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Abstract: Nowadays, accurate and robust localization is preliminary for achieving a high autonomy
for robots and emerging applications. More and more, sensors are fused to guarantee these require-
ments. A lot of related work has been developed, such as visual-inertial odometry (VIO). In this
research, benefiting from the complementary sensing capabilities of IMU and cameras, many prob-
lems have been solved. However, few of them pay attention to the impact of different performance
IMU on the accuracy of sensor fusion. When faced with actual scenarios, especially in the case of
massive hardware deployment, there is the question of how to choose an IMU appropriately? In this
paper, we chose six representative IMUs with different performances from consumer-grade to tactical
grade for exploring. According to the final performance of VIO based on different IMUs in different
scenarios, we analyzed the absolute trajectory error of Visual-Inertial Systems (VINS_Fusion). The
assistance of IMU can improve the accuracy of multi-sensor fusion, but the improvement of fusion
accuracy with different grade MEMS-IMU is not very significant in the eight experimental scenarios;
the consumer-grade IMU can also have an excellent result. In addition, the IMU with low noise
is more versatile and stable in various scenarios. The results build the route for the development
of Inertial Navigation System (INS) fusion with visual odometry and at the same time, provide a
guideline for the selection of IMU.

Keywords: MEMS-IMU; visual-inertial odometry; sensor fusion; MEMS applications

1. Introduction

In recent years, with the rapid growth in the fields of autonomous driving [1], aug-
mented reality [2], virtual reality [3], and other emerging applications, the question of
how to accurately obtain their localization information has become a crucial premise and
foundation. To fulfill the requirements of these applications, a lot of exploration and novel
work has been carried out by researchers, such as the work which fusions WiFi and IMU
with floorplan [4]. Among many localization and navigation methods, inertial navigation is
one of the mainstream methods at present. Inertial Measurement Unit (IMU) is the prereq-
uisite of inertial navigation, as it plays a considerable role in indoor, urban high buildings,
planetary exploration, and other GPS denial scenes. In terms of the indoor positioning
technologies which heavily rely on IMU and other modal sensors, there are two major
categories: building independent and dependent. Building independent draws support
from image-based technologies and dead reckoning [5]. Building-dependent localization is
realized by multi-modal sensors, such as Wi-Fi, Bluetooth, Ultra-Wide Band, Visible Light
Communication, etc. With the development of the diversity of positioning technology, the
hybrid patterns of indoor positioning based on smartphone cameras and IMU are also
emerging [6]. IMU is significant for positioning and orientation applications. IMU is a
device composed of a triaxial accelerometer that senses the linear acceleration coupled with
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the gravity of the body and a triaxial gyroscope that senses the angular velocity. The three
axes are orthogonal to each other. Inevitably, due to the IMU being corrupted by inherent
factors such as bias, noise, and random walk, localization is more and more unreliable; it is
more exacerbated in low-cost IMU.

Thanks to the rapid improvement of the computing power of the platform, vision-
based positioning methods have become more and more mature, such as visual odome-
try [7] which means that when a robot is in an unknown environment, this method can
estimate its attitude by using the information of image while moving and exploring at
the same time. In addition, the continuous breakthrough of deep learning boosts another
new trend for the visual odometer, such as DeepVO [8] which is based on deep learning,
and RoadMap [1] which is based on the semantic map. The end-to-end manner increases
the adaptability and robustness of the scene. In the method of visual odometry, it is
gratifying that the cumulative drift of trajectory is less than the inertial method, and the
long-term stability is better than the inertial based. It is well known that the camera is
used as an exteroceptive sensor for passive localization and features rich scene information.
However, it is easy to be defeated in a dynamic environment, weak texture, fast motion,
drastic changes in lighting and other scenes, and monocular visual odometry does not
have distance perception. As an interoceptive sensor, IMU actively locates and is not
susceptible to the environment. However, it is easily affected by noise, bias, and other
inherent factors. How to fuse cameras and inertial or more information has become a
research hotspot. Up to now, researchers have solved many problems by fusion camera and
IMU, and many visual-inertial odometry (VIO) algorithms have been developed [9–20].
There are different schemes to fuse cameras and IMU which can be broadly categorized into
the loosely-coupled [18–20] and the tightly-coupled [10–17]. VIO is also broadly divided
into filtering-based [12,14,15] and optimization-based [10,11,13,16,17] in state estimation
algorithm. The approaches based on optimization and tightly-coupled have more potential
for accuracy [21].

As mentioned above, VIO-related algorithms have been rapidly developed. Nev-
ertheless, few of them pay attention to the impact of different performance IMU on the
accuracy of sensor fusion. What are the requirements for IMU performance in different
situations? What is the impact of IMU with different performances on the accuracy of
multi-sensor fusion especially for the emerging visual odometry technology? The analysis
of this problem is significant to the hardware configuration, deployment of multi-sensor
fusion systems, the development of IMU-based fusion localization technology, and other
issues. To make it clearer, we chose the tightly-coupled algorithm VINS_Fusion [10,11] as
the evaluation framework because of the representative in the operation based on sliding
window optimization. Our platform is a wheeled robot running on the actual road, as
shown in Figure 1. The main contributions in this study are summarized below.

In this paper, we propose a comparative evaluation framework to test the impact of
different grade MEMS-IMU on the accuracy of the VIO algorithm as shown in Figure 2. In
this paper, eight different experiments were designed, and a comprehensive evaluation
was analyzed based on the absolute trajectory error. For a wide range of researchers,
our experimental results are informative for sensor configuration and algorithms, and
can clearly show the specific performance of different grade MEMS-IMU in VIO fusion
accuracy. We can expediently select a MEMS-IMU for specific scenarios.

The rest of the paper is structured as follows: In Section 2, the related work about
evaluation and analysis experiments and IMU selection are discussed. In Section 3, the
framework flow of the overall experiment which is divided into four parts: hardware
platforms (A), sensor setup (B), sensors parameter configuration (C), and evaluation (D) is
presented. In Section 4, the results of the experiment are analyzed and discussed. Finally,
the paper is concluded in Section 5. In addition, we append the absolute trajectory error of
multiple IMUs in Section Appendix A.
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2. Related Work

In order to make the positioning technologies more suitable for deployment and wide
use, a lot of related work has been proposed. In the subsection Evaluation and Analysis
Work, they paid more attention to the performance of many open-sourced algorithms on
CPU/GPU. In subsection Multi-IMUs Work, the work on multiple IMUs is summarized, but
their IMU type is single and the grade span is not wide. They mainly use redundant sensor
groups to enhance the stability of the system. In addition, in partial work, MEMS-IMU was
evaluated for user convenience.

2.1. Evaluation and Analysis Work

Six monocular visual-inertial algorithms were compared on several computing-constrained,
single-board computers, and the accuracy of each algorithm, the time consumed per frame, and
the utilization of CPU and memory were evaluated [22]. Similarly, Jinwoo et al. [23] compared
the performance of nine visual(-inertial) odometry algorithms on different hardware platforms
(Jetson TX2, Xavier NX, and AGX Xavier), evaluated the CPU utilization, and corresponding pose
accuracy of each algorithm on each platform. Giubilato et al. [24] evaluated the performance of
the visual odometry algorithm on Jetson TX2 and revealed the robustness, CPU/GPU utilization,
frame rate, and so on. Alwin et al. [25] comprehensively evaluated and analyzed the performance
of five sensor fusion algorithms of heading estimation using smartphone sensors, such as LKF,
EKF, UKF, PF, and CF. These works are important for the selection of embedded platforms,
fusion performance, and software deployment. However, they are more aimed at comparing the
computing hardware and algorithms without considering the performance of the algorithms
with different IMU. The impact of IMU with different performances on the accuracy of VIO is
still blank.

2.2. Multi-IMUs Work

Three different IMU sensors were considered in [26,27], but they were mainly used to
improve the robustness of the state estimation. Kevin et al. [27] utilized the information
from multiple inertial measurement units in order to resile when one of them has sensor
failures. Without considering the impact of different levels of IMU on the system, the
authors in [28] exploited four IMUs and magnetometers with different positions to calculate
the angular velocity and velocity information. However, there is no more consideration
for the performance of IMU. In [29], Chao conducted a comparative investigation and
evaluation on some low-cost IMUs, but focused on the sensor packages and available
software solutions, and listed their specifications. The authors in [30] evaluated the accuracy
of the IMU in the two smartphones and the inertial sensor in XIMU at a yaw angle. The
IMU in the smartphone is MPU6500 and the IMU module is produced by BOSCH. XIMU
refers to the combination of IMU and AHRS. The specific model is not indicated. The two
IMUs used for comparison in this work are consumer IMUs, and the IMU with different
performance is not considered. In [31], the authors evaluated four orientation algorithms
(Madgwick, Mahony, EKF, TKF-Q) in the simulation environment. Nevertheless, this work
was carried out in the simulation environment, considering the noise and bias instability,
the veritable IMU will be affected by many factors, which cannot be represented in the
simulation environment, and these IMUs were not evaluated in the actual environment.
In [32], the authors carried out the evaluation of ZUPT, ZARU, and HDR algorithms which
focus on heading drift reduction in pedestrian indoor navigation with consumption level
IMU. In this work, the author focused on the error of the algorithm and did not analyze the
impact of different performance IMUs. In [33], the authors evaluated seven commercial
IMUs for persistent healthcare-related use cases. Through the analysis of the operating
environment, cost performance, battery life, memory size, and other specifications, the
selection criteria of IMU are obtained. This work considers more the convenience of these
modules in use, and the performance span of different IMUs is relatively small. They are
all assessed with consumer IMUs.
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Compared with the above-related work, they did not pay attention to the grade,
diversity of MEMS-IMU, and the impact of IMU on VIO fusion algorithms. In this paper,
we have chosen six representative IMUs with different performances from consumer-grade
to tactical grade for exploration and analysis.

3. Experiments and Methods

The specific framework of the experiment is shown in Figure 2. The hardware platform
was built as shown in Figure 2 first, including the mobile platform and multi-IMU camera
suite. Then, the sensors parameter configuration was conducted, including Allan’s analysis
of variance, temporal-spatial calibration between IMU and camera, etc. Next, the algorithm
was executed in the specified scene by controlling the hardware platform while recording
the RTK (Real-Time Kinematic) data as the ground truth at the same time. The localization
accuracy of RTK is ±(8 + 1 × 10−6 D) mm.

In order to explore the influence of IMU on sensor fusion accuracy, five kinds of
motion states were designed: slow, normal, fast, varying velocity, and spin move. In these
scenes, IMU has different levels of excitation to identify the IMU’s ability. For example, in
uniform velocity scenes, IMU’s incentive is small. However, IMU will be more motivated
in varying velocity and spin move scenes. At the same time, experiments in the strong
light environment with different motion states and weak texture special scenes which to
analyze the auxiliary effect of IMU were also carried out. In addition, the performance
of the fusion system with different IMUs under long-term running conditions that last
for 30 min was also explored. The specific scenes are shown in Table 1. The tightly-
coupled algorithm about Visual-Inertial Systems (VINS_Fusion [10,11]) was executed as
the evaluation framework. Firstly, feature detection [34] and tracking were carried out by
leveraging visual information. By preintegrating [35,36] the IMU information, the motion
constraints were built with regard to the timestamps of adjacent image frames. Then,
the initialization procedure was invoked by using feature information and preintegration
information, in order to maintain a constant amount of computing, the optimization
algorithm based on the sliding window was adopted. Finally, because the two types of
trajectories did not belong to the same coordinate, the alignment was carried out by an
iterative closest point algorithm (ICP) [37] and evaluated the absolute trajectory error (ATE)
of the corresponding experiment.

Table 1. Scenario sequences.

Normal Illumination Strong Illumination Corridor

uniform_velocity
(approximate) varying_velocity spin_move long_term slow, normal, fast,

varying_velocity,
spin_move

weak_
texture

slow normal fast alternating acceleration
and deceleration

spin_move
_forward 30 min

The ATE can be calculated by comparing the ground-truth value with the visual-
inertial odometry results. prtk

i represents the true position value of timestamp i, podo
i

expresses the position output of VIO, and Ei represents the ATE. As shown in the section
Appendix A, the RMSE, median, and mean statistical errors are calculated with ATE.
Through the rigid body transformation S composed of R and t, we can align the estimated
results to the real value. To solve S, we aligned the estimated trajectory with the RTK
trajectory using ICP [37].

Ei =
(

prtk
i

)−1
S
(

podo
i

)
(1)

RMSE(E1:n) =

(
1
n ∑n

i=1 ‖Ei‖2
)1/2

(2)

min
R,t

J =
1
2 ∑k

i=1 ‖
(

prtk
i −

(
Rpodo

i + t
) )
‖

2

2
(3)
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There is little drift for a period of time after the system starts executing, and the initial
trajectory segment is used for alignment. If the whole trajectory is used for alignment, the
error after a long time will be adjusted due to the transformation matrix S, giving rise to
inconsistency error. Here, our trajectory segment selects the first 70 data (k = 70) of the
whole trajectory, that is, data of the first 15 s. In the experiment, because the vehicle ran
on an approximate two-dimensional plane, we concentrated on the localization accuracy
in x, y directions. In a section of Appendix A, we summarized the comparison table of
algorithm errors in different scenarios.

3.1. Fusion Algorithm of VIO
3.1.1. System States

The vector states of the system include n + 1 pose state x in the sliding window and
m + 1 landmarks, where n represents the size of a sliding window.

Xsystem = [x0, x1, · · · , xn, λ0, λ1, · · · , λm] (4)

The pose state xk includes position, velocity, orientation, accelerometer bias, and
gyroscope bias.

xk =
[
pwbk

, vwbk
, qwbk

, ba, bg
]

(5)

(·)wbk
represents the state of body frame b with respect to the world frame w at time k. ba

and bg represent accelerometer bias and gyroscope bias respectively.

3.1.2. Visual Constraints

Using the extracted feature points, we can construct visual constraints. According to
the reprojection process of the camera, we can construct the error cost function, which is
called the reprojection error, and the error is expressed as the estimated value minus the
measured value:

rvisual =


xcj
zcj
− ucj

ycj
zcj
− vcj

 (6)

The
[

xcj ycj zcj

]T
represents the estimated value of the feature points of frame

ith projected to the jth frame camera coordinate system according to the transformation
matrix of T, the specific projection formula is shown below. The feature points of ith frame
are first transformed into the world coordinate system by the pose matrix of the ith frame,
and then the estimated value of the reprojection of these feature points under the jth frame
is obtained by the pose matrix of the jth frame, where 1

λ denotes the depth information.

The
[

ucj vcj

]T
represents the measurement value of the feature point in the jth frame in

the camera coordinate system.

3.1.3. Pre-integration of IMU

In the VIO algorithm, since the output frequencies of the camera and IMU are different,
the vision is generally about 30 Hz, and the IMU is generally about 200 Hz. To match each
other between image and IMU measurements, we need to preintegrate the information
of IMU. The IMU pre-integration changes the reference coordinate system to the body
coordinate system of the previous frame rather than the world frame. This information is
regarded as the motion constraint provided by the IMU.
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Through the pre-integration [35,36], the following motion constraints can be constructed:

rIMU =


rp
rq
rv
rba

rbg

 =



qbiw

(
pwbj
− pwbi

− vw
i ∆t + 1

2 gw∆t2
)
− αbibj

2
[
qbjbi
⊗ qbiw ⊗ qwbj

]
im

qbiw

(
vw

j − vw
i + gw∆t

)
− βbibj

ba
j − ba

i
bg

j − bg
i


(7)

αbibj
, βbibj

, qbibj
represents the pre-integration measurement and [q]im represents the imag-

inary part of a quaternion q. Through this step, we obtain a constraint on the IMU pre-
integration information to constrain the state between two moments. For example, pwbj

and pwbi
denote the position of moment ith and moment jth respectively. The position

state is one of the system states.

3.1.4. Nolinearity Optimization

When the respective cost functions are constructed, we use the nonlinear optimization
algorithm to jointly optimize the objective function (14). This objective function contains
three residual terms, namely, the prior constraint with marginalization information, the
IMU pre-integration measurement constraint, and the visual reprojection constraint.

3.2. Mobile Platform Setup

Figure 2 shows the mobile platform used in the experiment. It is equipped with
five modules.

3.3. Sensor Setup

The MEMS-based IMU is becoming more and more precise, reliable, and rugged,
indicating a great future potential as the MEMS technology continues to be developed. In
addition, it has a smaller size, weight, lower cost, and power and is an ideal choice for
UAVs, unmanned vehicles, wearable devices, and many other applications. Considering
that most fusion scenarios require lightweight hardware systems, the MEMS IMU has
gradually become the mainstream. The six different IMUs we selected in the paper are all
based on MEMS.

In terms of performance and usage scenarios, IMU is divided into four categories [29,33].
The first is the navigation grade, which is mainly used in spacecraft, aircraft, ships, missiles,
and other rugged demand occasions. The second is the tactical grade, which is mainly used
for UAV navigation and localization, smart munitions, etc. It is the most diverse and has
smaller footprints and lower cost than the navigation grade. The third is the industrial
grade, mainly used in industrial equipment, industrial robots, and other fields. The last is
consumer-grade. IMU of this grade is a common occurrence, which is mainly used in mobile
phones, wearable devices, motion-sensing games, and so on.

In the experiment, we developed six IMUs with different performances, and all were
rigidly mounted on the circuit board as shown in Figure 3. Two of them are classified
into consumer-grade IMU (À MPU6050, Á HI219) and four of them are classified into
tactical grade IMU (Â NV-MG-201, Ã ADIS16488, Ä ADIS16490, Å MSCRG). The module of
MPU6050 is very prevailing and easy to access in the community. The nominal performance
is the worst, and the price is only $1. The module of HI219, which costs $20, has been
processed by the manufacturer. Many internal specifications and parameters are unknown
because of the internal processing. NV-MG-201 is a tactical IMU and costs $500. The
next is the two tactical products of the ADI manufacturer. The accuracy of ADIS16488
is slightly lower than ADIS16490. ADIS16488 costs $2500 and ADIS16490 costs $3000.
The last IMU module named MSCRG is composed of a gyroscope from Japan and an
accelerometer from Switzerland. MSCRG IMU offers high immunity to vibration and shock
because of the unique resonating cos2θ ring structure for the gyroscope and is the best in
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class capacitive bulk MEMS accelerometer, and costs $3500. Table 2 shows the nominal
specification parameters provided by the manufacturer within the six IMUs. Apart from
these IMU modules, the binocular camera with the type of Æ RealSense D435i was used to
obtain the image data.
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Tactical MSCRG
Acc ±30 g 200 Hz 45 µg 3.6 mg 0.3% 0.0572 mg/LSB

3000Gyro ±300◦/s 75 Hz \ 0.07◦/s 0.15% 0.03125◦/s/LSB

Tactical ADIS16490
Acc ±8 g 750 Hz 3.6 µg ±3.5 mg 1.6% 0.5 mg/LSB

3500Gyro ±100◦/s 480 Hz 1.8◦/h 0.05◦/s 0.3% 0.005◦/s/LSB

3.4. Sensors Parameter Configuration
3.4.1. Calibration of MEMS-IMUs

Allan variance is widely applied to evaluate the noise parameters of IMU [38,39]. We
used the open-sourced tool kalibr_allan [40] to analyze Allan’s deviation of each IMU. The
Allan curve was plotted in Figure 4, and the Allan result was summarized in Table 3. If bias
stability is taken as the evaluation standard, their accelerometer performance ranking from
low to high is roughly: ADIS16488, HI219, MPU6050, NV-MG-201, MSCRG, ADIS16490.
For gyroscopes, the ranking is ADIS488, MSCRG, MPU6050, ADIS16490, NV-MG-201, and
HI219. In addition, there is no strong correlation with price. Although there is no strict
standard, the tactical IMU has lower bias stability. Surprisingly, as a consumer-grade HI219
gyroscope, it has the lowest bias stability.

In-run bias stability, often called the bias instability, is an indication of how the bias will
drift during a period of time at a certain temperature and is a considerable characterization
parameter. For bias repeatability, it represents the dispersion of the sensor’s bias at each
powerup. How similar is the bias at each powerup of IMU? Because the thermal, physical,
electrical, etc., will not be exactly the same during each powerup, there will be fluctuations
in the bias. If the bias repeatability is greater, the bias consistency is worse and will affect
the accuracy of the system. The inertial navigation system can estimate the bias after each
powerup. The noise represents the measurement noise of the sensor. Wiener process is
usually used to model the process of bias changing continuously with time, which is called
bias random walk. The noise and bias random walk constitute the diagonal covariance
matrix of the sensor noise term.
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Table 3. Experimental calibration results of MEMS-IMUs.

Accelerometer Gyroscope

IMU Type Noise Bias Stability Bias Random Walk Noise Bias Stability Bias Random Walk

MPU6050 0.000995 0.00035 0.000053 0.000048 0.000012 0.000001

HI219 0.001420 0.00040 0.000043 0.000005 5.00 × 10-7 0.000001

NV-MG-201 0.000508 0.00028 0.000028 0.000014 7.00 × 10-7 0.000001

ADIS16488 0.002999 0.00060 0.000014 0.000252 0.000034 0.000001

ADIS16490 0.000378 0.000034 0.000005 0.000051 8.00 × 10-6 0.000001

MSCRG 0.000701 0.00015 0.000040 0.000205 1.80 × 10-5 0.000013

Due to the incompleteness of the IMU measurement model, the parameters above
cannot be directly used in the configuration parameters of VINS-Fusion after discretization,
otherwise, the trajectory will drift. We appropriately enlarge and adjust the discretized
parameters to obtain their configuration parameters. To control the variables in the experi-
ment and consider only the different performances of IMUs, we average the configuration
parameters and obtained a common configuration parameter. In this way, only the impact
of IMU on the fusion algorithm is considered. The common configuration parameters are
acc_ n(0.170), gyr_ n(0.014), acc_ w(0.008), gyr_ w(0.00042).

3.4.2. Camera-IMU Temporal-Spatial Calibration

The off-line calibration of cameras and IMU is a widely studied problem. In order to
effectively fuse visual information with IMU information, we need to unify the camera
and IMU into a certain coordinate system, that is, the spatial calibration of the camera
and IMU. Spatial calibration bridges the gap between the data in different coordinate
systems. In addition, since the camera and IMU are triggered separately under different
clock sources, and there are problems such as transmission delay and CPU overload, it
is necessary to correct the time offset between the camera and IMU. We exploited the
open-sourced calibration tool Kalibr [41,42] to obtain the spatial transformation. As to
the time offset error between IMU and cameras, we enabled the VINS_ Fusion’s online
calibration algorithm [43].
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3.4.3. Sensors Frequency

For the sake of experimental consistency, the output frequency of the six IMUs was
uniformly set to 200 Hz and the frequency of the camera was 30 Hz. In addition, the
resolution of the left and right images was 640× 480.

3.4.4. Loop Closure

In the experiment, the goal was to explore the fusion of vision and inertial inde-
pendently. In consideration of the visual loop would calibrate the accumulated error,
loop-closure detection was not enabled here.

3.5. Evaluation Scenario
3.5.1. Weak Texture in Corridor

We chose the corridor as the test scenario, walked straight for a distance, and returned
the same way. There was a weak texture area as shown in Figure 5 at the corner, which
lasted for 0.5 s. From Figure 6, it can be found that the IMU’s assistance makes the track
coincide, and only the camera will directly give the wrong track.

Micromachines 2022, 13, x FOR PEER REVIEW 10 of 23 
 

 

In addition, since the camera and IMU are triggered separately under different clock 

sources, and there are problems such as transmission delay and CPU overload, it is nec-

essary to correct the time offset between the camera and IMU. We exploited the open-

sourced calibration tool Kalibr [41,42] to obtain the spatial transformation. As to the time 

offset error between IMU and cameras, we enabled the VINS_ Fusion’s online calibration 

algorithm [43]. 

3.4.3. Sensors Frequency 

For the sake of experimental consistency, the output frequency of the six IMUs was 

uniformly set to 200 Hz and the frequency of the camera was 30 Hz. In addition, the reso-

lution of the left and right images was 640 ×  480. 

3.4.4. Loop Closure 

In the experiment, the goal was to explore the fusion of vision and inertial inde-

pendently. In consideration of the visual loop would calibrate the accumulated error, 

loop-closure detection was not enabled here. 

3.5. Evaluation Scenario 

3.5.1. Weak Texture in Corridor 

We chose the corridor as the test scenario, walked straight for a distance, and re-

turned the same way. There was a weak texture area as shown in Figure 5 at the corner, 

which lasted for 0.5 s. From Figure 6, it can be found that the IMU’s assistance makes the 

track coincide, and only the camera will directly give the wrong track. 

 

Figure 5. Weak texture in corridor. 

 

Figure 6. The trajectory with and without IMU auxiliary in weak texture. 

  

Figure 5. Weak texture in corridor.

Micromachines 2022, 13, x FOR PEER REVIEW 10 of 23 
 

 

In addition, since the camera and IMU are triggered separately under different clock 

sources, and there are problems such as transmission delay and CPU overload, it is nec-

essary to correct the time offset between the camera and IMU. We exploited the open-

sourced calibration tool Kalibr [41,42] to obtain the spatial transformation. As to the time 

offset error between IMU and cameras, we enabled the VINS_ Fusion’s online calibration 

algorithm [43]. 

3.4.3. Sensors Frequency 

For the sake of experimental consistency, the output frequency of the six IMUs was 

uniformly set to 200 Hz and the frequency of the camera was 30 Hz. In addition, the reso-

lution of the left and right images was 640 ×  480. 

3.4.4. Loop Closure 

In the experiment, the goal was to explore the fusion of vision and inertial inde-

pendently. In consideration of the visual loop would calibrate the accumulated error, 

loop-closure detection was not enabled here. 

3.5. Evaluation Scenario 

3.5.1. Weak Texture in Corridor 

We chose the corridor as the test scenario, walked straight for a distance, and re-

turned the same way. There was a weak texture area as shown in Figure 5 at the corner, 

which lasted for 0.5 s. From Figure 6, it can be found that the IMU’s assistance makes the 

track coincide, and only the camera will directly give the wrong track. 

 

Figure 5. Weak texture in corridor. 

 

Figure 6. The trajectory with and without IMU auxiliary in weak texture. 

  

Figure 6. The trajectory with and without IMU auxiliary in weak texture.

3.5.2. Uniform Velocity Motion State

In these experiments, due to the high-precision RTK ground truth can be provided
outdoors, we selected the environment as shown in Figure 7 for evaluation. There were
three uniform velocity motion modes: slow, normal, and fast, and they moved for 300,
200, and 120 s, respectively. To maintain experimental consistency, each motion state was
evaluated five times. One of the trajectory diagrams and ATE diagrams are drawn as shown
in Figure 8.
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Figure 8. The trajectory of uniform velocity motion state (slow, normal, fast): 6050, 100, nv, 16488, 16490,
and mscrg represent MPU6050, HI219, NV−MG−201, ADIS16488, ADIS16490, and MSCRG, respectively.
The left represents the ground truth trajectory and the output trajectory of visual−inertial odometry
which is based on six different IMU (The x−axis and y−axis represent the 2D plane in the experimental
environment). The right represents the ATE results for VIO. (The x−axis and y−axis represent the running
timestamp and error, respectively.) (Other similar result graphs also follow this rule).
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3.5.3. Alternating Acceleration and Deceleration Motion State

In this scenario, the wheeled robot ceaselessly kept accelerating and decelerating
in order to motivate IMU. Figure 9 plots the trajectory and the ATE error. Similarly, to
maintain experimental consistency, this motion state was evaluated five times. It can be
clearly reported that MPU6050 has a poor performance and larger drift.
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Figure 9. The trajectory of varying velocity motion state.

3.5.4. Spin Move Forward Motion State

In this case, the wheeled robot moved forward with frequent rotation in order to
motivate IMU. The trajectory shown in Figure 10 can reflect this movement. This motion
was evaluated eleven times due to the complexity of the motion state. In this case, MPU6050
is easy to crash due to rapid rotation.
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Figure 10. The trajectory of the spin move forward motion state. The waveform trajectories can
reflect this motion state.

3.5.5. Strong Sun Light Scene

In this scene, the situation in a strong illumination environment was evaluated. As
shown in Figure 11, there was obviously strong light in the environment. A cross-over study
to evaluate the performance of different motion states under strong light was conducted.
The trajectory under the variable speed scene is chosen as shown in Figure 12.
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3.5.6. Long Term Scene

In long-term test experiment, which included three forms of motion: constant speed,
variable speed, and spin move, was performed for 30 min. The trajectory is shown in
Figure 13. From Table 4, the HI219 IMU improved the localization accuracy of the fusion
system, while other IMUs deteriorated the accuracy of the system.
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Table 4. The ATE results for the long-term scene with six different MEMS-IMUs.

Long Term MPU6050 HI219 NV-MG-201 ADIS16488 ADIS16490 MSCRG

Long_term
Mean 5.72/3.9934 3.5327/4.0316↑ Fail 5.5085/4.0496 6.4623/4.0012 5.7496/3.9860

Median 4.5199/2.7960 2.6263/2.8203↑ Fail 4.9339/2.8902 7.1918/2.8369 5.6274/2.8210
RMSE 7.4087/5.5448 4.2584/5.6121↑ Fail 6.3012/5.5689 7.8725/5.5018 6.5565/5.4862

4. Results and Analysis

Through the preceding experiments and according to Tables A1–A6 in Section of
Appendix A, we summarize the votes of accuracy improvement of each IMU as shown in
Table 5. If an IMU improved the accuracy the most in an evaluation scenario, we would
vote for this IMU and count the votes. For example, among the fifteen evaluations in
uniform velocity scenes, the ADIS16488 performed best only once in the six IMUs. As for
ADIS16490, the best performance was three times.

Table 5. The votes for all scenarios with six different MEMS-IMUs.

Scenarios Number of
Experiments MPU6050 HI219 NV-MG-

201 ADIS16488 ADIS16490 MSCRG

Uniform_velocity
(approximate) 15 3 0 4 1 3 0

Varying_velocity 5 0 0 0 1 2 1

Spin_move 11 0 3 0 2 1 3

Strong_illumination 7 1 3 0 2 1 0

Long_term 1 0 1 0 0 0 0

Some results are revealed based on the evaluation: (1) In the weak texture scenario
over short time intervals, the localization posture is significantly improved with the aid
of IMU, and only leveraging the camera will be defeated because of the absence of visual
constraints. (2) The IMU’s incentive is relatively small in the nearly constant speed scenario,
there is no salient difference between IMUs with different performances, consumer IMUs
will also perform well, and better IMUs do not show more visible advantages. (3) In the
case of varying speed scenarios, the assistance of an accelerometer is needed. The IMU
with the excellent specification of bias stability has better performance, such as ADIS16490
and MSCRG. (4) In the spin move situation, the gyroscope is needed. At this time, the
HI219 and MSCRG have better results. (5) These performance trends are maintained in the
cross experiments facing a strong sunlight environment. (6) In the 30 min long-term test,
only the HI219 improves the odometry accuracy of the fusion system. Among these results,
it is surprising that HI219, as a consumer-grade also has a good performance.

4.1. Turntable Test

In order to make the results clearer, the professional multiaxial turntable as shown in
Figure 14 was used to uniformly measure the angular velocity of the six IMUs. As can be
seen from Figure 15a, the output of HI219 is always maintained at zero when the angular
velocity is less than 0.83◦/s, there is a threshold to perceive the rotational motion, while
other sensors output their perceived angular velocity although the value is amiss. For
example, when the robot is stationary, orientation will not drift due to the zero-bias of the
gyroscope. This phenomenon makes HI219 bring less drift and results in the lowest bias
stability of the gyroscope as shown in Figure 4b. In addition, when the angular velocity
is greater than 16◦/s, except mpu6050, the rest IMUs’ error has been reduced to less than
9%, and their error discrimination is very small as shown in Figure 15b, resulting in the
algorithm error between them not being very remarkable.
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Figure 15. The results of multiple IMUs on turntable: (a) Description of six MEMS-IMUs angular
velocity test results with a multiaxial turntable; (b) Description of Z-axis angular velocity absolute
error of six MEMS-IMUs.

It should be noted that the triaxial gyroscope sensor is actually composed of triaxial
identical gyroscopes placed in orthogonal directions, hence the rotation of the gyroscope
around the Z-axis was measured, and there are more cases around the gravity direction
in-plane motion.

4.2. Quantitative Analysis

The measurement model of the accelerometer and gyroscope is given follows:

w̃b = wb + bg + ng (8)

ãb = qbw(aw + gw) + ba + na (9)

w̃b and ãb represent the measurements of the gyroscope and accelerometer, respectively.
wb and aw represent the ideal value of the gyroscope and accelerometer, respectively. Due
to various factors, measurements are affected by gyroscope bias bg, acceleration bias ba, and
noise n. In addition, we assume that the noise in gyroscope and acceleration measurements
are Gaussian, that is, ng ∼ N

(
0, σ2

g

)
, na ∼ N

(
0, σ2

a
)
. As for the bias, gyroscope bias
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and acceleration bias are modeled as a random walk, whose derivatives are gaussian,
nbg ∼ N

(
0, σ2

bg

)
, nba ∼ N

(
0, σ2

ba

)
, so we can obtain:

.
b

g
= nbg (10)

.
b

g
= nbg (11)

We can obtain the above four noise coefficients (ng, na, nbg , nba ) through the Allan
analysis in Section 3.4.1. These configuration parameters constitute the noise covariance
matrix Q:

Q =



σ2
a 0 0

0 σ2
g 0

0 0 σ2
a

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

σ2
g 0 0

0 σ2
ba

0
0 0 σ2

bg


(12)

We can update the covariance matrix of pre-integration by the transition matrix F, V,
and noise matrix Q, see Appendix B for specific elements of F and V:

Pk+1 = FPkFT + VQVT (13)

Similarly, there is a covariance matrix for visual information. These covariance matrices
represent the noise of IMU information and visual information. We can optimize the system
state X through the following cost function:

robj = min
{
‖rp − JpX‖2 + ‖rIMU

(
ZIMU , X

)
‖

2

pIMU
+ ‖rvisual

(
Zvisual , X

)
‖

2

Pvisual

}
(14)

It should be noted that through the covariance matrix PIMU and Pvisual , the Euclidean
distance is converted into Mahalanobis distance. It fixes the problem of inconsistent and
related dimensions in European distance. Although the information is very different
between the IMU and visual, they can be optimized in the same cost function (14) through
Mahalanobis distance. In this way, the residual information of IMU and visual is statistically
equivalent to each other. For visual information, it is consistent throughout the evaluation
experiment, so only IMU information affects the accuracy of visual-inertial odometry.

Through the algorithm evaluation results in Tables A1–A6 in the section of Appendix A,
we summarized the accuracy of the localization improved by adding IMU and obtained
the improvement under the following four main motion scenes just as shown in Table 6.

Table 6. Improvement of average localization accuracy after adding IMU in different scenarios.
Unit: m (we considered the situation of improvement of accuracy. Each item represents accuracy
improvement in the situation of IMU auxiliary relative to the situation of only visual localization. For
example, the auxiliary of MPU6050 improves the accuracy in uniform scenes by 0.1031 m).

Scenes MPU6050 HI219 NV-MG-201 ADIS16488 ADIS16490 MSCRG

Uniform_velocity 0.1031 0.1019 0.1692 0.0927 0.0783 0.0955

Varying_velocity 0.0432 0.0000 0.0000 0.1874 0.1952 0.1477

Spin_move 0.1895 0.7093 0.0000 0.1874 0.1762 0.8175

Strong_illumination 0.1368 0.1769 0.0386 0.1634 0.1619 0.1381

Combined with quantitative results, in the uniform velocity situation, the lifting
amplitude of each IMU is in the range of 0.1 m. In the varying velocity situation, the IMU
produced by ADI has increased the most, which is better than MPU6050 in this scenario.
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In spin move situations, because of the special processing of HI219 and the superiority of
the MSCRG structure, the accuracy is greatly improved by their assistance. In the strong
illumination situation, there is little difference between them. Except for NV-MG-201,
the lifting effect of different IMUs is 0.15m. The most expensive IMU is 2.5 cm higher in
accuracy than the cheapest one.

In summary, the improvement of fusion accuracy with different grade MEMS-IMU is
limited in these experimental scenarios, the consumer-grade IMU can also have an excellent
result. The improvement of accuracy depends more on the algorithm.

As shown in formula (14), if the measurement noise of IMU is smaller, the theoretical
accuracy will be higher. However, when the difference in measurements between these
IMU is small, the difference in residual information between them is smaller. Due to the
weighting effect in formula (14), this results in limited differences in accuracy.

5. Conclusions

In general, there are many internal and external factors that affect the IMU. We can
obtain the representative parameters through the Allan variance method to quantitatively
analyze the performance of IMU. However, the method cannot represent all performance
in actual applications. In this paper, many scenario experiments were conducted, and
the professional turntable was employed to analyze the error of six IMUs. The following
conclusions are reached:

The assistance of IMU can improve the accuracy of multi-sensor fusion, and is more
notable in weak texture scenes. In the constant speed scene, there is no obvious difference
between IMUs with different performances. Under the excitation of rotation, acceleration,
and deceleration, IMUs with excellent performance will have higher accuracy and are more
stable. Owing to the lower bias stability and noise, making their performance more robust.
The improvement of fusion accuracy is not directly proportional to the price with regard
to the expensive ADIS16490 IMU, even so, it is more versatile in various scenarios. For
HI219, a consumer IMU, there is a threshold for sensing rotation motion, performing well
in rotation scenes, which may provide a reference for the processing of the algorithm. At
the same time, according to the MSCRG IMU results, IMU with resistance to vibration and
impact is more needed in the situation of frequently strenuous movement.

Author Contributions: Conceptualization, X.Z.; methodology, Y.L.; software, Y.L. and S.Z.; vali-
dation, X.Z.; formal analysis, Y.L.; investigation, Y.L.; resources, X.Z.; data curation, Y.L. and P.C.;
writing—original draft preparation, Y.L.; writing—review and editing, X.Z. and Z.L.; supervision,
Z.L.; project administration, X.Z.; funding acquisition, X.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was partially funded by the Key Research Program of Frontier Science, CAS.
(Grant No. ZDBS-LY-JSC028) and the National Natural Science Foundation of China (Grant No.
61971399).

Acknowledgments: The authors would like to thank Kunfeng Wang for his efforts with MEMS
analysis and PengCheng Zheng, and Haifeng Zhang for assistance with the experimental operation
and analysis. Thanks to everyone who helped us in our work.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

This appendix records the absolute trajectory error (ATE) results evaluated under each
scenario. Each column represents different IMUs, and each row represents the algorithm
accuracy including mean, median, and RMSE about ATE. Each cell represents the error
results with IMU assistance and without IMU assistance (0.9124/1.1250 ↑). The bold repre-
sents that the accuracy has been improved with the aid of IMU. The symbol ↑ represents
the IMU with the greatest accuracy improvement in this evaluation. We vote for the IMU
through the symbol and make statistics according to the number of votes.
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Appendix A.1. Uniform Scene

Table A1. The algorithm errors for slow velocity scene with six different MEMS-IMUs. (Bold indicates
that the accuracy was improved compared with using only visual information.)

Slow ATE MPU6050 HI219 NV-MG-201 ADIS16488 ADIS16490 MSCRG

Slow0
Mean 0.9124/1.1250 ↑ 1.0151/1.1772 0.9344/1.1129 0.9871/1.0713 0.9177/1.0534 0.8240/1.0076

Median 1.0192/1.2815 ↑ 1.1606/1.3546 1.0385/1.2773 1.0562/1.2002 0.9499/1.1479 0.7879/1.0531
RMSE 1.0501/1.3076 ↑ 1.181/1.3814 1.0769/1.2943 1.1458/1.2414 1.0694/1.2269 0.9571/1.1748

Slow1
Mean 0.9982/0.9895 0.9016/1.0130 2.4118/0.9948 0.9532/0.9619 0.7919/0.9347 ↑ 0.9319/0.8955

Median 1.1267/1.1155 0.9185/1.1656 2.0879/1.1279 1.0373/1.0720 0.7604/1.0316 ↑ 1.0083/0.9740
RMSE 1.196/1.1951 1.0977/1.2237 3.0902/1.2027 1.1436/1.1628 0.9512/1.1286 ↑ 1.1177/1.0811

Slow2
Mean 0.8791/0.9547 1.082/0.9788 0.7747/0.9659 ↑ 0.9614/0.9266 0.8861/0.8967 0.8562/0.8535

Median 0.9678/1.0318 1.1646/1.0415 0.8479/1.0376 ↑ 0.9768/1.0005 0.9715/0.9713 0.901/0.9153
RMSE 1.0553/1.1400 1.3208/1.1690 0.9664/1.1542 ↑ 1.1714/1.1048 1.0685/1.0664 1.0334/1.0132

Slow3
Mean 1.0825/1.1577 ↑ 1.1673/1.1765 1.1591/1.1613 1.1518/1.1288 1.1141/1.1078 1.0253/1.0660

Median 1.0354/1.0487 ↑ 1.1027/1.0637 1.0527/1.0424 1.0396/1.0171 1.0445/1.0383 1.0080/0.9922
RMSE 1.3088/1.4197 ↑ 1.4243/1.4455 1.442/1.4278 1.3992/1.3878 1.3479/1.3576 1.2503/1.3082

Slow4
Mean 1.0988/1.0994 1.1458/1.1457 1.1683/1.1205 1.1014/1.0757 1.0066/1.0275 0.9774/0.9730

Median 1.2009/1.2267 1.2493/1.2761 1.3026/1.2539 1.1807/1.1815 1.1067/1.1086 1.0918/1.0319
RMSE 1.2709/1.2743 1.331/1.3305 1.3542/1.3006 1.2814/1.2486 1.1631/1.1923 1.1341/1.1300

Table A2. The algorithm errors for normal velocity scene with six different MEMS-IMUs.

Normal ATE MPU6050 HI219 NV-MG-201 ADIS16488 ADIS16490 MSCRG

Normal0
Mean 0.9012/0.9403 0.9512/0.9569 0.8939/0.9518 ↑ 0.9365/0.9214 0.9244/0.8931 0.8449/0.8592

Median 1.0108/1.0967 1.0405/1.1298 0.9690/1.1193 ↑ 0.9933/1.0597 0.9363/0.9941 0.8833/0.9112
RMSE 1.0628/1.1203 1.1431/1.1423 1.0515/1.1363 ↑ 1.1215/1.0987 1.1086/1.0650 1.0133/1.0267

Normal1
Mean 1.008/0.9150 1.0002/0.9375 1.3758/0.9261 1.1672/0.8910 1.0215/0.8685 0.8925/0.8311

Median 1.0307/0.9896 0.9848/1.0287 1.2971/0.9995 1.1925/0.9519 1.0452/0.9204 0.8556/0.8462
RMSE 1.1937/1.0577 1.1769/1.0795 1.6474/1.0696 1.383/1.0324 1.2145/1.0143 1.0726/0.9770

Normal2
Mean 1.1009/1.1163 1.1184/1.1337 1.8117/1.1198 1.0196/1.0886 ↑ 1.1002/1.0666 1.0511/1.0275

Median 1.2592/1.3108 1.2650/1.3211 1.7949/1.3030 1.0272/1.2722 ↑ 1.2695/1.2555 1.2361/1.2060
RMSE 1.2867/1.3038 1.3064/1.3262 2.1023/1.3094 1.1777/1.2700 ↑ 1.2763/1.2417 1.2189/1.1940

Normal3
Mean 1.094/1.0652 1.2055/1.0787 2.2835/1.0662 1.0922/1.0416 1.1508/1.0278 1.0364/1.0003

Median 1.1548/1.0851 1.2595/1.0977 1.5083/1.0815 1.0228/1.0473 1.1174/1.0257 0.9945/0.9829
RMSE 1.2522/1.2151 1.3812/1.2291 3.0337/1.2164 1.2712/1.1904 1.3275/1.1778 1.1962/1.1522

Normal4
Mean 1.0675/1.1392 1.0915/1.1223 0.8973/1.1497 ↑ 1.078/1.1115 1.0762/1.0801 0.9196/1.0357

Median 1.1940/1.1446 1.2174/1.1190 1.0327/1.1515 ↑ 1.1788/1.1033 1.1431/1.3724 0.9527/1.0138
RMSE 1.2755/1.3698 1.3080/1.5011 1.0475/1.3830 ↑ 1.3186/1.3383 1.3034/1.3004 1.0934/1.2487

Table A3. The algorithm errors for fast velocity scene with six different MEMS-IMUs.

Fast ATE MPU6050 HI219 NV-MG-201 ADIS16488 ADIS16490 MSCRG

Fast0
Mean 0.9561/1.0820 0.9762/1.1100 4.9392/1.0902 0.8968/1.0514 0.8359/1.0234 ↑ 0.8661/0.9850

Median 0.9923/1.1120 1.0133/1.1815 4.8637/1.1358 0.8401/1.0587 0.8179/1.0049 ↑ 0.8228/0.9544
RMSE 1.1026/1.2503 1.1461/1.2789 6.156/1.2576 1.0471/1.2152 0.9937/1.1875 ↑ 1.0135/1.1462

Fast1
Mean 1.6826/1.1371 1.5799/1.1523 5.346/1.1433 1.1282/1.1127 1.1426/1.0887 1.3559/1.0530

Median 1.8629/1.2633 1.6132/1.2948 5.7653/1.2849 1.1536/1.2200 1.0826/1.1825 1.5837/1.1135

RMSE 1.974/1.3432 1.8504/1.3582 6.4123/1.3509 1.3272/1.3150 1.3627/1.2873 1.5819/1.2470

Fast2
Mean 1.1355/1.0110 1.2949/1.0426 3.7447/1.0228 0.9974/0.9864 0.9028/0.9466 ↑ 1.0003/0.9087

Median 1.2935/1.0741 1.3555/1.1110 4.0317/1.0989 1.0213/1.0229 0.8274/0.9488 ↑ 1.0575/0.8987
RMSE 1.349/1.1764 1.5494/1.2102 4.5396/1.1893 1.1687/1.1504 1.0330/1.1087 ↑ 1.1613/1.0701
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Table A3. Cont.

Fast ATE MPU6050 HI219 NV-MG-201 ADIS16488 ADIS16490 MSCRG

Fast3
Mean 0.6902/0.8320 ↑ 0.8223/0.8551 1.1044/0.8403 1.078/0.8108 1.6313/0.7893 0.766/0.7615

Median 0.7204/0.7722 ↑ 0.7826/0.8011 0.8646/0.7838 0.9344/0.7538 1.513/0.7444 0.7928/0.7227
RMSE 0.8458/0.9759 ↑ 0.9655/0.9997 1.3657/0.9853 1.3591/0.9558 1.9245/0.9354 0.8762/0.9094

Fast4
Mean 0.8369/0.8511 0.9637/0.8636 0.7259/0.8507 ↑ 1.2174/0.8262 0.9624/0.8154 0.7646/0.7957

Median 0.8422/0.9188 0.8478/0.9566 0.7117/0.9280 ↑ 1.0523/0.8803 0.8593/0.8364 0.7640/0.8134
RMSE 0.9892/0.9900 1.0377/1.0045 0.8949/0.9897 ↑ 1.4716/0.9606 1.1077/0.9503 0.9042/0.9314

Appendix A.2. Alternating Acceleration and Deceleration

Table A4. The algorithm errors for varying speed scene with six different MEMS-IMUs.

Varying ATE MPU6050 HI219 NV-MG-201 ADIS16488 ADIS16490 MSCRG

Vary0
Mean 3.1442/0.8565 0.9675/0.8804 1.8236/0.8614 0.8628/0.8271 0.6212/0.7974 ↑ 0.6321/0.7578

Median 2.5754/0.9286 1.0943/0.9876 1.6019/0.9516 0.9879/0.8873 0.5668/0.8196 ↑ 0.6858/0.7547
RMSE 4.0895/0.9926 1.1185/1.0199 2.231/0.9974 1.0088/0.9577 0.7329/0.9255 ↑ 0.7222/0.8818

Vary1
Mean 0.7834/0.8052 0.9755/0.8242 2.3572/0.8106 0.7476/0.7821 0.8797/0.7497 0.6229/0.7410 ↑

Median 0.7256/0.7473 1.0616/0.8000 1.9911/0.7621 0.6495/0.7188 0.8082/0.6774 0.5938/0.6674 ↑
RMSE 0.9223/0.9398 1.1345/0.9642 3.0779/0.9472 0.8692/0.9180 1.0088/0.8914 0.7273/0.8898 ↑

Vary2
Mean 0.9991/0.8205 1.0003/0.8398 2.2953/0.8252 0.9603/0.7957 0.981/0.7751 0.7688/0.7450

Median 0.8234/0.8659 0.9777/0.9120 1.8541/0.8803 1.0685/0.8254 0.9861/0.7926 0.8802/0.7519
RMSE 1.2706/0.9907 1.2199/1.0138 3.0457/0.9972 1.1727/0.9611 1.2231/0.9373 0.9312/0.9032

Vary3
Mean 0.9397/0.8479 0.9267/0.8602 1.8007/0.8501 0.5774/0.8259 ↑ 0.7250/0.8224 0.7491/0.7976

Median 0.9734/1.0072 1.056/1.0121 1.7407/0.9996 0.6014/0.9764 ↑ 0.7392/0.9433 0.7941/0.8830
RMSE 1.1398/1.0319 1.123/1.0467 2.2473/1.0348 0.6782/1.0042 ↑ 0.8334/1.0028 0.8507/0.9718

Vary4
Mean 0.7687/0.8249 0.8873/0.8399 1.5669/0.8287 0.8343/0.8034 0.6626/0.7892 ↑ 0.7768/0.7647

Median 0.8952/0.8233 0.8828/0.8683 1.4704/0.8313 0.8051/0.7883 0.6469/0.7745 ↑ 0.815/0.7513
RMSE 0.9163/0.9852 1.0959/1.0021 1.919/0.9896 0.9668/0.9599 0.7201/0.9438 ↑ 0.9554/0.9158

Appendix A.3. Spin Move forward

Table A5. The algorithm errors for a spin move forward scene with six different MEMS-IMUs.

Spin_move ATE MPU6050 HI219 NV-MG-201 ADIS16488 ADIS16490 MSCRG

Spin_move0
Mean 9.3128/1.3158 0.8370/1.3188 Fail/1.3027 0.6069/1.2982 ↑ 0.6830/1.2838 Fail/1.2548

Median 7.5538/1.4859 0.9094/1.4970 Fail/1.4748 0.6195/1.4543 ↑ 0.6371/1.4289 Fail/1.4066
RMSE 11.8427/1.4396 0.9383/1.4431 Fail/1.4252 0.6891/1.4192 ↑ 0.7805/1.4044 Fail/1.3735

Spin_move1
Mean 514.9947/1.1230 1.1685/1.1024 3537/1.0896 1.4894/1.1359 1.9135/1.0979 0.9042/1.1532 ↑

Median 464.7805/1.0073 1.2253/1.0144 2783/1.0117 1.4236/1.0003 1.6958/0.9978 0.7804/1.0180 ↑
RMSE 686.0213/1.3204 1.3792/1.2997 4827/1.2765 1.6514/1.3381 2.2048/1.2858 1.0620/1.3512 ↑

Spin_move2
Mean 2463/2.4171 1.9738/2.3948 ↑ 3853/2.4889 5.6023/2.3980 10.8429/2.4722 98.577/2.3734

Median 1842/2.4354 2.3318/2.3874 ↑ 3004/2.4396 5.8112/2.3848 11.944/2.3987 144.8365/2.4576
RMSE 3502/2.8896 2.3169/2.8421 ↑ 5261/3.0017 6.1396/2.8688 12.4/3.0149 117.7245/2.8578

Spin_move3
Mean 762.9145/4.8219 5.7136/4.9950 1831/4.8104 211.801/3.9853 187.2453/4.6046 4.0960/4.7584 ↑

Median 1024/4.6508 6.3944/4.9114 1795/4.6099 296.713/4.1932 254.9551/4.3790 4.3375/4.7746 ↑
RMSE 938.5596/5.3919 6.1691/5.5646 2412/5.3985 247.016/4.1072 217.4266/5.1701 4.5292/5.3275 ↑

Spin_move4
Mean 6.8641/4.1975 2.8499/4.0148 16.3806/4.4178 14.6455/4.1447 13.4458/4.0248 2.2562/4.1285 ↑

Median 6.097/4.4394 2.786/4.1166 15.6404/4.7137 13.917/4.3189 14.1733/4.0284 2.3056/4.5223 ↑

RMSE 7.8865/4.5753 3.2994/4.3851 17.7753/4.8355 16.3221/4.5232 14.4809/4.4117 2.4836/4.5508 ↑

Spin_move5
Mean 1.7864/1.8822 1.3078/1.9618 ↑ 33.2181/1.6030 2.0107/1.7846 1.6161/1.8418 2.7025/1.8386

Median 1.7204/1.5188 1.2788/1.6052 ↑ 26.1658/1.7265 1.9731/1.4896 1.5320/1.4320 2.6953/1.4755
RMSE 2.1640/2.3535 1.5237/2.4532 ↑ 42.2767/1.8329 2.6537/2.2030 1.9955/2.3295 3.5095/2.2956
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Table A5. Cont.

Spin_move ATE MPU6050 HI219 NV-MG-201 ADIS16488 ADIS16490 MSCRG

Spin_move6
Mean 13.6722/0.9434 0.6434/0.9332 ↑ 46.6108/0.9363 0.7195/0.9432 0.8378/0.9505 0.9842/0.9544

Median 6.8829/0.9880 0.4331/0.9815 ↑ 56.8551/0.9817 0.5068/0.9932 0.7124/0.9787 0.8864/0.9844
RMSE 21.8973/1.1160 0.8054/1.1017 ↑ 52.1628/1.1061 0.8797/1.1143 1.0111/1.1253 1.1772/1.1291

Spin_move7
Mean 2.8939/0.8054 0.9454/0.7967 1411/0.7933 0.8374/0.7884 0.8123/0.8002 1.7947/0.7939

Median 2.2887/0.9796 1.0159/0.9839 1469/0.9766 0.8556/0.9575 0.8074/0.9543 ↑ 2.0807/0.9192
RMSE 3.954/0.9625 1.1267/0.9505 1825/0.9471 0.9918/0.9423 0.9729/0.9583 2.031/0.9520

Spin_move8
Mean 4.2439/0.8824 0.8732/0.8513 329.0178/0.8512 0.7316/0.8634 ↑ 0.7832/0.8788 0.8017/0.8844

Median 2.2936/1.0679 0.9903/1.0039 481.1018/1.0141 0.8610/1.0398 ↑ 0.9274/1.0535 0.9291/1.0623
RMSE 6.586/1.0114 1.0114/0.9790 389.8784/0.9772 0.8484/0.9885 ↑ 0.9270/1.0074 0.8981/1.0134

Spin_move9
Mean 5.4395/0.7435 0.7816/0.7302 Fail/0.7288 0.7569/0.7336 0.949/0.7529 1.3903/0.7628

Median 4.4004/0.8579 0.8878/0.8508 Fail/0.8416 0.8768/0.8333 1.0605/0.8417 1.2123/0.8347
RMSE 7.086/0.8554 0.8975/0.8357 Fail/0.8369 0.8612/0.8469 1.0783/0.8738 1.6942/0.8881

Spin_move10
Mean 1980/0.7985 0.9958/0.8037 27.7235/0.7860 0.9549/0.7925 2.384/0.8557 24.744/0.8828

Median 2001/0.9004 1.0436/0.8900 29.3865/0.8791 0.9904/0.9080 2.3141/0.9518 29.8661/0.9789
RMSE 2527/0.9095 1.1376/0.9086 30.5027/0.9016 1.0575/0.9045 2.8871/0.9694 28.2283/1.0014

Appendix A.4. Strong Illumination

Table A6. The algorithm errors for strong illumination scene with six different MEMS-IMUs.

Strongillumination ATE MPU6050 HI219 NV-MG-201 ADIS16488 ADIS16490 MSCRG

Vary_velocity0
Mean 1.4843/1.0077 0.9915/1.0183 1.4721/0.9971 0.9666/0.9841 0.7658/0.9681 ↑ 0.9828/0.9524

Median 1.628/1.1907 1.1787/1.2115 1.2117/1.1863 1.1687/1.1491 0.7188/1.1042 ↑ 1.0526/1.0672
RMSE 1.775/1.1835 1.1552/1.1969 1.7483/1.1716 1.1383/1.1544 0.8789/1.1350 ↑ 1.1748/1.1158

Fast0
Mean 1.0157/1.1616 1.0542/1.1764 1.1456/1.1610 0.8650/1.1382 ↑ 0.8858/1.1114 0.9009/1.0884

Median 1.2064/1.4117 1.3031/1.4534 1.2621/1.4259 1.0067/1.3778 ↑ 1.0558/1.3304 1.1053/1.2560
RMSE 1.2024/1.3876 1.2778/1.4068 1.4005/1.3871 1.0288/1.3576 ↑ 1.0675/1.3238 1.069/1.2939

Normal0
Mean 0.8409/0.9271 0.8953/0.9434 0.9146/0.9304 0.7958/0.9082 ↑ 0.8329/0.8737 0.7622/0.8510

Median 1.0407/1.1921 0.8647/1.1856 1.1182/1.1789 0.9343/1.1743 ↑ 1.0235/1.0877 0.8512/1.0243
RMSE 1.0102/1.1267 1.0873/1.1498 1.1284/1.1330 0.9649/1.0991 ↑ 0.9992/1.0564 0.9158/1.0273

Slow0
Mean 1.039/1.1498 ↑ 1.1163/1.1605 1.1237/1.1531 1.0662/1.1316 1.0539/1.1189 0.9892/1.0922

Median 1.0382/1.1812 ↑ 1.1143/1.1965 1.1434/1.1837 1.0466/1.1507 1.0229/1.1134 0.9656/1.0583
RMSE 1.2245/1.3645 ↑ 1.3212/1.3778 1.3313/1.3699 1.2667/1.3437 1.2483/1.3262 1.1685/1.2973

Spin_move0
Mean 111.9958/1.1297 0.8543/1.1502 ↑ Fail/1.1275 0.9878/1.1192 1.768/1.0893 2.0928/1.0848

Median 146.6053/1.0838 0.9553/1.1028 ↑ Fail/1.0713 1.0784/1.0584 1.4484/1.0151 2.2004/0.9645
RMSE 128.2474/1.3380 0.9831/1.3575 ↑ Fail/1.3321 1.1702/1.3290 2.2083/1.3028 2.3653/1.3043

Vary_velocity1
Mean 0.7735/0.8498 0.6178/0.8052 ↑ 1.9662/0.8364 0.9341/0.8711 0.8033/0.9173 0.9016/0.9489

Median 0.7705/0.8905 0.6200/0.8349 ↑ 2.0385/0.8892 0.8833/0.9074 0.5831/0.9699 0.8170/1.0091
RMSE 0.9017/1.0073 0.7082/0.9524 ↑ 2.3543/0.9914 1.058/1.0341 1.1307/1.0902 1.0409/1.1280

Spin_move1
Mean 14.338/0.8273 0.5961/0.8104 ↑ Fail/0.8201 0.6550/0.8236 1.1148/0.8598 2.0208/0.8599

Median 11.3966/0.5462 0.5879/0.5573 ↑ Fail/0.5484 0.6725/0.5388 1.2885/0.5925 1.4855/0.6288
RMSE 18.6681/1.0249 0.6690/0.9988 ↑ Fail/1.0167 0.7584/1.0240 1.3953/1.0637 2.6148/1.0571

Appendix B

The specific elements of F and V :

F=


I f12 f13 f14 f15
0 f22 0 0 f25
0 f32 I f34 f35
0 0 0 I 0
0 0 0 0 I

V=


v11 v12 v13 v14 0 0
0 v22 0 v24 0 0

v31 v32 v33 v34 0 0
0 0 0 0 v45 0
0 0 0 0 0 v56
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