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Ankylosing spondylitis (AS) is a common form of inflammatory spinal arthritis with a
complex polygenic aetiology. Genome-wide association studies have identified more than
100 loci, including some involved in antigen presentation (HLA-B27, ERAP1, and ERAP2),
some in Th17 responses (IL6R, IL23R, TYK2, and STAT3), and others in macrophages
and T-cells (IL7R, CSF2, RUNX3, and GPR65). Such observations have already helped
identify potential new therapies targeting IL-17 and GM-CSF. Most AS genetic
associations are not in protein-coding sequences but lie in intergenic regions where
their direct relationship to particular genes is difficult to assess. They most likely reflect
functional polymorphisms concerned with cell type-specific regulation of gene expression.
Clarifying the nature of these associations should help to understand the pathogenic
pathways involved in AS better and suggest potential cellular and molecular targets for
drug therapy. However, even identifying the precise mechanisms behind the extremely
strong HLA-B27 association with AS has so far proved elusive. Polygenic risk scores
(using all the known genetic associations with AS) can be effective for the diagnosis of AS,
particularly where there is a relatively high pre-test probability of AS. Genetic prediction of
disease outcomes and response to biologics is not currently practicable.
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INTRODUCTION

Ankylosing spondylitis (AS) is the archetype of a group of inflammatory disorders known as
spondyloarthropathies (SpA) because they often affect the spine (axial skeleton). Other forms of
SpA (e.g., psoriatic arthritis, reactive arthritis and the enteropathic arthropathies associated with
inflammatory bowel disease—IBD) also often involve the axial skeleton (axSpA) but sometimes just
affect the peripheral joints (peripheral SpA). Any part of the spine may be involved in AS but the SI
joints are the most commonly affected sites early in the disease. The demonstration of radiographic
sacroiliitis is a formal prerequisite for the diagnosis of AS but may take many years to be apparent
on plain films. Therefore, to diagnose early AS or axSpA (considered together here although there
are semantic differences), magnetic resonance imaging (MRI) is preferred since it can detect the
early inflammatory phase of the disease potentially many years before radiographic changes become
apparent on X-rays (1, 2). AS is one of the commonest forms of arthritis in the developed and
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developing world with a prevalence of up to one in 200 in
Western Europe but it is much less common in some other parts
of the globe, such as sub-Saharan Africa where its low prevalence
generally reflects the low frequency of the immune response gene
HLA-B27 with which it is so strongly associated—see below (3).
In this review, we focus on AS and axSpA (defined by imaging
criteria—either radiographs or MRI) as might be diagnosed
using the algorithm presented by Taurog et al. (4).
Unfortunately, despite increased awareness of the disease and
the diagnostic utility of MRI, the diagnosis of AS is still missed all
too often; only one-third of cases are diagnosed within a year of
the onset of symptoms, and there is typically a delay of more than
6 years before the diagnosis is established (5, 6).

In contrast to the inflammation of the joint lining (synovitis)
associated with many other arthropathies, such as rheumatoid
arthritis, the characteristic pathology of AS is enthesitis. The
entheses are anatomical sites that have evolved to tolerate heavy
mechanical loads, such as fibrocartilaginous joints (including the
SI joints), the osseous insertions of ligaments and tendons, and
joint capsules. In AS, inflammation at these sites initially causes
bone erosion but this is often followed by new bone formation,
which creates “syndesmophytes” that bridge between adjacent
vertebrae in the spine causing bony fusion (ankylosis). Over time
this can lead to complete loss of spinal movement and the classic
“bamboo spine” appearance on radiographs characteristic of the
most severe cases (Figure 1). Some years ago, Sherlock and his
colleagues shed some light on why the entheses might bear the
brunt of the pathological attack when they demonstrated
the presence of CD3+ CD4- CD8- lymphocytes resident at the
entheses expressing the interleukin (IL)-23 receptor (IL23R), and
that a form of SpA resembling AS could be initiated in mice
simply by liver-specific over-expression of IL23 alone without
other cells being recruited to the affected tissues (7). Recently, gd
T-cells of both the Vd1 and Vd2 subsets have been demonstrated
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at the entheses that can be induced to produce IL-17, in the case
of Vd2 cells without the expression of IL23R (8). The relevance of
IL23-driven pathways to the development of AS has also been
amply demonstrated by numerous genetic associations with
components of this pathway (see below).

As with many other common diseases, the nature versus
nurture debate regarding the aetiology of AS has long been a
source of interest and speculation. Of course, increased familial
recurrence can reflect either environmental or intrinsic factors
but the absence of obvious temporal clustering of cases within
families and the fact that the disease tends to start at a broadly
similar age (typically between 20 and 40 years of age) is more
suggestive of genetic than environmental influences. It was the
particularly strong familial nature of the disease that prompted
Derek Brewerton (at the suggestion of his rheumatology
colleague Dudley Hart at the Westminster Hospital) to look
for genetic risk factors in AS rather than rheumatoid arthritis in
the 1970’s. By then it was already apparent that the pattern of AS
recurrence risk among relatives of increasingly distant
relatedness (very pronounced reduction in risk from first-
degree to second-degree relatives, with more gradual reduction
thereafter) was more consistent with a polygenic risk than either
a monogenic or oligogenic contribution (9, 10). Despite this,
such was the strength of the association between AS and the
transplant antigen HLA-B27 (11, 12) that many erroneously
assumed that AS was a monogenic disease. The classic way of
investigating the genetic component of a disease by twin studies
reveals a highly significant genetic contribution to AS, and one in
which HLA-B27 is the major but by no means the only factor
(Figure 2) (13). Armed with this limited but convincing
information and the enthusiastic support of Sir John Bell and
Mark Lathrop at the newly instituted Wellcome Trust Centre for
Human Genetics a number of us from around the world
therefore set out in the 1990’s to try to identify at least some of
FIGURE 1 | (A) Sagittal magnetic resonance image of the thoracic spine of a 44-year-old man with active ankylosing spondylitis, showing high signal on these T2-
weighted images consistent with inflammation at the vertebral corners consistent with the attachment of vertebral ligaments and discs. (B) Computed tomographic
reconstruction of the thoracic spine of a 25-year-old man with AS since the age of 12. There is clear bony fusion between the adjacent vertebrae and also at the
costovertebral joints. (C) Bilateral sacroiliitis shown by MRI (STIR sequence) worse on the sacral side of the right SI joint.
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the other genes that were involved. In this brief review we discuss
selected examples of the progress that has already been made
towards this goal and how this has helped to pin down some of
the pathological processes involved in AS. We discuss some of
the innovative methods that have been used to identify new
genetic associations with AS and the problems in interpreting
these associations at a functional level. We include brief
discussions of how these findings could inform future drug
target discovery and play a role in the diagnosis of AS, and
personalizing therapeutics for individual patients.
GENOME-WIDE ASSOCIATION STUDIES
IN AS

Prior to the late 1990s efforts to identify any non-HLA genes
contributing to AS were limited to studies of so-called
“candidate” genes for which there was (usually but not
invariably) a compelling biological reason for why they might
be involved. Naturally enough (given the association with HLA-
B27), many of these candidates were broadly “immunological” in
nature and, equally unsurprisingly, they were generally
unrewarding. The transition to genome-wide approaches was
perhaps somewhat offensive to some scientists, because it was
essentially not “hypothesis-driven” in the classic Popperian
philosophical sense—other than that we proposed that there
were genes out there to be discovered. The initial studies in AS,
based on a form of genetic linkage analysis of affected
relative pairs proved too blunt an instrument for the job
(despite the huge amount of work involved in recruiting
several hundred affected sibling pairs and their nuclear
families). Beyond demonstrating linkage to gene(s) in the
major histocompatibility complex on chromosome 6 not very
much else came up and certainly nothing that was categorically
associated with AS even after applying meta-analysis (14–16).
Worse still, it was obvious that this type of analysis had very little
power to refine chromosomal intervals to the level of identifying
individual genes and/or the polymorphisms in them that were
disease-causing variants. It was not until technical advances
allowed the application of much larger numbers (~500,000) of
Frontiers in Immunology | www.frontiersin.org 3
genetic markers known as single nucleotide polymorphisms
(SNP) spanning the entire genome that the field really started
to move on. Nonetheless, there were some exciting surprises even
before this grand-scale technological revolution was fully in
place. The following are just a few examples from the first
decade of GWAS in AS.

Early Successes: Endoplasmic Reticulum
Associated Aminopeptidase 1
The first GWAS in AS was published in 2007 as part of a broader
attempt by the Wellcome Trust Case-Control Consortium to
identify the genetic component of several common complex
diseases, including cardiovascular disease, bipolar disease,
inflammatory bowel disease, rheumatoid arthritis, tuberculosis,
autoimmune thyroid disease, multiple sclerosis, and breast
cancer (17). The number of AS cases was relatively small
(~1,000) and the number of SNPs was modest (~14,500, of
which 3,000 were in the major histocompatibility complex -
MHC). Although the SNPs were gene-targeted non-synonymous
variants (i.e., amino acid changing) this only gave a coverage of
about one SNP per two gene loci, on average. By chance, one of
the genes that registered association in this study had been
allocated rather more than its fair share of SNPs—ERAP1
(endoplasmic reticulum aminopeptidase 1 involved in
processing peptide antigens for presentation by MHC class I
molecules) had 5 non-synonymous (coding) SNPs. To this day
ERAP1 remains one of the most interesting and strongest
associations (p~10-50) with AS outside the MHC (18–21). It is
one of a family of aminopeptidases involved in the progressive
cleavage of single amino acids from the amino-terminal end of
peptides transported via the TAP (transporter associated with
antigen processing) prior to associating with nascent MHC class
I molecules. ERAP1 is crucial in shaping the available peptide
repertoire, not only by providing peptides of the optimal length
(8–9 amino acids) but also by influencing their amino-terminal
residues that affect their binding to individual HLA allotypes,
such as HLA-B27. A number of fascinating subsequent
discoveries have been made about the nature of this genetic
association with AS and the functions of ERAP1.

1. The association with ERAP1 is synergistic with HLA-B27.
Only around 84 per cent of AS cases in the UK are HLA-B27
positive and the association of AS with ERAP1 is restricted to
those who are HLA-B27 positive (20). Interestingly, HLA-
B27 negative AS is associated with another aminopeptidase—
ERAP2—which is adjacent to ERAP1 on chromosome 5 but
in a separate linkage disequilibrium block. Given the clear
functional interdependence of MHC class I molecules and
these aminopeptidases it is perhaps unsurprising that there
should be such obvious genetic interaction but there are
actually remarkably few similar examples to date in the
literature. Indeed, it was this synergy between HLA-B27
and ERAP1 that prompted others to look successfully for
similar MHC/ERAP interactions in psoriasis, a condition
with well-described genetic overlap with AS and SpA (22).
Subsequently, similar findings have also been described in
Behcet’s syndrome between ERAP1 and HLA-B*51 (23).
FIGURE 2 | Studies of concordance for AS in UK twins recruited through the
National Ankylosing Spondylitis Society. The clear difference on concordance
rates between MZ twins and DZ twins is highly indicative of a major genetic
component, which can only partly be explained by the influence of HLA-B27.
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2. ERAP2 actually turns out to be associated both with HLA-
B27 positive and negative AS (although it needs rather highly
powered studies to prove it). There is a high frequency
ERAP2 null allele that results in about a quarter of Europeans
having no functional ERAP2 although precisely how this
affects susceptibility to AS is not currently known (24).

3. Altering the expression of ERAP1 or ERAP2 has a profound
impact on the repertoire of peptides bound to MHC class I
molecules, including HLA-B27 (25, 26). But how this relates
to the pathogenesis of AS is also unknown. Any potential
“arthritogenic peptide” remains highly elusive.

4. ERAP1 polymorphisms that afford protection against AS are
common loss-of-funct ion variants with reduced
aminopeptidase activity that are also likely to influence this
repertoire (18, 27, 28). Consequently, there would appear to
be scope for developing small molecule inhibitors of ERAP1
(and possibly other aminopeptidases) in the quest for new
therapies for the prevention or treatment of AS.
A Credible GWAS Hit: Interleukin-23
Receptor
The same early GWAS (17) that identified ERAP1 also revealed
the first evidence of association between AS and the IL23R locus
on chromosome 1, encoding the IL23-specific component of the
of the heterodimeric IL23 receptor (the other component,
IL12RB1, can also combine with IL12RB2 to form the IL12
receptor) (29). In the main part of this study, the initial strength
of the association was weak (as is often the case in such relatively
poorly powered studies), but it was subsequently amply
confirmed and strengthened (20, 21, 30). Further, this IL23R
association is recapitulated in other diseases, such as psoriasis
and inflammatory bowel disease (IBD), which commonly occur
in individuals with AS and/or their relatives, highlighting a
degree of shared genetic background between these conditions
(22, 31). The main SNP primarily associated with AS, psoriasis
and IBD (rs11209026) causes a loss-of function mutation in the
cytoplasmic tail of IL23R that reduces IL-17 and IL22 production
by Th17 effector cells (32, 33) and modulates responses to
pattern recognition receptors (34). These findings suggest that
IL-23 driven pathways are implicated in AS, a finding supported
by the subsequent identification of several other genetic
associations with components of the Th17 lymphocyte
developmental pathway, including IL6R, TYK2, STAT3, IL1R1/
2, and IL12B (encoding the p40 fragment of IL12 that dimerises
either with p35 in IL12 or p19 to form IL23). Coffre et al. suggest
that the effector functions of Th1 and Th17 cells are affected by
multiple variants at genetic loci associated with the IL23-driven
pathway, including IL23R, IL12B, CCR6, IL17A/F, IFNG,
IL12RB2, TBX21, and RORC (35).

These findings support the case for targeting various
components of the IL23 pathway as a means of treating AS.
Further, since many of the same genetic associations are also
found in psoriasis and IBD (36) similar therapeutic strategies
might also be expected to be fruitful in these conditions.
Frontiers in Immunology | www.frontiersin.org 4
However, the results have proved somewhat unpredictable and
indicate substantial complexity in the relevant biological
pathways and their involvement not only in their effects in the
various related forms of SpA but also on the associated skin and
bowel disease. Thus, targeting of IL-17 (the main pro-
inflammatory cytokine associated with terminally differentiated
Th17 cells) with the therapeutic monoclonal antibodies
secukinumab or ixekizumab has proved highly successful in AS
(37, 38) and psoriasis (39) but not IBD (40). Targeting the p40
subunit common to both the IL23 and IL12 receptors (thereby
blocking both IL12 and IL23) has proved disappointing in AS
and axial SpA (41, 42) in contrast to its efficacy in psoriasis and
IBD (43, 44). Finally, despite its success in treating psoriasis,
psoriatic arthritis and IBD (45, 46) the therapeutic antibody
risankizumab, which targets the p19 fragment of IL23, is
ineffective in AS (47). It is therefore interesting that AS does
not show the same genetic association with IL23 as psoriasis (36),
perhaps suggesting that Il-23 itself is important in psoriasis while
IL23R and downstream signalling pathways are rather more
relevant to the pathogenesis of AS.

A Second Association at the IL23R Locus?
More detailed genomic studies have revealed other associations
near IL23R independent of rs11209026 in the intergenic region
between IL23R and the neighbouring IL12RB2 gene (tantalisingly
encoding the IL12-specific component of the IL12 receptor - see
above). The associated SNP - rs11209032 - lies in a regulatory
region, including a transcription factor binding-site for TWIST1,
and appears to increase Th1 cell differentiation but, so far, its role
in the pathogenesis of AS is unclear (48, 49). The International
Genetics of AS (IGAS) Immunochip study in 2013, which fine
mapped ~200 loci of known importance in immune responses
and inflammation, revealed that such complex associations with
more than one SNP independently associated with AS at a given
locus are not uncommon (21).

Other “Hits” With Immunological
Relevance: IL7R (IL7 Receptor a Chain)
CSF2 (Granulocyte-Macrophage Colony-
Stimulating Factor), and GPR65 (G-Protein
Coupled Receptor 65)
Unsurprisingly the IGAS Immunochip study identified or
confirmed genome-wide associations with many other loci
implicated in immune/inflammatory conditions (because, after
all, that was what the “Immunochip” was designed to do). For
example, the “suggestive” AS association with rs6897932 in IL7R
mirrored similar genome-wide significant associations of IL7R
with multiple sclerosis and primary biliary sclerosis (21, 50, 51).
The “C allele” affects differential splicing of the 6th exon in the
transmembrane domain of IL7R and increases the amount of
both membrane-bound and soluble IL7R. Soluble IL7R increases
the half-life of IL7, which plays a key role in T-cell immunity.
Synovial fluid monocytes from patients with SpA have increased
levels of IL7R and a transcriptome profile that overlaps with IL-
7-induced gene sets (52). Type 3 innate immune cells expressing
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IL7R are also increased in the synovial tissues of patients with
SpA, and these cells produce GM-CSF (granulocyte-macrophage
colony-stimulating factor) after in vitro stimulation (53).
Targeting GM-CSF with therapeutic antibodies has already
been shown to be effective in rheumatoid arthritis (54) and
would therefore appear to be an obvious target in SpA as well
(one such antibody—namilumab—is currently under
investigation in the Namaste Trial—ClinicalTrials.gov
Identifier NCT036226658).

Further evidence supporting a role for GM-CSF in AS also
comes from the genetic association with GPR65 (encoding a G-
protein-coupled receptor involved in proton sensing) in the
IGAS Immunochip study (21). Although it was not appreciated
at the time GPR65 plays an integral role in regulating GM-CSF
expression. Single cell genomics reveals that it is also crucial to
the pathogenicity of Th17-cells in murine experimental allergic
encephalomyelitis (55). Th17-cells are pleiotropic; there are
increased numbers of GM-CSF secreting CD4+ and CD8+

lymphocytes in the synovium and peripheral blood of patients
with SpA, and also increased numbers of IL-17A+/GM-CSF+

double-positive CD4+, CD8+, gd and NK cells. GM-CSF+CD4+

lymphocytes express GPR65 irrespective of whether they co-
express IL-17A (53). Silencing GPR65 in primary CD4-cells
results in reduced GM-CSF expression and so it may also be
an important potential therapeutic target for SpA.

A Plausible Association Without Functional
Corroboration: NOS2 (Inducible Nitric
Oxide Synthase)
The Immunochip study showed a convincing peak of association
with SNPs upstream of theNOS2 gene (21), which has previously
been associated with susceptibility to infectious diseases, such as
leishmaniasis, and inflammatory diseases in mice (56). NOS2 is
also associated with IBD where its expression in the gut mucosa
is highly dysregulated (57). In contrast to mice, human
macrophages appear not to have the same inducible up-
regulation of NOS2 (despite the application of many different
conditions and stimuli, in the hands of one of us—CD). The
NOS2 genetic association appears solid and lies in a region
upstream of the gene likely to have regulatory functions BUT
(1) “Is this region actually regulating NOS2 or another gene?”, (2)
“Are the conditions necessary to induce NOS2 in human
macrophages highly specific and different from those that we
have tried so far?”, or (3) “Is the effect on NOS2 expression
manifest in a different cell type from those we have explored to
date?”. With regard to the latter, it is interesting that around two-
thirds of patients with AS have subclinical inflammation of the
terminal ileum so perhaps the gut mucosa might be a more
productive place to look (58).

A Strongly Associated Locus With
Relationship to Immune Cell
Development: RUNX3 (Runt-Related
Transcription Factor 3)
The challenge of identifying a mechanistic explanation for
genetic disease associations is hard enough when there is a
Frontiers in Immunology | www.frontiersin.org 5
clear functional effect arising from a protein-coding change, as
in the case of rs30187 in ERAP1 or rs11209026 in IL23R, or for
that matter HLA-B27. Far more often the lead SNP in such
associations lies outside the coding sequence, most likely in
regions concerned with the regulation of gene expression—
but “Which genes?” and “How are they regulated?” are
huge issues. Such cis-regulatory elements are most likely
to control the activity of neighbouring or nearby genes, but
their influence could extend even megabases down the
chromosome. These issues are well exemplified by the
RUNX3 association with AS.

RUNX3 is one of the family of multifunctional RUNX
transcription factors that play key roles in the development
and differentiation of many cell types, including many immune
phenotypes. It has been strongly associated with AS by GWAS
(20), and the lead SNP mapped more accurately in the
Immunochip study to a region with characteristics of an
enhancer upstream of the promoter (21, 59). Careful
examination of this region reveals that there are at least two
independent neighbouring AS-associated SNPs that affect the
binding of different transcription factors. Further, despite the fact
that they are only 500 base pairs apart, these two distinct SNPs
appear to exert their influence in different cell types—rs4648889
in CD8+ T-cells and rs4265380 in monocytes (60). The challenge
now is to translate this into a better understanding of the
regulatory framework of genes involved and how this affects
the pathogenesis of AS. Fortunately the science of “genomics”
now provides a wealth of publicly available data relating to the
regulation and expression of genes in specific cell types that
facilitate these investigations. These include (1) eQTL
(expression quantitative trait loci) mapping that relates gene
expression to particular SNPs in particular cell types, such as
monocytes (61), (2) areas of “open” chromatin (DNAse 1
hypersensitivity sites), (3) transcription factor binding-sites and
(4) other chromatin modifications, such as histone methylation
or acetylation, that indicate the activity status of genes and their
enhancers (62, 63). All of these can potentially be used to cross-
reference functional gene activity at the cellular level with
disease-associated SNPs to pursue the ultimate aim of
discovering relevant disease pathways and how they might be
therapeutically manipulated.

In our lab, we have so far demonstrated that the RUNX3 AS-
associated SNP rs4648889 (above) mediates differential allelic
binding of two regulatory factors/complexes to a putative
enhancer in the region upstream of the promoter: (1) the
transcription factor interferon regulatory factor (IRF) 5, which
binds preferentially to the AS-protective “G” allele; and (2)
components of the nucleosome remodeling and deacetylase
(NuRD) complex (one of the four major ATP-dependent
chromatin remodel ing complexes that funct ion as
transcriptional repressors) bind preferentially instead to the
AS-risk “A” allele at rs4648889 (64). Further work is necessary
to confirm the functional consequences of this SNP on gene
expression and the network of genes involved but preliminary
experiments suggest that IRF5 knockdown in CD8+ T-cells
reduces the expression of interferon gamma. Discovering new
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drug targets by this type of reverse genetics represents a daunting
challenge that will require many different approaches and
techniques. Identification of the disease-associated SNPs by
statistical techniques is hard enough but further progress
towards a mechanistic explanation for these GWAS
associations will undoubtedly require: (1) precise identification
of the primary functional genetic variants involved (within an
AS-associated LD block); (2) their effects on gene expression in
specific cell types (transcriptomics); (3) their effects on protein
translation (proteomics); and (4) how these vary in response to
different stimuli (metabolomics). The majority of AS-associated
loci exert only very small effects on predisposition to the disease,
most likely through quite subtle regulatory effects on gene
transcription. These will inevitably still need to be assessed in
more complex cellular systems and relevant animal models.
Nonetheless, even at this early stage of the investigation of
RUNX3 there are already hints that both CD8+ T-cells and
monocytes might constitute plausible cellular targets for
intervention in AS (60). Credible molecular targets have yet
to emerge.

A Replicated GWAS Hit Without an
Obvious Explanation: ANTXR2
(Anthrax Toxin Receptor 2)
Among the numerous genetic associations with AS are many
that defy obvious explanation. The SNPs lying in an extended
linkage disequilibrium block including the entire ANTXR2 gene
is an excellent example. The initial positive association found
by the Triple A (Australo-Anglo-American) spondyloarthritis
consortium (TASC) has been amply replicated in independent
studies but it has been difficult to decide precisely which SNP is
most closely associated with the disease (19, 65). Our limited
knowledge of the biology of the protein does little to offer an
explanation for its genetic association with AS. In addition to its
role as a potential receptor for the anthrax toxin it appears to be
involved in capillary morphogenesis. ANTXR2 mutations also
cause the rare monogenic hyaline fibromatosis syndrome (On-
line Mendelian Inheritance in Man catalogue number—
228600), in which there are widespread subcutaneous nodules
and other internal organ involvement, but none of this gives
many clues as to whether or how it might be involved in AS. So
far it is not even clear whether these SNPs are actually involved
in the actions of ANTXR2 or another gene in the vicinity. This
is a common issue in providing mechanistic explanations for
many GWAS “hits”.

AS Genetics in Clinical Practice
Diagnostic Testing
A role for HLA-B27 in the diagnosis of AS is well established but
its use should be implemented with care; the sensitivity and
specificity of HLA-B27 testing is clearly related to the pre-test
probability that an individual might have AS. Used as a screening
test for AS on all individuals with low back pain in the
community it is quite unhelpful, but if limited to individuals
with clinical features suggestive of the condition it is very useful.
People in whom the condition is suspected can be placed in a
Frontiers in Immunology | www.frontiersin.org 6
“suspicious” group according to their responses to a few simple
questions. These include: (1) Chronicity (low back pain > 3
months), (2) Alternating buttock pain (indicative of SI joint
inflammation), (3) Improvement with gentle exercise or anti-
inflammatory analgesics, (4) Back pain interfering with sleep in
the second half of the night, (5) Onset aged less than 40 years of
age, (6) Affected first-degree relative, (7) Presence of co-
morbidities known to be associated with AS, such as psoriasis,
IBD or uveitis. Individuals with positive responses to these
questions have a much higher pre-test probability of AS than
others with low back pain in the community, and in those with 4
or more positive responses an additional positive HLA-B27
result may increase the likelihood of AS to over 90%. This can
be further increased by the finding of SI joint inflammation on
MRI. However, even with the combination of clinical questions,
HLA-B27 testing and MRI the diagnosis is either missed or
incorrect in about 5% of cases (6). The diagnosis is accurately
made in only a third of patients in the first year of symptoms and
is frequently delayed by 6 years or more (5). Brown et al. (66)
have nicely reviewed the state of the art relating to biomarker
development in AS, including genetic testing. They highlight the
utility of HLA-B27 testing but suggest that polygenic risk scores
(PRS), which additionally use all the other SNPs associated with
AS, can give an even better positive predictive value (67). Using
this approach, they and others have convincingly demonstrated
that using 110 SNPs with reported genome-wide association to
AS (including HLA-B27) is significantly more discriminatory
than HLA-B27 alone in the diagnosis of AS. However, the
difference is relatively small and of unproven clinical value
(68). In contrast, a few well-chosen questions (see above)
designed to identify those with high likelihood of AS/axSpA
prior to implementing any sort of genetic testing are worth their
weight in gold.

Prognosis
Prediction of the prognosis and outcomes of treatment in AS
are long-term goals that could be facilitated by genetics since we
already know that the severity of the disease is highly heritable
and certainly not determined exclusively by HLA-B27 status
(69). There is some evidence that outcomes from biologic
therapies are better in HLA-B27 positive patients and that
positive responses to secukinumab may be influenced by the
ERAP1 risk allele at rs30187 (37, 66). However, these
conclusions have been drawn from small studies and clearly
require replication. We have also investigated a SNP in
TNFRSF1A (encoding the p55 TNF Type 1 receptor) for its
potential to influence not only susceptibility to AS but also its
severity and responsiveness to anti-TNF biologics. The “G”
allele of rs1800693 is associated with susceptibility to multiple
sclerosis but protection against AS (20, 70, 71). It causes
skipping of exon 6 resulting in a truncated soluble form of
the protein with potential anti-inflammatory properties,
mimicking the action of the anti-TNF fusion protein
etanercept; this is particularly interesting given the possible
association between anti-TNF biologic therapy and central
nervous system demyelination (70, 72). However, the
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rs1800693 polymorphism in TNFRSF1A neither appears to
affect the severity of AS nor its response to anti-TNF
biologics (73). In order to characterize such genetic influences
on responses to therapy it may well be necessary to examine far
larger case series than has been done to date.

Longstanding Conundrums
Why Does Not Everyone With HLA-B27 Get AS?
The aetiology of AS clearly involves other genetic and/or
environmental factors than just HLA-B27. Twin studies
indicate its polygenic nature, which is one explanation for why
only around 5% of those with HLA-B27 develop AS. Estimates of
broad-sense heritability suggest that over 90% of the population
variance can be attributed to genetic factors (13) but this does not
preclude the involvement of common environmental influences,
such as infections, in its aetiology. It merely suggests that any
such extrinsic factors are likely to be so common (like certain
viral infections)? that they do not greatly influence the
population variance (at least in developed Western societies).
Whether this is always the case is a moot point. There are some
exceptions to the general rule that the prevalence of AS mirrors
that of HLA-B27 in the population. Thus, in The Gambia in
tropical west Africa AS is exceptionally rare (as it is in much of
sub-Saharan Africa) (3), but in contrast to many other African
countries the frequency of HLA-B27 in The Gambia is at least 6%
(not so very different from ~8% in the UK). The low Gambian
prevalence of AS was initially attributed to the existence of an
unusual HLA-B27 variant—HLA-B*2703—with potentially
different functional characteristics from the HLA-B*2705 allele,
which is predominant in European populations (74). However,
on closer inspection at least half of the B27-positive individuals
in The Gambia actually carry the “European” HLA-B*2705 allele,
making it far from rare in that population (75). Another
explanation for the rarity of the condition in this population is
therefore necessary: perhaps there is some other genetic factor in
this population or, more likely, something different about the
Gambian environment that affords protection against
the disease.

What About the Gut?
There has been much interest in the possibility of a link
between the gut and AS for many years. One of us
remembers the excitement at The Middlesex Hospital in
London after early reports that faecal carriage of Klebsiella sp.
was associated with active disease. However, these studies
provoked strong views on either side, particularly relating to
whether this could be explained on the basis of cross-reactive
“autoimmune” responses (76, 77). Nevertheless, many lines of
evidence point towards gut involvement in SpA and much
current research. For example, IBD is often complicated by
various forms of peripheral and axial arthritis, the onset of
which may be before, concurrent or afterwards. Curiously,
there are quite distinct clinical features to these various forms
of arthritis. The type 1 peripheral arthropathy of IBD (similar
to reactive arthritis in its asymmetric, pauciarticular,
predominantly lower limb distribution) is strongly associated
Frontiers in Immunology | www.frontiersin.org 7
with HLA-B27 as is the axSpA associated with IBD, but the
former runs a course mirroring activity of the IBD in contrast
to the axSpA, which is independent of IBD activity (78, 79). In
the type 2 peripheral arthropathy of IBD (polyarticular, upper
and lower limb distribution), joint disease activity is also not
linked to activity of the IBD and it has a distinct
immunogenetic profile (not associated with HLA-B27 but
rather with HLA-B44 (80). In our sample of ~8,500 cases of
AS from the UK there is co-existent clinically overt IBD in ~10–
15%, which is at least partly due to their shared genetic
background (36). In other studies, two-thirds of those with
AS without overt IBD exhibit subclinical histological gut
inflammation (81). There is also some circumstantial
evidence from long-term observational studies that a
minority of individuals with reactive arthritis (usually a self-
limiting condition triggered by infection in the gut or
urogenital tract) may progress over time to axSpA/AS (82).
Attempts to identify specific causative agents in the gut, such as
Klebsiella sp., have largely proved unsuccessful but there is still
much interest in the potential role that the gut microbiome
might play in AS and its potential role in mediating local and
systemic inflammation in SpA [reviewed in (66, 83)]. Wholesale
sequencing of gut bacteria suggests that the gut microbiome in
AS can be distinguished from the normal population and may
have some correlation with disease activity (84–88). However,
whether these results are truly disease specific must also take
into account that the HLA alleles associated with AS (and also
those associated with rheumatoid arthritis) have a significant
impact on the host gut microbiome in healthy individuals
too (89).

What Is the Evidence for a Specific Antigenic
Stimulus in AS?
The strong HLA-B27 association with AS suggests that adaptive
immune responses are important in its pathogenesis but any
“arthritogenic peptide(s)” has so far proved elusive. Evidence for
antigen-driven specific immune responses in the HLA-B27
associated arthropathies, is not new (90, 91) but the
development of high throughput sequencing to assess the T-
cell receptor repertoire has seen a recent resurgence of interest.
Of particular interest, TCR binding motifs from some patients
with AS show similarities with those identified previously in
individuals with reactive arthritis (92–95). There is also evidence
of a significant increase in CD8+ T-cell clonotypes specific for
the Epstein-Barr and cytomegalovirus (92). In this regard it is
therefore interesting that recent studies have identified
conventional CD4+ and CD8+ T-cells resident at the entheses
in humans that have regulatory phenotypes and reactivity against
common viruses, including cytomegalovirus (particularly CD8+
T-cells) (96).

What Is the Role of HLA-B27 in AS?
Fifty years after it was first described the mechanism(s)
underlying the strong association of AS with HLA-B27 still
requires a truly convincing explanation. We have certainly
learned a lot about this molecule in the intervening years—
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crystal structure, the peptide repertoire it binds, its unusual
folding characteristics, and interactions with receptors on
innate immune cells—but where has this left us? Although
there is some evidence of specific antigen presentation (see
above) this is certainly inconclusive. Other theories have drawn
on some of the atypical features of HLA-B27 among MHC class I
molecules – in particular, its relatively slow folding and tendency
to form homodimers. For a more detailed description of these
theories the reader is referred elsewhere (97–99). Briefly, in
addition to its role in antigen presentation HLA-B27 is
unusual in its folding kinetics; unusual forms can accumulate
in the endoplasmic reticulum causing an unfolded protein stress
response, which can lead to IL23 production in dendritic cells.
Similar responses have been observed in macrophages in the
transgenic rat model of SpA (100). This theory provides a neat
explanation for the apparent lack of antigen specificity in animal
models of SpA (99) but is far from settled given the lack of
evidence of UPR in gut epithelial cells from individuals with AS
(100). HLA-B27 is also unusual in its ability to form homodimers
or free heavy chains that can be recognized by killer-
immunoglobulin-like receptors (KIR), which are mainly
expressed on NK cells but also on CD4+ T-cells (101, 102).
People with AS have a higher frequency of T-cells expressing this
receptor and these are also polarized towards the Th17
phenotype that is associated with AS (97). Of interest, ERAP1
variants associated with protection against AS reduce HLA-B27
free heavy chain expression on monocytes and potentially reduce
Th17 activity (103).

Bone Modeling and HLA-B27
Only a few tentative genetic associations that have been reported
between AS and genes involved in bone modeling to date. Weak
associations have been described with RANK (receptor activator
of NF kappa B involved in osteoclast development) in Caucasians
and RANKL (RANK ligand) in Chinese (104, 105). However,
another recent paper suggests that HLA-B27 is involved in the
activation of TNAP (encoding the enzyme alkaline phosphatase)
in mesenchymal stem cells obtained from syndesmophytes of
patients with AS. This led in vitro to accelerated mineralisation in
a manner that was independent of the key osteoblast
transcription factor RUNX2. Further, in an animal model, this
process could be inhibited by bisphosphonates, a group of drugs
commonly used in the treatment of osteoporosis, thereby
holding considerable promise of a treatment that could retard
the abnormal ossification and ankylosis associated with AS (106).
CONCLUDING REMARKS

It may be argued that so far, we have actually learned more about
the treatment of common diseases from studying rare,
phenotypically severe, monogenic conditions than from the
genetics of common polygenic diseases like AS. There have
certainly been some spectacular successes. First, the
development of therapeutic RANKL (receptor activator of
NFkB-ligand) antibodies (denosumab) for the treatment of
Frontiers in Immunology | www.frontiersin.org 8
osteoporosis, for which the insights came from very rare
osteolytic bone diseases (familial expansile osteolysis—OMIM
174810) affecting the RANK/RANKL axis of osteoclast
development (107). Second, anti-sclerostin antibodies
(romosozumab) have also been successfully developed for the
treatment of osteoporosis (108), based on the observation that
loss-of-function mutations in sclerostin (a bone morphogenetic
protein antagonist) were responsible for massive accumulation of
bone in the rare recessive disorder, sclerosteosis (OMIM
269500). It is unsurprising that polygenic diseases have proved
harder nuts to crack. Nevertheless, much progress has been made
in AS already thanks to a hugely collaborative global effort
(Figure 3).

If we have learnt anything about the study of complex
diseases in the past 20 years, it is that size matters when it
comes to genetic studies. With the assistance of various
international consortia, we can generate sample sizes that now
have the power reliably to detect loci increasing the risk of AS by
5% or less. Similar efforts will probably be essential to identify
any genetic influences on therapeutic outcomes. Novel strategies
for identifying susceptibility genes include increasing the power
of such studies by combining cohorts of genetically related
diseases, such as AS, psoriasis, IBD and sclerosing cholangitis.
Individual loci identified in this way can then be individually
tested in the specific disease subsets. The number of loci
incriminated in AS has been increased to more than 100 in
this way (36). Efforts to increase the number of cases for these
studies have continued, and it is hoped that the latest GWAS
from the IGAS consortium will present data from ~ 20,000 cases
in the next 12 months. Translating these results into therapeutic
targets will remain problematic but continuing advances in the
field of functional genomics hold much promise for progress in
this field (109). Detailed analysis and discussion of these issues is
beyond the scope of this review, so the interested reader is
referred to the 30th July issue of Nature that contains no fewer
than 10 relevant articles on the subject [Nature 2020; vol 583:
issue 7818]. As an example of what can be achieved, many of the
FIGURE 3 | Timelines of progress in translating the genetics of ankylosing
spondylitis towards therapeutics.
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associated genetic loci in another complex rheumatic disease—
rheumatoid arthritis—have recently been shown to have
complex chromatin interactions and effects on gene expression,
specifically in T-cells. Further, using a multiomic approach, new
genes not previously implicated by GWAS, such as MYC and
FOXO1 have been identified in the pathogenesis of the disease
(110). In AS, even the original MHC association with HLA-B27
has been shown to be far more complex; there are numerous
associations with both Class I and II alleles, and additional
epistasis with ERAP1 (111). With a few exceptions (105–107,
112) most translational work in AS genetics has concentrated to
date on its immunological and inflammatory contributions but,
given that much of the pathology and the ensuing disability is
caused by abnormal bone deposition, there is a strong case for
investigating this aspect of the disease more intensively.
Frontiers in Immunology | www.frontiersin.org 9
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Behçet’s disease and epistasis between HLA-B*51 and ERAP1. Nat Genet
(2013) 45(2):202–7. doi: 10.1038/ng.2520

24. Robinson PC, Costello ME, Leo P, Bradbury LA, Hollis K, Cortes A, et al.
ERAP2 is associated with ankylosing spondylitis in HLA-B27-positive and
HLA-B27-negative patients. Ann Rheum Dis (2015) 74(8):1627–9. doi:
10.1136/annrheumdis-2015-207416
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