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Background: Carotid intima-media thickness (IMT) measured in B-mode ultrasound image is

an important indicator of Atherosclerosis disease. Speckle noise inherently present in ul-

trasounds’ thereby degrades the visual evaluation and limits the automated segmentation

performance. The objective of this study is to investigate the effects of three despeckle

filters on the segmentation of carotid IMT in ultrasound image.

Methods: Automated segmentation of IMT is achieved by utilizing fast fuzzy c-mean clus-

tering and distance-regularized level set without re-initialization techniques. Manual

segmentation has been done by an experienced radiologist. The performances of median,

hybrid median and improved adaptive complex diffusion (IACDF) filters are examined and

a quantitative and qualitative comparison among these filters has been reported on 151

DICOM images. BlandeAltman plots were used to compare IMT results of these filters.

Furthermore, performances of above three filters are evaluated under different noise

levels by individually adding speckle and salt and pepper noise in ten randomly selected

images from 151 DICOM dataset. Plots between noise and quality evaluation metric pa-

rameters are used to compare de-noising performance of these filters.

Results: The average processing time per image of proposed IMT measurement technique

without-filter and with filter is approx 15.39 s max.

Conclusion: It is shown that the median filter (window 5 � 5) measures better than hybrid

median and IACDF filters. Finally, concluded that de-noising of ultrasound image before

segmentation procedure certainly improves segmentation accuracy. Furthermore, it is

observed that these filters do not impose serious computational burden and entail mod-

erate processing time.
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At a glance of commentary

Scientific background on the subject

Carotid Intima-Media Thickness (IMT) is used to detect

the atherosclerosis disease. Assessment of IMT via seg-

mentation of B-mode ultrasound common carotid artery

is cheap, reliable and safe for the patients. Speckle noise

is inherently present in ultrasounds’ which limits the

automated segmentation performance. It should be

reduced through despeckle filters.

What this study adds to the field

In this study, despeckle filters, i.e., (i) Median, (ii) Hybrid

median and (iii) Improved adaptive complex diffusion

are examined and a quantitative and qualitative com-

parison among these filters has been reported. The

experimental results show that filtering certainly im-

proves segmentation accuracy without imposing a

serious computational burden and entail moderate pro-

cessing time.
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Cardiovascular disease is a major cause of increasing death

rate which is commonly caused by atherosclerosis. Intima-

Media Thickness (IMT) is used to detect the atherosclerosis

disease and is defined as the distance between lumen - intima

(LI) and media -adventitia (MA) interfaces. Assessment of IMT

via segmentation of B-mode ultrasound CCA is cheap, reliable

and safe for the patients. Although ultrasound manifests the

benefit of being real time, the B-mode images are prone to

speckle noise and have a low signal to noise ratio, which de-

grades the visual evaluation and limits the automated seg-

mentation performance [1e3]. For optimum segmentation

performance, it should be reduced without affecting the

important information of the images. The simplest way to

reduce speckle noise is by median filter with a proper window

size. Numerous despeckle techniques exist in the literature

which are based on local statistics [4], Wiener [5], median [6],

geometric [7], wavelet, total variational filter, anisotropic

diffusion [8], empirical mode decomposition (EMD) [9,10],

frequency & spatial compounding [11]. In Ref. [12] Argenti,

Fabrizio et al. presented a comprehensive review of despeck-

ling techniques; in this study, authors have discussed speckle

noise reduction techniques in synthetic aperture radar im-

ages. In Ref. [13] Loizou Christos P. et al. demonstrated several

despeckle filtering methods. The authors reported that the

mean and variance local statistics filter (lsmv) performance

was the best, subsequently the Geometric despeckle filter

(gf4d) and the local-statistics minimum speckle-index ho-

mogeneous mask filter (lsminsc). The majority of speckle

reduction techniques have drawbacks such as: sensitivity to

size and shape of the window, dependence on threshold value

and inhibiting smoothing near the edges. In Ref. [14] Al-Kar-

awi et al., proposed an adaptive block-based trainable

approach by using support vector machine classifier to detect

regions and target the speckle noise of the detected regions

instead of the whole image.
The performance of de-speckle filter can be evaluated by

utilizing texture analysis, visual evaluation by the experts and

image quality metrics such as mean absolute, mean square

error (MSE), root mean square, geometric average errors and

error summation in the form of the Minkowski metric, signal

-to- noise ratio (SNR), peak signal-to-noise ratio (PSNR), uni-

versal quality index (Q), structural similarity index (SSIM),

metric based on natural scene statistics and mutual infor-

mation between the original and the filtered images [15].

Recently, in Ref. [16] Biswas, Mainak, et al. presented a

review of artificial intelligence-based methods such as Ma-

chine learning and deep learning used in the detection and

measurement of IMT. These techniques are used for moni-

toring CVD/stroke risk. In 2021 [17] Abd-Ellah et al. demon-

strated a regional convolutional neural network based

method to detect CCA disease.

The objective of this study is to evaluate the effect of des-

peckle filters on the CCA segmentation performance. Here,

segmentation is achieved by combining standard clustering

technique and distance regularized level set without re-

initialization scheme (DRLSE) [18]. Clustered image obtained

from fast-fuzzy c-mean clustering (FFCM) [19] is used to create

desirable mask which is used as a region of interest (ROI) in

final segmentation (here DRLSE) scheme. Polyline distance

metric (PDM) is used to measure IMT distance [20,21]. In this

work, filtering performance of median [6], hybrid median [22]

and IACDF [23] despeckling filters have been evaluated. This

paper is organized as follows: second section presents meth-

odology; third section presents the experimental results and

discussion followed by conclusion.
Materials and methods

Dataset and specification of processing machine

In this work, 151 longitudinal B-mode ultrasound CCA images

of DICOM format are utilized which were acquired by the

LOGIQ-P5 GE healthcare ultrasound equipment with a reso-

lution of 614 � 816 pixels with 256 gray levels. The images

have been randomly selected from normal and asymptomatic

subjects that were under comprehensive routine clinical

screening. Some images have soft plaques. MATLAB 7.14.0.739

(R2012a) on machine having widescreen 16:9 (aspect ratio)

15.600 display at 1366 � 768 resolution, Intel (R) Core (TM) i5-

2430M processor at speed 2.40 GHz with 4 GB RAM is used to

segment the boundaries of distal (far wall) IMT layer.

Proposed IMT measurement scheme

The block diagram of IMT measurement scheme is shown in

[Fig. 1] [24]. The proposed procedure consists of five steps, i.e.

pre-processing, clustering, final segmentation of IMT followed

by measuring thickness of detected IMT and lastly statistical

analysis. The steps are briefly described as follows:

Pre-processing
Pre-processing generally includes cropping and filtering op-

erations and ROI selection. The algorithm was developed to

crop B-mode ultrasound CCA image automatically (to

https://doi.org/10.1016/j.bj.2021.07.002
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Fig. 1 Block diagram of IMT measurement scheme.
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enhance clustering performance) and after filtering ROI is

manually selected by user. Filtering is necessary as in ultra-

sound, speckle noise exists inherently and degrades the

quality of an image and limits the segmentation perfor-

mance. This multiplicative speckle noise in ultrasound may

be approximated as additive white Gaussian noise if the

envelope signal is captured after logarithmic compression.

Therefore to improve segmentation accuracy it should be

filtered out without affecting the important features of the

images. Here three different Despeckle filters are individually

applied to reduce speckle noise and their performance is also

evaluated by adding speckle noise and salt and pepper noise

independently to 10 samples (randomly selected from

dataset).

Median filter. The median filter computes the median value in

a local neighborhood of each pixel [6]. The median filter per-

formance is sensitive to size of the window and therefore is

evaluated using window size 3 � 3 (MedianW3), 5 � 5

(MedianW5) and 7 � 7 (MedianW7) and experimental results

reveal that MedianW5 has the best performance.

Hybrid median filter. The hybrid median filter [22] also called

as corner preserving median filter is a three-step ranking

operation. In N x N pixel neighborhood, pixels are ranked in

two different groups. The median values of the 45� and 90�

neighbors’ forming an “x” and “þ” respectively, are compared

with the central pixel and the median value of the set, is then

saved as the new pixel value. In this study, hybrid median

performance of window size 3 � 3 (H medianW3), 5 � 5

(H medianW5) and 7 � 7 (H medianW7) is evaluated and was

observed that H medianW7 is better than H medianW3 and

H medianW5.

IACDF. The generalized equation for nonlinear anisotropic

complex diffusion filter is given [23] by,

∂I
∂t

¼divðD∇IÞ (1)

where, ∇ is the gradient, I is image and D is the diffusion co-

efficient. Diffusion coefficient in terms of laplacian of I (ΔI) is
expressed as:

D z 1
�
1þ ðΔI=kÞ2 (2)

where k is a controlling parameter which controls the

spreading of the diffusion coefficient in the vicinity of its

maximum i.e. at edges and homogeneous areas, where ΔI
vanishes. If k ¼ constant for the entire image and for iteration

(2) preserving the location of edges. In order to preserve the

location of edges as well as the variation of intensity across

the edge k is defined as:

k¼kmaxðkmin − kmaxÞ ℊ−minðℊÞ
maxðℊÞ−minðℊÞ (3)

and

ℊ¼∇GN;σ∗ReðIÞ (4)

where * is the convolution operator, ∇GN;σ is local average

(gaussian) kernel of size N x N and σ is standard

deviation. Parameters values kept are: θ ¼ pi
30; N ¼ 3; kmin ¼ 2;

kmax ¼ 28 and σ ¼ 10 same as in Ref. [23].

Conventionally, in nonlinear complex diffusion processes

time step (Δt) is a constant. The adaptive time step is selected;

a small step size is used at the initial iterations in which

higher values of D can be found due to the speckle noise. At

steady conditions in which changes over time are small

(fraction-wise), the time step selected is larger, while at fast

changes in time the time step selected is smaller.

ΔtðnÞ ¼ 1
a

�
aþ bexp

�
−max

�����Re
�
∂I=∂t

�����
�

ReðIðnÞÞ
�	


(5)

where constant a is 4 for 2D images, parameters a and b con-

trol the time step with aþ b≤1. The advantage of this

formulation is that the k parameter values need not to be

defined beforehand; instead, it adapts itself to the data. The

main controlling parameter of the IACDF is diffusion time (tD)

in sec; its performance is evaluated for 0.5, 0.55, 0.6, 0.65, 0.7,

0.75, 0.8, 0.85, 0.9, 0.95, 1, 2 and 3 and was observed that op-

timum performance was obtained at 0.75 s.

Fast fuzzy c-mean clustering scheme
Fuzzy c-mean is an unsupervised clustering technique in

which a data point belongs to all classes with different degree

of membership. Clustering is achieved by iteratively mini-

mizing the objective function. It divides n data points into c

fuzzy clusters. Firstly, initialized centroids of the cluster's
memberships for all the data points are calculated based on

the relative (Euclidian) distance of the data points from the

centroids of the clusters followed by updating them along

with membership function. The membership function sig-

nifies the probability that a pixel belongs to a specific cluster.

The process converges to a solution when the updated cen-

troids represent the local minimum of the objective function.

After convergence, each data points are assigned to a specific

cluster for which themembership is maximal [25]. To improve

https://doi.org/10.1016/j.bj.2021.07.002
https://doi.org/10.1016/j.bj.2021.07.002


b i om e d i c a l j o u r n a l 4 5 ( 2 0 2 2 ) 6 8 6e6 9 5 689
the processing time, clustering is performed on the histogram

of the image intensities instead of the raw image data [19].

Concretely, the objective function (JF) used for Fast Fuzzy c-

mean is defined as:

JF ¼
Xc
i¼1

Xq�1

g¼0

ggu
m
ig

����g�vi

����2 (6)

where, g is gray level of the image, vi represents centre of the

ith cluster, c is the number of clusters, uig is the fuzzy mem-

bership of gray value g with respect to cluster i, lg is the

number of pixels having gray value equal to g, where g ¼ 0; ::;

q−1 here, q is the number of gray levels and is generally much

smaller than total no. of pixels (N):

N¼
Xq�1

g¼0

gg (7)

The centroids (v) are initialized as v ¼ ðgmin þ
dg =2 : dg : gmaxÞ, here gmin & gmax areminimumandmaximum

gray levels of the image, respectively and change in gray level

is dg ¼
�
gmax−gmin

c

�
.

The membership functions and cluster centres are as

follows:

uig ¼ 1

,Xc
i�1

 
jjgg � vijj
jjgg � vcjj

!2=ðm�1Þ

(8)

and

vi ¼
Xq�1

k¼0

um
ikhðkÞk

,Xq�1

k¼0

um
ikhðkÞ (9)

The first and last clusters represent the average intensity of

lumen and adventitia respectively in image [19]. From the

large number of experiments it is observed that optimum

clustering is obtained by selecting number of c ¼ 6.

Final IMT segmentation scheme
Standard DRLSE scheme is modified and utilized as final seg-

mentation method to detect LI and MA interfaces in CCA

image. A brief description of the scheme is given as follows:

Level set is a numerical technique for capturing moving

fronts, basic evolution equation of level set function (LSF)

4ðt;x;yÞ is:

v4

vt
þFjV4j ¼0 (10)

where F is the speed parameter, which depends on image

data & LSF. The distance regularized level set without re-

initialization the LSF evolution equation is given [18]:

d4
dt

¼mdiv

dpðj∇4jÞ∇4

�þ l d
ε
ð4Þ div

�
ɠ

∇4
j∇4j

�
þ a ɠ d

ε
ð4Þ (11)

and

dpbpðsÞ0�s (12)

where m> 0 is constant, l coefficient of weighted length term,

dε is dirac function, α coefficient of weighted area term, p(s) is

potential function and ɠ edge indicator is defined in the terms

of Gaussian kernel Gσ with standard deviation (σ)
ɠ ¼ 1

1þ j∇Gσ∗I j2
(13)

In the modified DRLSE scheme, ɠ in equation (13) is rede-

fined to incorporate the effect of fuzzy boundaries of an

image, modified edge indicator function is:

ɠ 2 ¼ ɠ þ wɠ 1 (14)

and

ɠ 1 ¼
1

1þ j∇Gσ∗I1j2
(15)

where I1 clustered image and parameter is w controls the

amount of fuzziness incorporated with the DRLSE edge indi-

cator function. Here w is computed automatically from image

I. Finally, the modified DRLSE evolution equation is given as:

d4
dt

¼mdiv

dpðj∇4jÞ∇4

�þ l δ
ε
ð4Þ div

�
ɠ 2

∇4
j∇4j

�
þ a ɠ 2 dεð4Þ (16)

In this work, to achieve optimization the parameter's
values selected as per the previous study [26] are: l ¼ 5,

a ¼ 10.5, ε ¼ 1.5, m ¼ 0.04, s ¼ 1.5, Co ¼ 3. The number of iter-

ation (Nt) is computed automatically by utilizing intensity in-

formation within the ROI.

Distance measurement between LI and MA interfaces by PDM
The distance between the detected LI and MA interfaces are

measured by PDM as it is a clinically suitable distance mea-

surement technique for computing IMT [20,21]. Themeasured

IMT is in pixels (in image coordinate system) and requires pixel

tometric unit conversion. It is possible to calibrate an image as

the ruler is embedded in it, for 151 dataset calibration factor

obtained is within 0.0312e0.1206 mm and effective length of

the pixel is equal to calibration factor of an image. Thereby,

IMT measurement error comprises of calibration error.

Statistical analysis procedure and quality evaluation metrics
Statistical analysis procedure. IMTmeasurement performance

under different filters is assessed by computing parameters

such as mean (m), standard deviation (s), coefficient of varia-

tion CV% (here, CV% ¼ ðσ � 100 =
ffiffiffi
2

p Þ=m), correlation. In

addition, Bland Altman plots are utilized to evaluate the effect

of despeckles filters.

Quality evaluation metrics. To compare the performances of

the filters, PSNR, Universal quality factor and Structural sim-

ilarity index are measured which are defined as follows [17]:

(a) Peak Signal to Noise Ratio (PSNR): The PSNR is defined

as:

PSNR ¼ −10 log 10 MSE
�
g2
max (17)

where gmax is maximum gray level in original image.

(b) Universal quality index: The quality index Q models dis-

tortions owing to loss of correlation, luminance distor-

tion & contrast distortion is given as:

https://doi.org/10.1016/j.bj.2021.07.002
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Table 1 Comparison between Manual, Without_F and Median filter (with square window size (N) ¼ 3, 5 and 7) here
measurand is IMT in mm.

n ¼ 151 Manual Without F MedianW3 MedianW5 MedianW7

Mean 0.9536 1.004427 0.9832 0.9471 0.9063

std 0.2854 0.306744 0.2946 0.2824 0.2805

CV% 21.1597 21.59448 21.1849 21.0860 21.8854

r 1 0.924617 0.9322 0.9823 0.9624

tp (sec) e 14.07 14.43 13.71 13.72

Abbreviations: n: number of samples; std: standard deviation; CV%: coefficient of variation; r: Pearson's correlation; tp: average processing time.
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Q ¼ sIF

sFsI
$

2FI�
F
�2

þ
�
I
�2 $ 2sFsI

s2
F þ s2

I

� 1 < Q < 1 (18)

where I and F represents the mean of the original and filtered

values with their standard deviations and covariance, σI, σF

and σIF respectively. To compute Q, a sliding window of size

8 � 8 without overlapping is used.

(c) Structural similarity index: The SSIM between the two

images is given by:

SSIM¼
�
2IFþ C1

�
ð2sIF þ C2Þ�

I
2 þ F

2 þ C1

�
ðs2

F þ s2
I þ C2Þ

� 1 < SSIM < 1 (19)

where C1 ¼ 0:01 gmax and C2 ¼ 0:03 gmax. SSIM is computed

similar to the Q.
Experimental results and discussion

In this section, experimental results of three different filters

(applied single time on an image) i.e. median, hybrid median

and IACDF are comparatively presented. For automated IMT

segmentation, proposed method is applied on 151 ultrasound

B-mode images and the results are summarized in Tables 1e4

also presented Bland Altman plot shown in [Fig. S5 (A - H)].

Refer Table 1, mean (in mm) and standard deviation (CV %)

for manual and automated IMT segmentation without filter

(Without_F) are 0.9536 ± 0.2854 (21.1597%) and 1.0044 ± 0.3067

(21.5945%) respectively. Here, manual segmentation value is

considered as ground truth (GT). The automated IMT mean

and standard deviation (CV %) with MedianW3, MedianW5
Table 2 Comparison between Manual, Without_F and Hybrid m
measurand is IMT in mm.

n ¼ 151 Manual Without F H m

Mean 0.9536 1.0044

std 0.2854 0.3067

CV% 21.1597 21.5945

r 1 0.9246

tp (sec) e 14.07

Abbreviations: n: number of samples; std: standard deviation; CV%: coeffi
and MedianW7 are 0.9832 ± 0.2946 (21.1849%), 0.9471 ± 0.2824

(21.0860%) and 0.9063 ± 0.2805 (21.8854%) respectively. The

correlation betweenmanual and automated IMTWithout_F is

0.924617; with MedianW3, MedianW5 and MedianW7 are

0.9322, 0.9823 and 0.9624 respectively. [Fig. S5(AeC,H)] illus-

trate a Bland-Altman plot, the difference between the manual

and the automated IMT measurements method is computed

by mean ± 1.96SD (here SD is standard deviation). The

mean ± 1.96SD for MedianW3, MedianW5, MedianW7 and

Without_F are 0.03 ± 0.21, -0.01 ± 0.11, -0.05 ± 0.15 and

0.05 ± 0.23, respectively. From Table 1 and Fig. S5(AeC,H), it is

observed that the performance of MedianW5 is better than

that Without_F, MedianW3 and MedianW7 thus for further

comparison purpose MedianW5 will be used. Due to speckle

noise Without_F performance is poor. Under segmentation

results in case of MedianW3 as it fails to remove noise suffi-

ciently (its performance certainly get improve if applied more

than one time). Over segmentation results in case of

MedianW7, due to large window size edges get blurred.

The automated IMT mean (in mm) and standard deviation

(CV %) with H medianW3, H medianW5 and H medianW7 are

0.9903 ± 0.3002 (21.4358%), 0.9715 ± 0.2953 (21.4891%) and

0.9469 ± 0.2914 (21.7588%) respectively. The correlation for

H medianW3, H medianW5 and H medianW7 are 0.9350,

0.9416 and 0.9434 respectively [refer Table 2]. [Fig. S5(DeF,H)]

illustrate a BlandeAltman plot, mean ± 1.96SD for

H medianW3, H medianW5 and H medianW7 are 0.04 ± 0.21,

0.02 ± 0.19 and�0.01 ± 0.19, respectively. Experimental results

are summarized in [Table 2] and [Fig. S5(DeF,H)] reveals that

performance of H medianW7 is better than Without_F,

H medianW3 and H medianW5. Under segmentation results

in case of H medianW3 and H medianW5 as it fails to remove

noise sufficiently (its performance certainly get improve if

applied more than one time).
edian filter (with square window size 3, 5 and 7) here

edianW3 H medianW5 H medianW7

0.9903 0.9715 0.9469

0.3002 0.2953 0.2914

21.4358 21.4891 21.7588

0.9350 0.9416 0.9434

14.04 14.34 14.28

cient of variation; r: Pearson's correlation; tp: average processing time.

https://doi.org/10.1016/j.bj.2021.07.002
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The IMTmean (inmm), standard deviation, correlation and

CV% for proposedmethodwith IACDF filter for diffusion times

(sec) 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 2 and 3 are

computed and mentioned in [Table 3]. Table 3 illustrates op-

timum IMT performance obtained for diffusion time ranging

from 0.5 s to 0.8 s. The highest correlation is obtained at

diffusion time of 0.75 s. Thus for further comparison purpose

the results at tD ¼ 0.75 s will be used. For IACDF at (tD¼ 0.75 s)

the IMT mean (in mm) and standard deviation (CV%, corre-

lation) is 0.9675± 0.2914 (21.2971, 0.9617). [Fig. S5(G)] illustrates

a Bland-Altman plot, the obtained mean ± 1.96SD (mm) for

IACDF at (tD¼ 0.75 s) is 0.01 ± 0.16. [Fig. S5(AeH)] depicts that

IACDF is better than that of Without_F & hybrid-median but

inferior to that of median filter.

The automated IMTmeasurementsWithout_F, MedianW5,

H medianW7 and IACDF (tD ¼ 0.75 s) filters are compared and

summarized in [Table 4] and shown in [Fig. S5(AeH)]. From

[Table 4] it is observed that automated IMT performance of

Without_F isworst. The MedianW5 is better thanH medianW7

and IACDF (tD ¼ 0.75 s) filter. The average processing time per

image of proposed IMT measurement technique Without_F

and with filter is approx 15.39 s max (refer [Table 1-4]).

Fig. 2 illustrates the Box plot for the CCA IMT manual

measurements and automated measurements (median filter

window size 3 � 3, 5 � 5 and 7 � 7; hybrid median filter win-

dow size 3 � 3, 5 � 5 and 7 � 7; IACDF filter (at tD ¼ 0.75 s) and

Without filter). Inter-Quartile Range (IQR), median, maximum,

minimum and number of outliers values are shown above the

box plots. No significant differences were found between the

manual & the automated filtered IMT measurements

methods, and significant difference was found between the

manual & Without_F method (using the Wilcoxon rank-sum

test): (i) Median filter (3 � 3): p ¼ 0.2620, (ii) Median filter

(5 � 5): p ¼ 0.9916, (iii) Median filter (7 � 7): p ¼ 0.1080, (iv)

Hybridmedian filter (3� 3): p¼ 0.1466, (v) Hybridmedian filter

(5 � 5): p ¼ 0.5447, (vi) Hybrid median filter (7 � 7): p ¼ 0.8919,

(vii) IACDF filter: p ¼ 0.6031 and (viii) Without_F: p ¼ 0.0354.

To evaluate the performance of the filters under different

noise levels, they were tested for speckle and salt and pepper

noise sources. The noises were added independently to the

randomly selected 10 images from the 151 dataset. The

MATLAB function J ¼ imnoise ð I;0type of noise0; parameterÞ is

used to add noise to the image I, here parameter variance (or

density) value is 0, 0.05, 0.1, 0.15, 0.2 and 0.25. Performances of

filters are evaluated by determining IMT on noise corrupted

image and computing IMT accuracy, CV% and correlation for

the noise level. Here accuracy is defined as difference between

manual and automated value of IMT.

The IMT error for median, hybrid median and IACDF filter

under noise levels 0e100% (0% represent variance or density¼ 0

and 100% represents variance or density ¼ 0.25) are shown in

[Figs. S6(A-C) and S7(A-C)] for speckle and salt and pepper noise

respectively. In case of speckle noise, IMT error (in mm) for

without filter, median, hybrid median and for IACDF filter is

within �0.1814 to 0.0183, �0.0233 to 0.0270, �0.0698 to 0.0188

and�0.0171 to 0.0419 respectively. Similarly, in case of salt and

pepper noise, IMT error for without filter, median, hybrid me-

dian and for IACDF filter is within 0.0183e0.4681, �0.0254 to

0.0178, �0.0042 to 0.0765 and �0.0053 to 0.1765 respectively.

https://doi.org/10.1016/j.bj.2021.07.002
https://doi.org/10.1016/j.bj.2021.07.002


Table 4 Comparison between Without_F, MedianW5, H_medianW7 and IACDF ðtD ¼ 0:75Þ (measurand: IMT in mm).

n ¼ 151 Manual Without F MedianW5 H medianW7 IACDFðtD ¼ 0:75Þ
Mean 0.9536 1.004427 0.9471 0.9469 0.9675

std 0.2854 0.306744 0.2824 0.2914 0.2914

CV% 21.1597 21.59448 21.0860 21.7588 21.2971

r e 0.924617 0.9823 0.9434 0.9617

tp (sec) e 14.07 13.71 14.28 14.26

Abbreviations: n: number of samples; std: standard deviation; CV%: coefficient of variation; r: Pearson's correlation; tp: average processing time;

tD: diffusion time.

Fig. 2 Box plot for the CCA IMT manual measurements and automated measurements (median filter window size 3 � 3, 5 � 5

and 7 � 7; hybrid median filter window size 3 � 3, 5 � 5 and 7 � 7; IACDF filter (at tD ¼ 0.75 s) and Without filter). Inter-Quartile

Range (IQR), median, maximum, minimum and number of outliers values are shown above the box plots.
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Figs. S6(A-C) and S7(A-C) illustrates the addition of 0e100

percent noise segmentation of without-filtered image. This

results in over-segmentation for speckle noise and mostly

under-segmentation for salt and pepper noise. The segmen-

tation accuracy fluctuates and mainly depends on the pres-

ence of noise on the LI and MA interfaces. In case of filtered

image segmentation, accuracy depends upon filter's capability
of removing noise and preserving edges. [Figs. S6(A-C) and

S7(A-C)] depicts that segmentation accuracy with filter is su-

perior to that of without-filter.

The coefficient of variation for manual segmentation

method is 17.6763%. In case of speckle noise, CV% for proposed

method without filter, median, hybrid median and for IACDF

filter are within 17.2851%e36.4171%, 16.1734%e19.9380%,

17.5879%e26.2411% and 16.7187% to 21.1231% respectively.

Similarly, in case of salt and pepper noise CV% for without fil-

ter, median, hybrid median and for IACDF filter are within

17.2296%e20.1786%, 16.7806%e18.4032%, 16.4992%e18.5406%

and 14.6825%e20.1501% respectively. The plot between noise

level and CV% for speckle and salt and pepper noise are pre-

sented in [Figs. S8(A-C) and S9(A-C)] respectively. In case of

speckle noise, CV% for IACDF is better than without-filter,

median and hybrid median filters, however for salt and pep-

per noise, CV% for median and hybrid median is comparable

and is better than IACDF filter and without-filter.

The correlation between manual and automated methods

is calculated and presented in [Figs. S10(A-C) and S11(A-C)]. In
case of speckle noise, correlation for proposed method

without-filter, median, hybrid median and for IACDF filter are

within 0.4851e0.9934, 0.6461 to 0.9972, 0.6961 to 0.9961 and

0.7142 to 0.9931 (refer [Fig. S10(A-C)]). Similarly, in case of salt

and pepper noise, correlation for without-filter, median

hybrid median and for IACDF filter are within 0.5712e0.9934,

0.9804 to 0.9972, 0.9813 to 0.9961 and 0.7168 to 0.9911 (refer

[Fig. S11(A-C)]). It is observed that segmentation performance

of IACDF is superior to without-filter.

For a better comparison among median 5 � 5, hybrid me-

dian 7 � 7 and IACDF diffusion time 0.75, the IMT error, CV%

and correlation plots against speckle and salt and pepper

noise levels are presented in [Fig. 3(A-C) and 4(A-C)] respec-

tively. It is observed that in case of speckle noisemedian 5� 5,

hybrid median 7 � 7 and IACDF (diffusion time ¼ 0.75) filters

performances are comparable (refer [Fig. 3(A-C)]). However, in

case of salt and pepper noise, median 5 � 5, hybrid median

7 � 7 performances are better than IACDF (diffusion

time ¼ 0.75) filter (refer [Fig. 4(A-C)]).

Furthermore, filters performances are evaluated by

computing average PSNR, average Universal quality index and

average Structural Similarity index (SSIM) on 10 noise cor-

rupted images. Noisy image is generated by adding noise to

original image. Hence, original image is considered as noise

free image. Therefore, average PSNR, average Universal

quality index and average SSIM value of Without_F at noise

level ¼ 0 are considered as Ground truth value. Higher the

https://doi.org/10.1016/j.bj.2021.07.002
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value of PSNR, Universal quality index and SSIM better is the

performance of the filter [13].

The plots between noise level and average PSNR for

speckle noise and salt and pepper noise are presented (for

median, hybrid median and IACDF filter) in [Figs. S12(A-C)

and S13(A-C)]. The average PSNR value of Without_F at

noise level ¼ 0 is very high, for the sake of clarity it is not

plotted in the graph. It is observed that for particular noise

levels (except at 0% noise level) the obtained average PSNR

value for with-filter (i.e., median, hybrid median and IACDF

filter) is higher than that of average PSNR value for

Without_F.

The plots between noise level and average Universal quality

index for speckle noise and salt and pepper noise are presented

(for median, hybrid median and IACDF filter) in [Figs. S14(A-C)

and S15(A-C)] respectively. [Figs. S14(A-C) and S15(A-C)] de-

picts that Universal quality index for a particular noise level

(except 0% noise level) obtained with-filter (i.e., median, hybrid

median and IACDF filter) is higher than that of without-filter.

The plots between noise level and average SSIM index for

speckle noise and salt and pepper noise are presented (for

median, hybrid median and IACDF filter) in [Figs. S16(A-C) and

S17(A-C)] respectively. [Figs. S16(A-C) and S17(A-C)] shows that

mean SSIM index for a particular noise level (except 0% noise

level) obtained with-filter is higher than that of without-filter.
For a better comparison among median 5 � 5, hybrid me-

dian 7 � 7 and IACDF (diffusion time 0.75), the average PSNR,

average Universal quality index and average SSIM index

plotted against speckle and salt and pepper noise levels are

presented in [Figs. S18(A,B), S19(A,B) and S20(A,B)] respec-

tively. While comparing without-filter, median 5 � 5, hybrid

median 7 � 7 and IACDF diffusion time 0.75 average PSNR,

average Q and average SSIMwith-filter is higher thanwithout-

filter (above 0% noise level). In case of speckle noise, perfor-

mances are analogous (refer [Fig. S18 (A)]); however, in case of

salt and pepper noise, average PSNR of IACDF is lower than

median 5 � 5 and hybrid median 7 � 7 (refer [Fig. S18 (B)]).

From [Figs. S19(A,B) and S20(A,B)], it is depicted that in case

of speckle noise, performance of the filters are analogous to

each other while for salt and pepper noise (for noise level

above 0%) average Q and average SSIM of IACDF is lower than

median 5 � 5 and hybrid median 7 � 7.
Conclusion

In this paper, a variational approach for CCA segmentation

is developed by using two standard techniques, FFCM and

DRLSE. The performance of the proposed segmentation

method with median and hybrid median with window sizes

https://doi.org/10.1016/j.bj.2021.07.002
https://doi.org/10.1016/j.bj.2021.07.002
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3 � 3, 5 � 5 & 7 � 7 and IACDF (for diffusion times 0.5, 0.6,

0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 2 & 3 in sec) are evaluated

by determining IMT in 151 samples. Moreover, its perfor-

mance is evaluated by adding speckle and salt and pepper

noise, independently, on10 randomly selected samples from

151 dataset. The segmentation accuracy in terms of average

IMT error, mean, standard deviation, CV%, correlation,

PSNR, Universal quality index and SSIM index parameters

are used to evaluate the performance. The experimental

results show that filtering certainly improves segmentation

accuracy.

Optimum segmentation accuracy obtained for median

with window size 5� 5, hybridmedianwith window size 7� 7

and IACDF with diffusion time 0.75. Performance of the me-

dian with window size 5 � 5 is slightly better than hybrid

median and IACDF filters. In future, the performance of pro-

posed segmentation technique (with-filter and without-filter)

under Gaussian noise will be studied. Segmentation accu-

racy of proposed method using recently proved de-noising

techniques such as TVF and EMD will be evaluated.
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