnitude across the lifespan

The	magnitude	of	epigenetic	 clock	 site	 (ECS)	methylation	changes	
across the lifespan is significantly smaller than the largest age- related 
changes	within	non-	clock	sites,	and	smaller	still	than	known	differ-
ences	 in	DNA	methylation	 between	 tissues	 (Figure	 1).	 Looking	 at	
age-	related	sites	by	a	variety	of	metrics,	we	see	that	age-	predictive	
sites by linear regression and non- linear mutual information regres-
sion follow the same pattern of small magnitude changes found in 
clock	 sites.	We	 then	 analyze	 the	 highest	 weighted	 locus	 by	 each	
metric	(e.g.,	epigenetic	clock	site	in	red)	(Figure	1b).	Even	the	most	
“age-	related”	locus,	as	identified	by	multiple	methods,	shows	a	small	
magnitude difference over the lifespan. This finding leads to many 
questions.	 How	 do	 such	 small	 age-	related	 changes	 occur	 consist-
ently	across	individuals	and	tissues	composed	of	multiple	cell	types?	
Are	these	small	differences	occurring	 in	a	 restricted	set	of	 loci,	or	
are there large numbers of these sites from which a variety of clocks 
can	be	constructed?	Perhaps	methylation	values	reach	an	asymptote	
and	regress	toward	the	young	values?

2.2  |  Age predictions from epigenetic clocks are 
replicable, but use different loci

A	logical	starting	point	in	determining	the	number	of	possible	ECSs	is	
to	recreate	Horvath's	original	clock.	We	independently	collected	as	
much	of	the	original	data	that	was	publicly	available	from	NCBI	Gene	
Expression	Omnibus	(GEO),	obtaining	~75%	of	the	training	data.	We	
selected a set of loci whose methylation state can predict age using 

F I G U R E  1 Average	lifespan	change	of	age-	predictive	loci	is	small.	Age-	related	loci	were	selected	by	different	methods:	epigenetic	clocks	
(red),	linear	models	(green),	top	10%	mutual	information	(blue),	top	10%	greatest	change	in	mean	(“delta,”	purple)	or	variance	(orange).	(a)	
Histogram	of	age-	related	changes	in	methylation	over	the	lifespan	(beta	values	from	0	to	1.0),	averaged	across	samples.	An	example	tissue	
difference	of	blood	versus	brain	is	also	presented	(gray).	Aside	from	sites	with	the	greatest	mean	difference	with	age	(purple)	and	between	
tissues	(gray),	age-	related	sites	exhibit	small	magnitude	changes	over	the	lifespan.	(b)	The	most	informative	individual	locus	by	each	method	
is displayed as a lowess- smoothed fit over age
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the	 same	 preprocessing,	 including	 imputation,	 normalization,	 and	
elastic net modeling.

We	 replicated	 the	 results	 of	 the	 original	 Horvath	 model	
(Figure	2a,	2b).	We	also	trained	a	model	on	9699	samples	of	Illumina	
450k	methylation	array	data	deposited	in	NCBI	GEO	(Figure	2C),	
which	allowed	us	to	use	data	from	more	sites	(~450,000)	than	the	
21,369	sites	used	in	the	Horvath	report.	We	only	included	samples	
from	experiments	with	over	100	samples,	as	we	found	that	includ-
ing	 smaller	 experiments	 quickly	 diminishes	 clock	 performance.	
Our	 full	 450k	model	 outperformed	 the	 original	 Horvath	model,	
but	this	is	expected	as	it	had	access	to	more	features	in	both	the	
training	 and	 test	 sets.	While	 some	 data	 from	Horvath's	 original	
paper were unavailable and/or lacked age data that were pub-
licly	available,	we	demonstrated	roughly	equivalent	performance	
across the three models with mainly different sets of sites in each 
model	(Figure	2d).

Because	clock	models	trained	on	almost	identical	data	can	select	
different	 loci	as	 the	most	predictive	set	and	perform	equivalently,	
we	examined	how	many	loci	could	be	used	as	clock	sites	via	an	 it-
erative	 “knockout”	 approach.	After	 using	 elastic	 net	 regression	 to	
identify	 the	most	 informative	 loci,	 these	 sites	were	 then	 removed	
and	new	clock	models	trained	on	the	remaining	sites.	We	fit	5	new	
clock models after every removal and removed any locus used by 
any	 of	 the	 5	 clocks.	 By	 iteratively	 removing	 the	 most	 predictive	
sites	every	 round,	 subsequent	models	 should	become	 increasingly	
hindered	in	their	performance.	Interestingly,	rather	than	a	rapid	de-
pletion	of	predicted	performance,	we	saw	a	gradual	linear	decrease	
in	prediction	accuracy	(as	defined	by	Pearson	correlation	coefficient	
between	predicted	and	actual	age,	Figure	2e)	and	rise	in	model	error	
(Figure	 2e)	 until	 about	 20%	of	 sites	 have	 been	 removed	 from	 the	
training data. These data illustrate the breadth of CpGs that are 
strong age predictors from the sites measured by the Illumina 450k 
microarray.

2.3  |  Pan- tissue epigenetic clocks fail to identify 
tissue- specific epigenetic aging

DNA	 methylation	 has	 known	 roles	 in	 specifying	 tissue	 identity	
(Koh	 &	 Rao,	 2013;	Macaluso	 &	 Giordano,	 2004)	 via	 differentially	
suppressing and activating specific regions of the genome in a cell 
type-	specific	manner.	Our	own	data	and	previous	reports	(Horvath,	
2013;	Lowe	et	al.,	2016;	Thompson	et	al.,	2018)	on	pan-	tissue	epi-
genetic clocks demonstrate that chronological age- predictive mod-
els	 work	 equally	 well	 across	 most	 tissues	 when	 trained	 on	 many	
tissues.	However,	clocks	trained	on	blood	alone	have	poor	perfor-
mance	at	predicting	 tissue-	specific	 impairments,	 such	as	cognitive	
decline(Starnawska	et	al.,	2017).

This	raises	the	question	of	whether	pan-	tissue	clocks	either	still	
capture enough tissue- specific/relevant changes by inclusion of 
multiple	tissues	in	the	training	set,	or	if	pan-	tissue	clocks	are	miss-
ing	 tissue-	relevant	 changes,	 and	potentially	 sacrificing	 insight	 into	
tissue- specific aging and disease.

To	look	for	tissue-	specific	age	association,	we	used	an	ordinary	
least	squares	regression	to	model	the	effects	of	age,	tissue,	and	their	
interactions.	39823	loci	were	significantly	(q<0.05)	associated	with	
tissue,	while	9587	were	associated	with	age.	Of	the	6226	sites	with	
significant	main	effects	of	both	tissue	and	age,	3939	had	a	significant	
interaction	 effect,	 suggesting	 a	 tissue-	specific	 aging	 change.	 The	
rest	of	the	age-	associated	sites	had	tissue-	independent	effects	 (as	
defined	by	non-	significant	tissue:age	interactions),	suggesting	com-
mon	age-	related	changes	across	tissues	(Figure	3a,	c).	Looking	closer	
at	the	loci	with	significant	age	main	effects,	the	tissue-	specific	aging	
interactions	are	weak	(Figure	3b).	This	suggests	that	there	is	some	
common process across tissues that causes these changes regard-
less of whether it is a regulated program or a systemic form of epig-
enomic entropy. Dysregulations of epigenetic machinery have been 
implicated	as	the	driver	of	the	relationship	between	DNA	methyla-
tion	and	aging(Bell	et	al.,	2019),	but	our	prior	work	in	mouse	found	
no	changes	 in	 the	direct	methylation	machinery	with	aging(Hadad	
et	al.,	2016).

Observing that most loci with a main effect of age were similar 
across	tissues	(except	for	saliva)	was	surprising	in	light	of	the	strong	
relationship between methylation and tissue identity. This leads us 
to	question	whether	elastic	net	would	identify	ideal	pan-	tissue	pre-
dictors	as	the	best	sites	to	predict	age	even	in	a	single	tissue,	or	if	
they would be too weak of a signal compared to tissue- specific sig-
nals.	When	we	trained	clocks	on	data	from	only	one	tissue	at	a	time,	
they perform markedly worse on predicting age in other tissues 
(Figure	3d	and	e).	This	 indicates	that	the	tissue-	specific	signals	are	
in	fact	strong	enough	to	drown	out	the	non-	tissue-	specific	signals,	
which	are	more	abundant.	Notably,	saliva	sample	ages	were	uniquely	
well-	predicted	 by	 all	 other	 tissue	 models,	 but	 poor	 predictors	 of	
other	tissue	ages.	When	comparing	the	coefficients	of	loci	identified	
by	elastic	net	for	multiple	tissues,	we	do	see	moderate	associations	(r 
>	0.5)	for	all	tissues—	indicating	that	some	loci	are	being	chosen	that	
covary	even	by	tissue-	specific	models	(Figure	3f).	The	loci	chosen	by	
these tissue- specific clocks are largely uniformly distributed across 
genomic	 features,	 but	 are	 notably	 enriched	 near	 GTEX	 (Lonsdale	
et	al.,	2013)	eQTLs.	Perhaps	the	enrichment	of	 these	 loci	near	re-
gions where point mutations are sufficient to affect disease- related 
gene	expression	is	indicative	of	a	potential	biological	link,	but	deter-
mining	whether	these	changes	are	causal,	compensatory,	or	silent	in	
the	aging	process	will	require	further	studies	in	epigenome	editing/
manipulation.

2.4  |  Age- predictive loci depend upon which 
ages are used to train and test the clock

We	have	made	two	key	observations	regarding	methylation	aging,	
namely	1)	 non-	linear	 site	 selection	outperforms	 linear	 for	 training	
epigenetic	 clocks	 (Figure	 S2)	 and	 2)	 age-	predictive	 loci	 have	 very	
small	changes	over	the	lifespan	(Figure	1).	This	raised	the	question	
of how sites that would need to change by a fraction of a percent per 
year can consistently predict age. These small changes are observed 
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even	in	a	pan-	tissue	context.	The	changes	are	much	larger	than	we	
would	 expect	 from	 senescent	 cells,	 which	 are	 relatively	 rare	 and	
appear	at	different	rates	between	tissues	 (Tuttle	et	al.,	2020),	and	
also	are	unlikely	explained	by	some	change	in	blood	constituent	cells	
(Chen	et	al.,	2016)	as	they	would	vary	wildly	in	their	abundance	with	
vascularity	of	 the	tissue,	such	as	between	whole	blood	and	saliva.	
To	answer	this	question,	we	performed	an	experiment	to	see	if	the	
most predictive loci from full age range models are identifiable in 
windows	within	the	lifespan	(Figure	4a).	We	trained	three	epigenetic	
clocks	separately	using	data	from	three	groups:	young	(25–	50),	mid-
dle	(50–	75),	and	aged	(75–	100)	samples,	then	tested	them	on	each	
age	group.	We	found	sites	most	predictive	of	aging	in	younger	ages	
(25–	50)	were	poor	predictors	later	in	life	(75–	100).	Based	on	our	ob-
servations	of	the	linear	and	non-	linear	relationships,	we	then	looked	
at	how	clock	 sites	 from	both	Horvath	and	our	own	clocks	change	
throughout	the	lifespan.	We	found	that	99.5%	of	loci	exhibit	a	dis-
tribution with at least one inflection point with aging that could be 
regressed	into	an	overall	 linear	trend	(Figure	4d,	Figure	S4),	along-
side loci where locally fitted regression matched the sites’ linear fits 
(Figure	4e).	While	other	reports	 (e.g.,	 -		 (Marioni	et	al.,	2019))	have	

noted	 a	 non-	linear	 change	with	 age,	 the	parabolic	 distribution	we	
observe appears to be novel. These changes may be attributable 
to	changes	in	variance	with	aging	(Slieker	et	al.,	2016),	but	they	de-
scribe an overall trend to increasing variance that would not neces-
sarily	lead	to	a	parabolic	distribution.	Since	these	parabolic	sites	are	
also	selected	by	epigenetic	clocks	on	the	basis	of	an	extrapolated	lin-
ear	trend,	further	exploration	of	the	trajectory	of	methylation	aging	
may yield understanding of how clock predictions would respond 
to	aging	interventions	and	diseases.	Similar	to	tissue-	specific	clocks,	
clocks trained on discrete sections of the lifespan are largely uni-
formly	distributed	with	an	enrichment	near	eQTLs	(Figure	4f).

2.5  |  Age- predictive methylation loci are depleted 
in biologically informative regions

To understand the biological relevance of different loci that are predic-
tive	of	or	related	to	aging,	we	performed	genomic	enrichment	analy-
ses	on	three	sets	of	methylation	 loci.	These	sets	were	as	follows:	1)	
6666	 loci	we	determined	 that	change	with	age	by	 linear	 regression,	

F I G U R E  2 Different	epigenetic	clocks	select	different	sites	but	perform	similarly.	(a)	Horvath's	original	model	sites	(353)	showing	
predicted	vs	actual	age	on	a	single	test	set	of	blood	samples	(GSE42861)	(b)	The	model	based	on	replication	of	Horvath's	method	produced	
predicted	vs	actual	age	on	GSE42861	using	all	available	training	data	from	Horvath's	original	paper	(Horvath,	2013).	The	model	performed	
slightly	worse	with	the	smaller	training	set,	and	also	selected	fewer	sites	(252).	(c)	A	model	trained	using	all	age-	annotated	450k	data	with	
sample	labels	from	ALE(Giles	et	al.,	2017),	was	tested	on	the	same	set	of	blood	samples	(GSE42861).	This	model	performed	better	than	the	
original	Horvath	clock,	but	also	had	access	to	a	much	larger	set	of	loci	for	training	and	selected	a	larger	set	of	loci	(2906)	to	predict	age.	(d)	
Venn	diagram	of	clock	loci	used	in	each	model.	The	models	selected	different	sites	despite	similar	prediction	quality	with	the	only	variables	
being	different	training	samples	and	a	different	random	seed.	(e)	Pearson	correlation	between	predicted	and	actual	age	(blue)	and	root	
mean	squared	error	(RMSE,	red)	by	number	of	loci	remaining	in	training	set.	Each	point	represents	a	new	model	trained	with	all	loci	used	by	
previous models removed

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42861
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42861
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42861
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F I G U R E  3 Modeling	tissue-	specific	aging	methylation	changes.	(a)	Venn	diagram	of	the	overlap	between	methylated	loci	that	significantly	
differ	between	tissues	and	those	that	change	with	age	in	the	450k	data.	Multiple	testing	correction	was	done	using	a	Benjamini–	Hochberg	
10%	FDR	correction.	(b)	Clustering	of	all	sites	with	a	significant	age	association	by	their	per-	tissue	aging	correlation	coefficients.	Coloration	
indicates	methylation-	age	correlation	coefficients	for	that	specific	tissue.	(c)	UpSet	plot	showing	the	number	of	loci	in	each	trained	clock	
and	their	combinatorial	overlaps.	(d	and	e)	Matrix	of	correlation	between	predicted	and	actual	age	from	epigenetic	clocks	trained	and	tested	
on	a	per-	tissue	basis.	Epigenetic	clocks	were	trained	on	the	tissues	in	the	Y-	axis	and	tested	on	the	tissues	in	the	X-	axis.	Model	correlations	
between	predicted	and	actual	age	shown	in	(d)	while	median	absolute	deviation	is	shown	in	(e).	(f)	Matrix	of	correlations	between	clock	site	
coefficients common between at least 3 of 5 clocks trained on specific tissues. The placenta clock did not have any sites common to at least 
3	other	models	G.	Bar	plots	of	log	odds	ratios	showing	enrichment\depletion	of	loci	from	clocks	with	different	training	tissues	with	respect	
to	regulatory	features,	genic	features,	and	CpG	islands,	corrected	for	the	coverage	of	450k	methylation	array
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2)	 2624	 that	 serve	 as	 predictive	 clock	 sites,	 and	 3)	 79921	 sites	 re-
lated	 to	 aging	 as	measured	 by	mutual	 information.	When	 exploring	
the 6666 age- related sites identified by traditional statistical analysis 
(linear	regression)	we	found	strong	enrichments	for	genomic	regions	
with	 limited	 known	 biological	 function	 for	 DNA	 methylation	 such	
as	 intergenic	 regions	 and	 sites	 outside	 of	 CpG	 islands,	 with	 under-	
representation in regions such as promoters and CpG islands where 
DNA	methylation	is	understood	to	regulate	gene	expression/genomic	
accessibility	 (Figure	5).	The	 results	were	similar	but	weaker	 for	age-	
related	sites	selected	using	mutual	information.	In	contrast,	epigenetic	
clock	sites	were	previously	reported	as	enriched	in	VISTA	(Visel	et	al.,	

2006)	 enhancers	 and	near	GTEX	 (Lonsdale	et	 al.,	 2013)	 eQTLs.	We	
attempted to further interrogate the activity state of promoters near 
age-	predictive	cytosines,	but	 it	 is	 impossible	to	generate	a	meaning-
ful multi- tissue prediction of activity with current data. Performing the 
enrichment against a target tissue of interest did not yield any signifi-
cant	results	(Figure	S8).	They	were	also	enriched	in	open	chromatin	re-
gions	as	defined	by	aggregated	DNase	hypersensitivity	data.	However,	
the regulatory element enrichment appears to be driven by enhanc-
ers	as	aggregate	regulatory	elements,	because	subsets	of	enhancers,	
super	enhancers,	and	repressors	show	neither	enrichment	nor	deple-
tion.	All	methods	 of	 identifying	 age-	related	methylation	 sites	 found	

F I G U R E  4 Clocks	trained	on	discrete	age	groups	show	markedly	poor	performance	at	predicting	higher/lower	age	groups.	(a)	Matrix	of	
prediction accuracy from epigenetic clocks trained and tested on age three age bins. Each age bin represents a third of the ages from 25 
to	100	(e.g.,	-		Young	=ages	25–	50).	(b)	Matrix	of	correlations	between	clock	site	coefficients	common	between	clocks	trained	on	Young,	
Middle,	and	Aged	groups.	(c)	Upset	plot	showing	the	number	of	loci	in	each	trained	clock	and	their	combinatorial	overlaps.	(d	and	e)	Line	
plots	of	two	example	loci	comparing	loess	regression	(blue)	to	linear	regression	(orange)	in	the	GSE60185	dataset.	(d)	a	clock	site	with	a	
parabolic	distribution	that	reflects	into	a	linear	one.	(e)	a	clock	site	where	a	linear	model	is	a	good	fit	for	age-	related	changes	in	methylation.	
(f)	Bar	plots	of	log	odds	ratios	showing	enrichment\depletion	of	loci	from	clocks	with	different	training	age	range	with	respect	to	regulatory	
features,	genic	features,	and	CpG	islands,	corrected	for	genomic	distribution	of	sites	measured	on	the	450k	array

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60185
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they were depleted in CpG island bodies and gene promoters while 
being enriched in intergenic regions.

We	then	analyzed	the	clock	sites’	relationship	to	DNA-	binding	pro-
teins	by	comparing	the	probe	sequence	used	to	detect	methylation	loci	
to	DNA	binding	motifs	using	HOMER.	We	attempted	to	 interrogate	
the	enrichments	with	 respect	 to	 the	 “targeted”	cytosines	but	 found	
no	significant	results	after	multiple	testing	(Supplement	S3).	The	top	
3	 most	 significant	 sequence	 enrichments	 for	 known	 DNA-	binding	
protein	motifs	were	 all	 TEAD	 proteins,	which	 are	 enhancer	 binding	
proteins that aid in the initiation of transcription and have been linked 
to	cellular	senescence	(Xie	et	al.,	2013)	and	age-	related	disease	(Tsika	
et	al.,	2010).	These	enhancer	enrichments	were	previously	 reported	
(Bell	et	al.,	2019),	but	in	their	analysis	were	under	the	threshold	for	sig-
nificance	after	adjusting	for	the	array	background.	Nonetheless,	these	
provide	a	potential	mechanism	to	further	explore	the	biological	impact	
of altered clock site methylation.

2.6  |  Epigenetic Age Acceleration, Aging 
Diseases, and the Trajectory of Aging

If	 epigenetic	 age	 acceleration	 is	 truly	 a	 biomarker	 of	 aging,	 we	
would	expect	samples	from	patients	with	age-	related	diseases	and	

conditions tend to have higher predicted ages than healthy samples. 
To	this	end,	we	annotated	1767	samples	for	a	variety	of	conditions	
including	multiple	sclerosis,	obesity,	Alzheimer's	disease,	and	smok-
ing	status	(Figure	6).	We	compared	measures	of	“age-	acceleration”	
in these groups using both our own chronological 450k clock and 
the	 published	 PhenoAge(Levine	 et	 al.,	 2018)	 “biological”	 clock.	
PhenoAge	predicted	most	samples	were	age-	decelerated,	with	mul-
tiple	sclerosis,	obesity,	and	depression	being	significantly	 “acceler-
ated”	compared	to	controls	(Figure	6a).	Meanwhile,	smoking	status	
and	 HIV	 decreasing	 age	 acceleration	 seem	 contradictory	 to	 prior	
reports	(Esteban-	Cantos	et	al.,	2021;	Levine	et	al.,	2018).	Since	the	
PhenoAge	clock	is	regressed	against	10-	year	mortality	risk	coerced	
into	units	of	years,	perhaps	 it	 is	not	surprising	that	even	“healthy”	
control	samples	are	predicted	to	be	age-	accelerated.	In	contrast,	our	
chronological 450k clock had much closer to zero average age ac-
celeration.	Notable	 exceptions	 are	 the	 significant	 increase	 in	 “age	
acceleration”	of	patients	with	NAFLD	or	NASH	(Figure	6b).	In	both	
cases,	 these	 analyses	have	 an	 additional	 uncertainty	 term	 in	 their	
age predictions that make interpreting age acceleration values dif-
ficult,	with	most	samples	falling	within	the	range	of	model	error.	A	
potential	explanation	for	age	acceleration	predictions	going	the	op-
posite	direction	one	might	expect	 is	 found	 in	 looking	at	trajectory	
of	aging	methylation	values	over	the	 lifespan.	Namely,	some	show	

F I G U R E  5 Genomic	feature	enrichments	for	age-	related	loci.	Epigenetic	clock	loci	are	enriched	in	information-	poor	regions	of	the	
genome.	The	top	quartile	of	mutual	information	loci	(green),	sites	with	significant	age	effects	by	OLS	regression	(blue),	and	sites	chosen	
in	an	epigenetic	clock	built	on	the	full	450k	dataset	(orange)	was	compared	to	known	genomic	features.	(a)	Bar	plots	of	log	odds	ratios	
showing	enrichment\depletion	of	loci	from	multiple	models	with	respect	to	regulatory	features,	genic	features,	and	CpG	islands.	Age-	
related	methylation	loci	are	enriched	in	intergenic	regions	and	depleted	in	gene	promoters.	For	CpG	islands,	shores	were	defined	as	2kb	up	
and	downstream	of	the	CpG	island	body,	and	shelves	were	defined	as	2kb	up	and	downstream	of	the	shores.	Age-	related	methylation	loci	
are	enriched	in	the	open	sea	(outside	of	CpG	islands)	and	depleted	in	the	island	bodies.	Age-	related	methylation	loci	selected	by	mutual	
information	and	regression	are	depleted	in	enhancers,	eQTLs,	and	other	regulatory	elements	(TFBS,	repressors,	etc.),	and	distributed	
evenly	throughout	euchromatin	and	heterochromatin.	Epigenetic	clock	sites	are	however	enriched	in	open	chromatin,	near	eQTLs	and	gene	
enhancers.	(b)	Table	with	logos	of	most	enriched	motifs	from	HOMER	analysis	of	the	probe	sequence	from	epigenetic	clock	sites



    |  9 of 13PORTER ET al.

a	non-	linear	 fit	 that	 is	 “hidden”	 to	 the	 linear	elastic	net	 regression	
(Figures	S4	and	S5).	While	not	all	epigenetic	clock	sites	exhibit	this	
non-	linear	 relationship,	we	noted	 in	 our	 primary	 feature	 selection	
that selecting sites with the best linear relationship reduced perfor-
mance much more than selecting sites by non- linear feature selec-
tion	 (Figure	 S2).	 This	may	 explain	why	 some	 age-	related	 diseases	
appear	to	be	“decelerated”	due	to	the	same	methylation	values	being	
present earlier and later in life.

3  |  DISCUSSION

Our meta- analysis of the largest available age- annotated methyla-
tion	dataset	to	date	found:	1)	as	much	as	one	fifth	of	the	measured	
cytosines	 contains	 age-	predictive	methylation	 patterns;	 2)	 tissues	

show largely similar aging patterns despite having methylated re-
gions	that	define	their	identity;	3)	epigenetic	clock	sites	are	enriched	
in	intergenic	regions,	gene	enhancers	and	sites	near	eQTLs	and	4)	are	
depleted in the regions generally thought to have the largest direct 
impact	upon	gene	expression	(e.g.,	CpG	Islands	and	gene	promoters);	
5)	patients	with	age-	correlated	diseases	did	not	appear	significantly	
age- accelerated according to the chronological epigenetic clock.

The fact that many different sites can be used to create an epi-
genetic clock with minimal impact on predictive performance argues 
against the idea that methylation changes are either programmed or 
individually	important.	Yet,	because	the	clock	is	robustly	predictive	
and age- related methylation changes are mostly similar between 
tissues,	 this	 argues	 against	 entropy	 as	 a	 driving	 force.	 This	 could	
be reconciled by hypothesizing some genomic regions and/or fea-
tures receive less methylation maintenance than others. Perhaps the 

F I G U R E  6 Epigenetic	age	acceleration	associations	from	chronological	and	biological	clocks	across	many	age-	related	states.	We	
annotated	1767	samples	for	their	control	or	potentially	age-	related	states.	(a)	PhenoAge	predicted	age	vs	chronological	age	in	the	disease-	
annotated	samples.	(b),	Our	450k	clock	predicted	age	vs	chronological	age.	(b)	and	(c),	Age	acceleration	distributions	were	compared	using	
a	one-	way	linear	model	with	holm-	adjusted	t	test	post	hoc	tests.	Significant	differences	(p <.05)	from	pooled	healthy	controls	marked	with	
a	red	asterisk	(*).	(c)	Age	acceleration	as	computed	with	PhenoAge	(Levine	et	al.,	2018).(d),	Age	acceleration	computed	with	our	450k	clock	
model.	A	table	of	the	included	experiments	and	their	annotations	can	be	found	in	the	supplement	(Supplemental	S2).	Abbreviations:	MS—	
multiple	sclerosis,	C—	aggregate	controls	from	all	included	studies,	De,	depression;	Ath,	atherosclerosis;	Ob,	obese;	NAFLD,	nonalcoholic	
fatty	liver	disease;	NASH,	nonalcoholic	steatohepatitis;	PSP,	progressive	supranuclear	palsy;	FTD,	fronto-	temporal	dementia;	AD,	
Alzheimer's	disease;	Asth,	Asthma;	HIV,	human	immunodeficiency	virus;	PBC,	primary	biliary	cholangitis;	PSC,	primary	sclerosing	cholangitis;	
Former,	former	smoker;	Smoker,	current	smoker;	DS,	Down's	Syndrome
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changes occur in regions of the genome where they have no conse-
quence,	and	instead,	vary	with	absolute	time	such	as	in	determining	
speciation	 time	 using	 pseudogene	 mutation	 rates.	 This	 “pseudo-
methylation”	would	be	problematic	 for	modeling	 aging	biology,	 as	
they would likely not respond to aging intervention. Methylation 
maintenance	mechanisms	(e.g.,	DNMT1)	serve	as	a	counterbalance	
against	 entropy.	However,	 if	 some	genomic	 regions	are	 less	main-
tained	than	others,	then	we	would	expect	the	probability	of	a	meth-
ylation state change with age to be correlated with the degree to 
which it is subject to methylation surveillance and maintenance. 
Because	maintenance	costs	energy,	it	is	reasonable	to	hypothesize	
the degree of maintenance correlates with the adverse impact an 
unregulated	change	in	methylation	would	cause.	If	so,	the	probabil-
ity a site's methylation will vary with age would inversely correlate 
with its impact on an organism's survival.

It is interesting that in spite of tissue aging interactions being 
rare	in	the	age-	related	differentially	methylated	loci	(Figure	3A	and	
B),	 training	 clocks	 on	 specific	 tissues	 selects	 loci	 that	 poorly	 pre-
dict	 other	 tissues	 (3C).	 This	 is	 further	 seen	 in	 the	 case	 study	 on	
age-	related	 neurological	 diseases,	 where	 the	 disease-	associated	
methylation	sites	are	also	rarely	clock	sites	(Figure	6b).	The	tissue-	
independent aging loci that are selected by clocks trained on multi-
ple	tissues	are	depleted	in	regions	canonically	associated	with	DNA	
methylation,	 namely	 promoters	 and	 CpG	 islands	 (Figure	 5a),	 and	
simultaneously defining age acceleration using these clocks poorly 
predicts	age-	related	disease	in	our	case	study.	Although	combining	
the knowledge that these disease- afflicted samples are predicted 
to	 be	 “younger”	 and	 the	 identification	 of	 non-	linear	 methylation	
changes	in	clock	sites,	perhaps	these	values	of	age	acceleration	are	
rather measuring proper compensation by the system. This would be 
consistent with the observation that clocks sites are significantly en-
riched	in	open	chromatin	and	TEAD-	binding	regions	(TEAD	requires	
co-	factors	to	act,	plus	literature-	mining	analysis	(Marioni	et	al.,	2019)	
of	TEAD-	binding	 regions	near	genes	merely	suggest	TATA-	binding	
proteins	as	a	commonality,	which	is	also	a	general	motif).	Under	this	
assumption,	 being	 epigenetically	 “younger”	 could	 be	 a	mixture	 of	
those	failing	to	compensate	(and	thus	died	and	had	tissue	collected	
to	be	measured).	This	 could	also	 simultaneously	make	aging	 inter-
ventions	show	“decompensation”	as	they	are	no	 longer	needing	to	
respond to the pressures of aging and thus the samples would be 
predicted to be younger.

Given that methylation changes with age are robust across tis-
sues,	yet	small	in	magnitude,	leads	the	field	to	question	whether	the	
“ticking”	that	drives	them	is	due	to	changes	in	cell	population	com-
position,	such	as	a	reduction	of	pluripotent	stem	cells	or	an	increase	
in	 senescent	 cells	within	 every	 tissue,	 or	 possibly	 high	magnitude	
effects	in	rare	cell	populations	(e.g.,	immune	cells	in	the	CNS	com-
pared	to	astrocytes/neurons).	In	either	case,	it	is	not	clear	whether	
the phenomenon driving ticking clock sites is due to healthy com-
pensatory changes or deleterious drift toward age- related fragility. 
To	address	the	whole	tissue	versus	individual	cell	type	hypothesis,	
we are currently working on an aging study using mice with cell 
type-	specific	 markers	 that	 will	 allow	 whole-	genome	 sequencing	

from	specific	cell	types.	By	comparing	the	mouse	clocks’	predicted	
ages	between	different	cell	types,	we	hope	to	identify	if	the	clock	is	
indeed a pan- tissue phenomenon or is affecting some subset of cells 
“contaminating”	all	tissues.	We	are	also	working	on	analyzing	paired	
senescent and non- senescent cells from the same patients to deter-
mine if senescent cells are driving the clock's predictive accuracy. 
These	analyses	will	use	BS-	Seq	instead	of	methylation	arrays,	allow-
ing	us	to	simultaneously	explore	how	robust	our	biological	enrich-
ments	are	when	determined	using	whole-	genome	sequencing	data.

Our finding that the relationship between age- related dis-
ease and age acceleration seems contradictory to other research 
(Fransquet	 et	 al.,	 2019;	 Levine	 et	 al.,	 2015).	However,	 these	 prior	
publications show average age acceleration values for patients that 
are	within	the	error	of	predictive	accuracy	(i.e.,	disease	samples	are	
“age	accelerated”	by	less	than	the	~4 year error range of epigenetic 
clocks).	While	we	cannot	provide	a	resolution	to	this	dilemma	with	
the	currently	available	data,	it	should	act	as	a	caution	when	evaluat-
ing	“age-	acceleration”	as	a	researcher	using	smaller	subsets	of	sam-
ples,	especially	when	the	used	clock	is	not	trained	on	similar	sample	
types with similar distributions of methylation values.

In	summary,	the	predictive	power	of	the	epigenetic	clock	is	ro-
bust,	but	such	a	large	fraction	of	the	genome	can	be	used	to	predict,	
the	magnitude	of	the	changes	is	small,	and	these	regions	tend	to	be	
depleted near genes. This leads us to hypothesize that the pan- tissue 
predictive	loci	are	more	likely	to	be	molecularly	“silent”	methylation	
changes that accrue outside of strong regulatory regions due to en-
tropy	in	methylation	maintenance,	which	must	be	explored	in	the	fu-
ture	studies.	Furthermore,	if	current	models	inconsistently	annotate	
patients	with	age-	related	diseases	as	“age-	accelerated”	and	the	con-
fidence	by	which	one	can	declare	a	sample	age-	accelerated	is	small,	
this argues against the idea that epigenetic clocks can disentangle 
biological age from chronological age.

4  |  E XPERIMENTAL PROCEDURES

4.1  |  Data and Label Collection

Raw	 data	 were	 collected	 from	 NCBI’s	 Gene	 Expression	 Omnibus	
(GEO).	 For	 replicating	 Horvath's	 experiments,	 individual	 datasets	
were	extracted	and	manually	curated	from	metadata	using	geoquery	
(Davis	&	Meltzer,	2007).	Of	these,	only	20	datasets	were	available	
and matched the given age distributions and sample numbers as re-
ported	in	Horvath's	original	report	(Horvath,	2013).	These	data	make	
up	dataset	1,	used	for	the	direct	Horvath	replication	(Figure	2b,	d)	
and	 the	 iterative	 trimming	 models	 (Figure	 2e).	 Our	 second	 data-
set consists of all publically available data from the Illumina 450k 
Human	Methylation	BeadChip	Array	that	could	be	annotated	by	our	
label	extraction	program	ALE	(Giles	et	al.,	2017),	with	accompany-
ing	metadata	as	presented	in	geometadb	(Zhu	et	al.,	2008).	Sample	
labels	for	all	samples’	sex,	age,	and	tissue	were	extracted	from	text	
using	our	previously	published	tool	ALE	(Giles	et	al.,	2017).	We	then	
exclude	any	samples	with	annotated	ages	under	25	for	two	reasons.	
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First,	we	see	aging	as	a	process	that	begins	post-	development,	with	
human	development	ending	around	25	years	of	age.	Second,	our	an-
notation	model	 is	often	 incorrect	about	units,	 and	as	a	 result,	our	
confidence in ages <25 is much lower than the rest of the lifespan 
due to common age labels with units of weeks/months falling in 
this range. Disease annotations were hand curated by reading their 
metadata	and	the	metadata	of	the	associated	GSEs.	A	table	of	an-
notations	can	be	found	in	Supplemental	Data	S2.

4.2  |  Data Preprocessing

The	replication	dataset	for	Horvath's	clock	model	was	preprocessed	
using	code	from	Horvath	2013	to	ensure	identical	normalization	and	
imputation.	We	also	used	the	same	age	transformation	as	reported	
in	Horvath	2013(Horvath,	2013).	The	full	450k	data	were	imputed	in	
a	similar	pipeline,	using	KNN	imputation	in	sets	of	120,000	probes	
with	subsequent	normalization.	For	our	linear	models,	batch	effect	
correction	was	performed	using	ComBat	(Leek	et	al.,	2012)	to	con-
trol	for	experiment	ID	after	removing	samples	which	did	not	fall	in	
the beta distribution.

4.3  |  Feature Selection

Due to the large number of samples and probes included in the full 
450k	dataset,	modeling	could	not	be	performed	on	the	full	dataset	
simultaneously.	As	such,	we	tested	many	feature	selection	pipelines	
in	the	smaller	Horvath	subset	to	determine	their	ability	to	preserve	
useful	sites	for	age	prediction	(Figure	S2).	This	led	us	to	using	mutual	
information	as	the	primary	feature	selection	method,	from	which	we	
selected the top ~20%	of	 sites	 and	 using	 those	 79931	 loci	 for	 all	
downstream analyses.

F- regression and mutual information were performed using sk-
learn's(Fabian	Pedregosa	et	al.,	2011)	implementation	on	one	quar-
ter of all loci at a time due to memory constraints. Top 10% delta 
mean and variance were computed by comparing the mean and 
variance	differences	for	each	locus	between	the	young	(25–	35)	and	
aged	(65–	100)	sets	of	samples.

4.4  |  Statistical Analysis

Elastic	 net	 regression	 was	 utilized	 to	 generate	 clock	 models,	 as	
in	 Horvath	 2013.	 Horvath's	 replication	 was	 performed	 using	 R’s	
glmnet(Friedman	et	 al.,	 2009),	while	 the	 full	450k	model	was	per-
formed	using	 sci-	kit	 learn's	ElasticNetCV	 (Fabian	Pedregosa	et	 al.,	
2011).	 In	 both	 cases,	 10-	fold	 cross-	validation	 modeling	 was	 used	
with	 the	L1	vs	L2	selection	parameter	at	0.5	 (elastic	net),	 and	 the	
selectivity parameter adjusted based on cross- validation.

Age-	related	locus	analysis	was	performed	using	OLS	regression	
in the model methylation ~age + tissue +age:tissue.	After	FDR	mul-
tiple	testing	correction,	676	loci	were	left	for	downstream	analyses.	

PhenoAge	predictions	were	determined	as	described	in	Levine,	et.	
al.	(Levine	et	al.,	2018).

4.5  |  Genomic Feature and Motif Enrichment

Identifying	gene,	gene-	related,	and	CpG	island-	related	enrichments	
were performed by using bedtools to annotate sets of loci with fea-
tures	 from	UCSC.	 Feature	 enrichments	were	 computed	 based	 on	
hypergeometric tests comparing the various groups with a 10% FDR 
correction for multiple testing.

Motif	enrichments	were	performed	using	both	HOMER	 (Heinz	
et	al.,	2010)	and	MEME	(Machanick	&	Bailey,	2011).	Fasta	files	were	
constructed	with	the	50	bp	sequence	of	each	probe	on	the	Illumina	
450k	Array	for	all	loci,	and	age-	related	loci	from	mutual	information,	
elastic	 net,	 and	OLS	 regression	models.	 These	 loci	were	 then	 an-
alyzed for known and de novo	motifs,	with	enrichments	calculated	
against the background of all sites on the array.

Identifying enrichments in genomic features were based on 
data	 from	UCSC	 genome	 browser.	 CpG	 islands	 and	 genic	 regions	
were	 defined	 using	 UCSC’s	 annotated	 island	 bodies	 and	 genes,	
with	promoters	being	2kb	upstream	of	 the	TSS	and	shore/shelves	
being defined as 2kb blocks up and downstream of the island body. 
Simultaneous	comparison	of	all	regulatory	elements	was	performed	
using	ORegAnno	 regulatory	 elements	 (Griffith	 et	 al.,	 2007).	 Vista	
enhancers were used to look specifically at known human enhancers 
(Visel	et	al.,	2006).	eQTLs	were	 taken	 from	GTEx	 (Lonsdale	et	al.,	
2013).	Chromatin	density	was	inferred	using	DNase	hypersensitivity	
data	from	ENCODE	DNase-	seq	(Consortium	&	E.P.,	2004).
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