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Abstract

Many common diseases show wide phenotypic variation. We present a statistical method for 

determining whether phenotypically defined subgroups of disease cases represent different genetic 

architectures, in which disease-associated variants have different effect sizes in the two subgroups. 

Our method models the genome-wide distributions of genetic association statistics with mixture 

Gaussians. We apply a global test without requiring explicit identification of disease-associated 

variants, thus maximising power in comparison to a standard variant by variant subgroup analysis. 

Where evidence for genetic subgrouping is found, we present methods for post-hoc identification 

of the contributing genetic variants.

We demonstrate the method on a range of simulated and test datasets where expected results are 

already known. We investigate subgroups of type 1 diabetes (T1D) cases defined by autoantibody 

positivity, establishing evidence for differential genetic architecture with thyroid peroxidase 

antibody positivity, driven generally by variants in known T1D associated regions.
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Introduction

Analysis of genetic data in human disease typically uses a binary disease model of cases and 

controls. However, many common human diseases show extensive clinical and phenotypic 

diversity which may represent multiple causative pathophysiological processes. Because 

therapeutic approaches often target disease-causative pathways, understanding this 

phenotypic complexity is valuable for further development of treatment, and the progression 

towards personalised medicine. Indeed, identification of patient subgroups characterised by 

different clinical features can aid directed therapy [1] and accounting for phenotypic 

substructures can improve ability to detect causative variants by refining phenotypes into 

subgroups in which causative variants have larger effect sizes [2].

Such subgroups may arise from environmental effects, reflect population variation in non-

disease related anatomy or physiology, correspond to partitions of the population in which 

disease heritability differs, or represent different causative pathological processes. Our 

method tests whether there exist a subset of disease-associated SNPs which have different 

effect sizes in case subgroups, determining whether heterogeneity corresponds to differential 

genetic pathology.

Our test is for a stronger assertion than the question of whether subgroups of a disease group 

exhibit any genetic differences at all, as these may be entirely disease-independent: for 

example, although there will be systematic genetic differences between Asian and European 

patient cohorts with type 1 diabetes (T1D), these differences will not generally relate to the 

pathogenesis of disease.

Rather than attempting to analyse SNPs individually for differences between subgroups, a 

task for which GWAS are typically underpowered, we model allelic differences across all 

SNPs using mixture multivariate normal models. This can give insight into the structure of 

the genetic basis for disease. Given evidence that there exists some subset of SNPs that both 

differentiate controls and cases and differentiate subgroups, we can then reassess test 

statistics to search for single-SNP effects.

Results

Summary of proposed method

We jointly consider allelic differences between the combined case group and controls, and 

allelic differences between case subgroups independent of controls. Specifically, we 

establish whether the data support a hypothesis (H1) that a subset of SNPs associated with 

case-control status have different underlying effect sizes (and hence underlying allele 

frequencies) in case subgroups. This assumption has been used previously for genetic 

discovery [3].

H1 encompasses several potential underlying mechanisms of heterogeneity. A set of SNPs 

may be associated with one case subgroup but not the other; the same set of SNPs may have 

different relative effect sizes in subgroups, or heritability may differ between subgroups. 

These scenarios are discussed in the supplementary note.
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Our overall protocol is to fit two bivariate Gaussian mixture models, corresponding to null 

and alternative hypotheses, to summary statistics (Z scores) derived from SNP data. We 

assume a group of controls and two non-intersecting case subgroups, and jointly consider 

allelic differences between the combined case group and controls, and allelic differences 

between case subgroups independent of controls (figure 1). Heterogeneity in cases can also 

be characterised by a quantitative trait, rather than explicit subgroups.

For a given SNP we denote by μ1, μ2, μ12 and μc the population minor allele frequencies for 

each of the two case subgroups, the whole case group and the control group respectively, and 

Pd, Pa GWAS p-values for comparisons of allelic frequency between case subgroups and 

between cases and controls, under the null hypotheses μ1 = μ2 and μ12 = μc respectively (or 

similarly for quantitative heterogeneity). We then derive absolute Z scores |Zd| and |Za| from 

these p-values (see figure 1). We consider the values |Zd|,|Za| as absolute values of 

observations of random variables (Zd,Za) which are samples from a mixture of three 

bivariate Gaussians. Further details are given in the supplementary note.

We consider each SNP to fall into one of three categories, with each category corresponding 

to a different joint distribution of Zd, Za:

1. SNPs which do not differentiate subgroups and are not associated with the 

phenotype as a whole (μc = μ1 = μ2)

2. SNPs which are associated with the phenotype as a whole but which are not 

differentially associated with the subgroups (μc≠μ12; μ1 = μ2 = μ12)

3. SNPs which have different population allele frequencies in subgroups, and may 

or may not be associated with the phenotype as a whole (μ1≠μ2)

If the SNPs in category 3 are not associated with the disease as a whole (null hypothesis, 

H0), we expect Zd, Za to be independent and the variance of Za to be 1. If SNPs in category 3 

are also associated with the disease as a whole (alternative hypothesis, H1), the joint 

distribution of (Zd,Za) will have both marginal variances greater than 1, and Za, Zd may co-

vary. Our test is therefore focussed on the form of the joint distribution of (Zd,Za) in 

category 3. Importantly, we allow that the correlation between Zd and Za may be 

simultaneously positive at some SNPs and negative at others. This allows for a subset of 

SNPs to specifically alter risk of one subgroup, and another subset to alter risk for the other 

subgroup. To accommodate this, we only consider absolute Z scores and model the 

distribution of SNPs in category 3 with two mirror-image bivariate Gaussians.

Amongst SNPs with the same frequency in disease subgroups (categories 1 and 2), Za and 

Zd are independent and the expected standard deviation of Zd is 1. We therefore model the 

overall joint distribution of (Zd,Za) as a Gaussian mixture in which the pdf of each 

observation (Zd,Za) is given by
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(1)

where NΣ(d,a) denotes the density of the bivariate normal pdf centered at 0 with covariance 

matrix Σ at (d,a). Θ is the vector of values (π1,π2,τ,σ2,σ3,ρ). Under H0, we have ρ = 0 and 

σ3 = 1. The values (π1,π2,π3) represent the proportion of SNPs in each category, with Σ πi 

= 1 (see table 1). Patterns of (Zd,Za) for different parameter values are shown in 

supplementary table 1.

We use the product of values of the above pdf for a set of observed Zd , Za as an objective 

function (‘pseudo-likelihood’, PL) to estimate the values of parameters. This is not a true 

likelihood as observations are dependent due to linkage disequilibrium (LD), although 

because we minimise the degree of LD between SNPs using the LDAK method [4], the PL 

is similar to a true likelihood.

Model fitting and significance testing

We fit parameters π1, π2, π3 (= 1 - π1 - π2), σ2, σ3, τ and ρ under H1 and H0. Under H0, 

(ρ,σ3) = (0,1).

We then compare the fit of the two models using the log-ratio of PLs, giving an unadjusted 

pseudo-likelihood ratio (uPLR). We subtract a term depending only on Za to minimise the 

influence of the Za score distribution, and add a term log(π1π2π3) to ensure the model is 

identifiable [5]. We term the resultant test statistic the pseudo-likelihood ratio (PLR). The 

distribution of the PLR is minorised by a distribution of the form:

(2)

The value γ arises from the weighting derived from the LDAK procedure causing a scale 

change in the observed PLR. The mixing parameter κ corresponds to the probability that ρ = 

0, (approximately ½).

We estimate γ and κ by sampling random subgroups of the case group. Such subgroups only 

cover the subspace of H0 with τ = 1 (no systematic allelic differences between subgroups), 

causing the asymptotic approximation of PLR by equation 2 to be poor. We thus estimate γ 
and κ from the distribution of a similar alternative test statistic, the cPLR (see methods 
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section and supplementary note), which is well-behaved even when τ ≈ 1 and which 

majorises the distribution of PLR.

A natural next step is to search for the specific variants contributing to the PLR. An effective 

test statistic for testing subgroup differentiation for single SNPs is the Bayesian conditional 

false discovery rate (cFDR) [6, 7] applied to Zd scores ‘conditioned’ on Za scores. However, 

this statistic alone cannot capture all the means by which the joint distribution of (Za,Zd) can 

deviate from H0, and we also propose three other test statistics, each with different 

advantages, and compare their performance (supplementary note).

Power calculations, simulations, and validation of method

We tested our method by application to a range of datasets, using simulated and resampled 

GWAS data. First, to confirm appropriate control of type 1 error rates across H0, we 

simulated genotypes of case and control groups under H0 for a set of 5 × 105 autosomal 

SNPs in linkage equilibrium (supplementary note). Quantiles of the empirical PLR 

distribution were smaller than those for the empirical cPLR distribution and the asymptotic 

mixture-χ2, indicating that the test is conservative when τ > 1 (estimated type 1 error rate 

0.048, 95% CI 0.039-0.059) and when τ ≈ 1 (estimated type 1 error rate 0.033, 95% CI 

0.022-0.045) as expected; see figure 2. The distribution of cPLR closely approximated the 

asymptotic mixture-χ2 distribution across all values of τ (supplementary note).

We then established the suitability of the test when SNPs are in LD and when there exist 

genetic differences between subgroups that are independent of disease status overall. First, 

we used a dataset of controls and autoimmune thyroid disease (ATD) cases and repeatedly 

choose subgroups such that several SNPs had large allelic differences between subgroups. 

We found good FDR control at all cutoffs (supplementary note) and the overall type 1 error 

rate at α = 0.05 was 0.041 (95% CI 0.034-0.050). Second, we analysed a dataset of T1D 

cases with subgroups defined by geographical origin. Within the UK, there is clear genetic 

diversity associated with region [9]. As expected, Zd scores for geographic subgroups 

showed inflation compared to for random subgroups (supplementary figure 1). None of the 

derived test statistics reached significance at a Bonferroni-corrected p < 0.05 threshold (min. 

corrected p value > 0.8, supplementary figure 2).

To examine the power of our method, we used published GWAS data from the Wellcome 

Trust Case Control Consortium [10] comprising 1994 cases of Type 1 diabetes (T1D), 1903 

cases of rheumatoid arthritis (RA), 1922 cases of type 2 diabetes (T2D) and 2953 common 

controls. We established that our test could differentiate between any pair of diseases, 

considered as subgroups of a general disease case group (all < 1 × 10-8, table 2).

T1D and RA have overlap in genetic basis [10, 11, 7], as well as non-overlapping associated 

regions. T1D and T2D have less overlap [11] and T2D and RA less still. This was reflected 

in the fitted values (table 2, figure 3). The fitted values parametrizing category 2 in the full 

model for T1D/RA (π2, σ2) were consistent with a subset of SNPs associated with case/

control status (T1D+RA vs control) but not differentiating T1D/RA. By contrast, the 

parametrization of category 2 for T1D/T2D and T2D/RA had marginal variance σ2 

approximately 1, suggesting that a subset of SNPs associated with case/control status but not 
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with ‘subgroup’ status did not exist in these cases. The rejection of H0 for the comparisons 

entails the existence of a set of SNPs associated both with case/control and subgroup status. 

The H0 model does not allow such a set of SNPs, forcing the parametrisation of Zd, Za 

scores for such SNPs to be ‘squashed’ into a category shape permitted under H0, with one 

marginal variance being 1: either category 2 (as happens in T2D/RA since π2|H0 ≈ π3|H1, 

σ2|H0 ≈ σ3|H1 in T2D/RA) or category 3 (as in T1D/T2D, where π3|H0 ≈ π3|H1, τ|H0 ≈ τ|

H1).

To determine the power of our test more generally, we showed that power depends on the 

number of SNPs in category 3 and on the underlying parameters of the true model, 

depending on the number of samples through the fitted model parameters (supplementary 

note). We therefore estimated the power of the test for varying numbers of SNPs in category 

3 and for varying values of the parameters σ3, τ, and ρ. (figure 4; supplementary figure 3). 

As expected, power increases with an increasing number of SNPs in category 3, reflecting 

the proportion of SNPs which differentiate case subgroups and are associated with the 

phenotype as a whole. Power also increases with increasing τ, σ3, and absolute correlation 

(ρ/(σ3τ)) as high values enable better distinction of SNPs in the second and third categories.

We explored the dependence of power on sample size by sub-sampling the WTCCC data for 

RA and T1D (figure 4) and compared the power of the PLR with the power to find any 

single SNP which differentiated the two diseases in several ways (see figure legend). 

Although the power of the PLR-based test was limited at reduced sample sizes, it remained 

consistently higher than the power to detect any single SNP which differentiated the two 

diseases. We then repeated the analysis removing the known T1D- and RA- associated SNP 

rs17696736. The power to detect a SNP with significant Zd score (Bonferroni-corrected) 

amongst SNPs with GW-significant Za score dropped dramatically, though the power of 

PLR was only slightly reduced. This illustrated the robustness of the PLR test to inclusion or 

removal of single SNPs with large effect sizes, a property not shared by single-SNP 

approaches.

Estimating power requires an estimate of the underlying values of several parameters: the 

expected total number of SNPs in the pruned dataset with different population MAF in case 

subgroups, and the distribution of odds-ratios such SNPs between subgroups and between 

cases/controls. With sparse genome-wide cover, such as that in the WTCCC study, > 1250 

cases per subgroup are necessary for 90% power (discounting MHC region). If SNPs with 

greater coverage for the disease of interest are used (such as the ImmunoChip for 

autoimmune diseases) values of π3, σ3 and τ are correspondingly higher, and around 

500-700 cases per subgroup may be sufficient.

Application to autoimmune thyroid disease and type 1 diabetes

Autoimmune thyroid disease (ATD) takes two major forms: Graves’ disease (GD; 

hyperthyroidism) and Hashimoto’s Thyroiditis (HT; hypothyroidism). Differential genetics 

of these conditions have been investigated. Detection of individual variants with different 

effect sizes in GD and HT is limited by sample size (particularly HT); however, the TSHR 
region shows evidence of differential effect [12]. T1D is relatively clinically homogenous 

with no major recognised subtypes, although heterogeneity arises between patients in levels 
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of disease-associated autoantibodies, and disease course differs with age at diagnosis [3]. We 

analysed both of these diseases.

For ATD, we were able to confidently detect evidence for differential genetic bases for GD 

and HT (p = 2.2 × 10-15). Fitted values are shown in table 2. The distribution of cPLR 

statistics from random subgroups agreed well with the proposed mixture χ2 (supplementary 

figure 4b).

For T1D, we considered four subgroupings defined by plasma levels of the T1D-associated 

autoantibodies thyroid peroxidase antibody (TPO-Ab, n=5780), insulinoma-associated 

antigen 2 antibody (IA2-Ab, n=3197), glutamate decarboxylase antibody (GAD-Ab, 

n=3208) and gastric parietal cell antibodies (PCA-Ab, n=2240). A previous GWAS study on 

autoantibody positivity in T1D identified only two non-MHC loci at genome-wide 

significance: 1q23/FCRL3 with IA2-Ab and 9q34/ABO with PCA-Ab [3].

We tested each of the subgroupings retaining and excluding the MHC region. Fitted values 

for models with and without MHC are shown in supplementary table 2, and plots of Za and 

Zd scores are shown in supplementary figure 5. Retaining the MHC region, we were able to 

confidently reject H0 for subgroupings based on TPO-Ab, IA-2Ab and GAD-Ab (all p-

values < 1.0 × 10-20). Although there was evidence that SNPs in the dataset were associated 

with PCA-Ab level (τ ≈ 2.5, null model), the improvement in fit in the full model was not 

significant, and we conclude that such SNPs determining PCA-Ab status are not in general 

T1D-associated. This can be seen by in the plot of Za against Zd (supplementary figure 5) 

where SNPs with high Zd values do not have higher than expected Za values.

With MHC removed, the subgrouping on TPO-Ab was significantly better-fit by the full 

model (p = 1.5 × 10-4). There was weaker evidence to reject H0 for GAD-Ab (p = 0.002) and 

IA2-Ab (p = 0.008) (Bonferroni-corrected threshold at α < 0.05: 0.006). Fitted values of τ 
in both the full and null models for GAD-Ab were ≈ 1, indicating absence of evidence for a 

category of non-MHC T1D-associated SNPs additionally associated with GAD-Ab 

positivity. Collectively, this indicates that differential genetic basis for T1D with GAD-Ab 

and IA2-Ab positivity is driven principally by the MHC region, and although PCA-Ab status 

is partially genetically determined, the set of causative variants is independent of T1D 

causative pathways.

The variation in genetic architecture of T1D with age is not fully understood, but previous 

studies have suggested larger observed effects at known loci in patients diagnosed at a 

younger age [13, 14, 15, 16]. We investigated whether these differences were indicative of 

widespread differences in variant effect sizes with age-at-diagnosis, possibly due to 

differential heritability (see supplementary note). We applied the method to T1D dataset 

with Zd defined by age at diagnosis (quantitative trait). Fitted values are shown in 

supplementary table 3 and Za and Zd scores in supplementary figure 6. The hypothesis H0 

could be rejected confidently when retaining or removing the MHC region (p values < 1.0 × 

10-20 and 0.007 respectively). Signed Zd and Za scores for age at diagnosis showed a visible 

negative correlation (rg method 2; p = 0.002) amongst Zd and Za scores for disease-

associated SNPs (figure 5). This is consistent with a higher genetic liability with lower age 
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at diagnosis; the basis for differential genetic basis with age may be differing heritability 

with the same relative variant effect sizes.

Assessment of individual SNPs

Many SNPs which discriminated subgroups were in known disease-associated regions 

(supplementary tables 4, 5, and 6). In several cases, our method identified disease-associated 

SNPs which have reached genome-wide significance in subsequent larger studies but for 

which the Za score in the WTCCC study was not near significance. For example, the SNP 

rs3811019, in the PTPN22 region, was identified as likely to discriminate T1D and T2D (p = 

3.046 × 10-6; supplementary table 5), despite a p value of 3 × 10-4 for joint T1D/T2D 

association.

For GD and HT, SNPs near the known ATD-associated loci PTPN22 (rs7554023), CTLA4 
(rs58716662), and CEP128 (rs55957493) were identified as likely to be contributing to the 

difference (see supplementary table 7). The SNPs rs34244025 and rs34775390 are not 

known to be ATD-associated, but are in known loci for inflammatory bowel disease and 

ankylosing spondylitis, and our data suggest they may differentiate GD and HT (FDR 

0.003).

We searched for non-MHC SNPs with differential effect sizes with TPOA positivity in T1D, 

the subgrouping of T1D for which we could most confidently reject H0. Previous work [3] 

identified several loci potentially associated with TPO-Ab positivity by restricting attention 

to known T1D loci, enabling use of a larger dataset than was available to us. We list the top 

ten SNPs for each summary statistic for TPO-Ab positivity in supplementary table 8. 

Subgroup-differentiating SNPs included several near known T1D loci: CTLA4 (rs7596727), 

BACH2 (rs11755527), RASGRP1 (rs16967120) and UBASH3A (rs2839511) [17]. These 

loci agreed with those found by Plagnol et al [3], but our analysis used only available 

genotype data, without external information on confirmed T1D loci. We were not able to 

replicate the same p-values due to reduced sample numbers.

Finally, we analysed non-MHC SNPs with varying effect sizes with age at diagnosis in T1D 

(supplementary table 9). This implicated SNPs in or near CTLA4 (rs2352551), IL2RA 
(rs706781), and IKZF3 (rs11078927).

Discussion

The problem we address is part of a wider aim of adapting GWAS to complex disease 

phenotypes. As the body of GWAS data grows the analysis of between-disease similarity 

and within-disease heterogeneity has led to substantial insight into shared and distinct 

disease pathology [6, 7, 2, 20, 21]. We seek in this paper to use genomic data to infer 

whether such disease subtypes exist. Our problem is related to the question of whether two 

different diseases share any genetic basis [18] but differs in that the implicit null hypothesis 

relates to genetic homogeneity between subgroups rather than genetic independence of 

separate diseases.
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Our test strictly assesses whether a set of SNPs have different effect sizes in case subgroups. 

We interpret this as ‘differential causative pathology’, which encompasses several disease 

mechanisms, discussed in the supplementary note. In some cases, if subgroups are defined 

on the basis of the presence or absence of a known disease risk factor, the heritability of the 

disease will differ between subgroups, with corresponding changes in variant effect sizes.

We use ‘absolute covariance’ ρ preferentially (see supplementary table 1) because we expect 

that Za and Zd will frequently co-vary positively and negatively at different SNPs in the 

same analysis; for instance, if some variants are deleterious only for subgroup 1 and others 

only for subgroup 2. A potential advantage of our symmetric model is the potential to 

generate Zd scores from ANOVA-style tests for genetic homogeneity between three or more 

subgroups, in which case reconstructed Z scores would be directionless.

Aetiologically and genetically heterogeneous subgroups within a case group correspond to 

substructures in the genotype matrix. Information about such substructures is lost in a 

standard GWAS, which only uses the column-sums (MAFs) of the matrix (linear-order 

information). Data-driven selection of appropriate case subgroups and corresponding 

analyses of these subgroups can use more of the remaining quadratic-order information the 

matrix contains. Indeed a ‘two-dimensional’ GWAS approach (using Za and Zd) instead of a 

standard GWAS (using only Za) may improve SNP discovery, as we found for PTPN22 in 

RA/T2D. However, this can only be the case if the subgroups correspond to different variant 

effect sizes; for other subgroupings, a two-dimensional GWAS will only add noise.

While it seems appealing to use this method to search for some ‘optimal’ partition of 

patients, we prefer to focus on testing subgroupings derived from independent clinical or 

phenotypic data. Firstly, it is difficult to characterise subgroupings as ‘better’ or ‘worse’, and 

no one parameter can parametrise the degree to which two subgroups differ; parameters π3, 

τ, and ρ all contribute, and attempts to test the hypothesis using a single measure such as 

genetic correlation have serious shortcomings (supplementary note). Secondly, even if 

subgroups could meaningfully be ranked, the search space of potential subgroupings of a 

case group is prohibitively large (2N for N cases), making exhaustive searches difficult.

We demonstrated that effect sizes of T1D-causative SNPs differ with age at disease 

diagnosis. The strong negative correlation observed (figure 5) was consistent with an 

increased total genetic liability in samples with earlier age of diagnosis, a finding supported 

by candidate gene studies [14, 15, 16] and epidemiological data [13]. Such a pattern arises 

naturally from a liability threshold model where total liability depends additively on both 

genetic effects and environmental influences which accumulate with age (supplementary 

note).

Our method necessarily dichotomises the multitude of mechanisms of heterogeneity, 

although there are many diverse forms (supplementary table 1, supplementary note). There 

is potential to further dissect the mechanisms of disease heterogeneity by incorporating 

estimations of genetic correlation [18] or assessing evidence for liability threshold models 

[22]. Similar mixture-Gaussian approaches may also be adaptable to this purpose, by 

assessing other families of effect size distributions.
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Our method adds to the current body of knowledge by extracting additional information 

from a disease dataset over a standard GWAS analysis, and determines if further analysis of 

disease pathogenesis in subgroups is justified. Our approach is analogous to the intuitive 

method of searching for between-subgroup differences in SNPs with known disease 

associations [3] but does not restrict attention to strong disease associations, enabling use of 

information from disease-associated SNPs which do not reach significance. Our 

parametrisation of effect size distributions allows insight into the structure of the genetic 

basis of the disease and potential subtypes, improving understanding of genotype-phenotype 

relationships.

Methods

Ethics Statement

This paper re-analyses previously published datasets. All patient data were handled in 

accordance with the policies and procedures of the participating organisations.

Joint distribution of variables Za, Zd

We assume that SNPs may be divided into three categories, as described in the results 

section (figure 1). Under these assumptions, Za and Zd scores have the joint pdf given by 

equation 1. We define Θ is the vector of values (π1,π2,π3,τ,σ2,σ3,ρ). Z scores Za and Zd are 

reconstructed from GWAS p-values for SNP associations. In practice, since our model is 

symmetric, we only require absolute Z scores, without considering effect direction.

For sample sizes n1, n2 and 97.5% odds-ratio quantile α, the expected observed standard 

deviation of Z scores (that is, σ2, σ3, and τ) is given by

(3)

(supplementary note).

Definition and distribution of PLR statistics

For a set of observed Z scores Z = (Za, Zd) we define the joint unadjusted pseudo-likelihood 

PLda(Z|Θ) as

(4)

where the term C log(π1π2π3) is included to ensure identifiability of the model [5], and 

weights wi are included to adjust for LD (see below).

We now set
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(5)

recalling that H0 is the subspace of the parameter space H1 satisfying σ3 = 1 and ρ = 0.

If data observations are independent, uPLR reduces to a likelihood ratio. Under H0, the 

asymptotic distribution of uPLR is then

(6)

according to Wilk’s theorem extended to the case where the null value of a parameter lies on 

the boundary of H1 (since ρ = 0 under H0) [23].

The empirical distribution of uPLR may substantially majorise the asymptotic distribution 

when τ ≈ 1. In the full model, the marginal distribution of Za has more degrees of freedom 

(four; π1, π2, σ2, σ3) than it does under the null model (two; π2, σ2, as σ3 ≡ 1). This can 

mean that certain distributions of Za can drive high values of uPLR independent of the 

values of Zd (supplementary note), which is unwanted as the values Za reflect only case/

control association and carry no information about case subgroups. If observed uPLRs from 

random subgroups (for which τ = 1 by definition) are used to approximate the null uPLR 
distribution, this effect would lead to serious loss of power when τ >> 1.

This effect can be managed by subtracting a correcting factor based on the pseudo-likelihood 

of Za alone, which reflects the contribution of Za values to the uPLR. We define

(7)

that is, the marginal likelihood of Za. Given  as defined above, we define

(8)

We now define the PLR as

(9)
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The action of f(Za) leads to the asymptotic distribution of PLR slightly minorising the 

asymptotic mixture-χ2 distribution of uPLR, to differential degrees dependent on the value 

of τ (see supplementary note).

We define the similar test statistic cPLR:

(10)

noting that the expression

can be considered as a likelihood conditioned on the observed values of Za. Now

(11)

The empirical distribution of cPLR for random subgroups majorises the empirical 

distribution of PLR (supplementary note). Furthermore, the approximation of the empirical 

distribution of cPLR by its asymptotic distribution is good, across all values of τ; that is, 

across the whole null hypothesis space.

Our approach is to compare the PLR of a test subgroup to the cPLR of random subgroups, 

which constitutes a slightly conservative test under the null hypothesis (see supplementary 

note).

Allowance for linkage disequilibrium

The asymptotic approximation of the pseudo likelihood-ratio distribution breaks down when 

values of Za, Zd are correlated due to LD. One way to overcome this is to ‘prune’ SNPs by 

hiererarchical clustering until only those with negligible correlation remain. A disadvantage 

with this approach is that it is difficult to control which SNPs are retained in an unbiased 

way without risking removal of SNPs which contribute greatly to the difference between 

subgroups.

We opted to use the LDAK algorithm [4], which assigns weights to SNPs approximately 

corresponding to their ‘unique’ contribution. Denoting by ρij the correlation between SNPs i, 
j, and d(i,j) their chromosomal distance, the weights wi are computed so that
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(12)

is close to constant for all i, and wi > 0 for all i. The motivation for this approach is that Σ i≠j 

ρij
2 represents the replication of the signal of SNP i from all other SNPs.

This approach has the advantage that if n SNPs are in perfect LD, and not in LD with any 

other SNPs, each will be weighted 1/n, reducing the overall contribution to the likelihood to 

that of one SNP. In practice, the linear programming approach results in many SNP weights 

being 0. Using the LDAK algorithm therefore allows more SNPs to be retained and 

contribute to the model than would be retained in a pruning approach.

A second advantage of LDAK is that it homogenises the contribution of each genome region 

to the overall pseudo-likelihood. Many modern microarrays fine-map areas of the genome 

known or suspected to be associated with traits of interest [24] which could theoretically 

lead to peaks in the distribution of SNP effect sizes, disrupting the assumption of normality. 

LD pruning and LDAK both reduce this effect by homogenising the number of tags in each 

genomic region.

We adapted the pseudo-likelihood function to the weights by multiplying the contribution of 

each SNP to the log-likelihood by its weight (equation 4), essentially counting the ith SNP 

wi times over. Adjusting using LDAK was effective in enabling the distributions of PLR to 

be well-approximated by mixture-χ2 distributions of the form 2 (supplementary plots 4a, 

4b, 4c).

E-M algorithm to estimate model parameters

We use an expectation-maximisation algorithm [25, 26] to fit maximum-PL parameters. 

Given an initial estimate of parameters Θ0 = (π1
0,π2

0,τ0,σ2
0,σ2

0,ρ0) we iterate three main 

steps:

1. Define for SNP s with Z scores Zd
(s), Za

(s)
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(13)

2. For g ∈ (1,2,3), and LDAK weight ws for SNP s set

(14)

3. Set

(15)

Step 3 is complicated by the lack of closed form expression for the maximum likelihood 

estimator of ρ (because of the symmetric two-Gaussian distribution of category 3), requiring 

a bisection method for computation. The algorithm is continued until |PLR(Zd,Za|Θi) - 

PLR(Zd,Za|Θi-1)| < ϵ; we use ϵ = 1 × 10-5.

The algorithm can converge to local rather than global minima of the likelihood. We 

overcome this by initially computing the pseudo-likelihood of the data at 1000 points 

throughout the parameter space, retaining the top 100, and dividing these into 5 maximally-

separated clusters. The full algorithm is then run on the best (highest-PL) point in each 

cluster.

An appropriate choice of Θ0 can speed up the algorithm considerably; for simulations, we 

begin the model at previous maximum-PL estimates of parameters for earlier simulations.

Maximum-cPL estimations of parameters were made using generic numerical optimisation 

with the optim function in R. Prior to applying the algorithm, parameters π2 and σ2 are 

estimated as maximum-PL estimators of the objective function
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(16)

where wi is the weight for SNP i (see supplementary note for rationale). The conditional 

pseudo-likelihood was maximised over the remaining parameters.

The algorithm and other processing functions are implemented in an R package available at 

https://github.com/jamesliley/subtest

Properties and assumptions of the PLR test

Our assumption that (Za,Zd) follows a mixture Gaussian is generally reasonable for complex 

phenotypes with a large number of associated variants [8] and our adjustment for the 

distribution of Za (essentially conditioning on observed Za) reduces reliance on this 

assumption. If subgroup prevalence is unequal between the study group and population, our 

method can still be used with adaptation (supplementary note).

Our test is robust to confounders arising from differential sampling to the same extent as 

conventional GWAS. For example, if subgroups were defined based on population structure, 

and population structure also varied between the case and control group, SNPs which 

differed by ancestry would also appear associated with the disease, leading to a loss of 

control of type-1 error rate. However, the same study design would also lead to identification 

of spurious association of ancestry-associated SNPs with the phenotype in a conventional 

GWAS analysis. As for GWAS, this effect can be alleviated by including the confounding 

trait as a covariate when computing p-values (supplementary note).

Prioritisation of single SNPs

An important secondary problem to testing H0 is the determination of which SNPs are likely 

to be associated with disease heterogeneity. Ideally, we seek a way to test the association of 

a SNP with subgroup status (ie, Zd), which gives greater priority to SNPs potentially 

associated with case/control status (ie, high Za).

An effective test statistic meeting these requirements is the Bayesian conditional false 

discovery rate (cFDR) [6]. It tests against the null hypothesis H'0 that the population minor 

allele frequencies of the SNP in both case subgroups are equal (ie, that the SNP does not 

differentiate subgroups), but responds to association with case/control status in a natural way 

by relaxing the effective significance threshold on |Zd|. This relaxation of threshold only 

occurs if there is systematic evidence that high |Zd| scores and high |Za| scores typically co-

occur. The test statistic is direction-independent.

Given a set of observed Za and Zd values Za
(i), Zd

(i), with corresponding two-sided p values 

pai, pdi, the cFDR for SNP j is defined as
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(17)

The value gives the false-discovery rate for SNPs whose p-values fall in the region [0,pdj] × 

[0,paj]; this can be converted into a false-discovery rate amongst all SNPs for whom X4 

passes some threshold [7].

We discuss three other single-SNP test statistics in the supplementary note, which test 

against different null hypotheses. If the hypothesis H0' is to be tested, then we consider the 

cFDR the best of these.

Contour plots of the test statistics for several datasets are shown in supplementary figures 7, 

8, and 9.

Genetic correlation testing

Given the correlation between Zd and Za in the age-at-diagnosis analysis, methods to 

estimate narrow-sense genetic correlation (rg) [18, 19] may be adaptable to the subgrouping 

question by estimating rg across a set of SNPs between case/control traits of interest, with 

the potential advantage of characterising heterogeneity using a single widely-interpretable 

metric. This may be between Z scores derived from comparing the control group to each 

case subgroup, testing under the null hypothesis rg = 1 (method 1); or between the familiar 

Za and Zd, under the null hypothesis rg = 0 (method 2).

We explored these methods in supplementary note. We show that method 1 leads to 

systematically high false positive rates, as rg is also reduced from 1 in subgroupings that are 

independent of the overall disease process (e.g. hair colour in T2D). We show that method 2 

is considerably less powerful than our method because it tests a narrower definition of H1 

which does not take account of the marginal variances of the distribution of Zd, Za in 

category 3, and requires that correlation between Zd and Za be always positive or always 

negative, in contrast to our symmetric model (figure 1). Indeed, parameter ρ estimates an 

analogue of rg accounting for simultaneous correlation and anticorrelation.

Methods to compute rg were not explicitly proposed as a method for subgroup testing, and 

our analysis does not indicate any general shortcomings. However, comparison with rg based 

approaches places our method in the context of established methodology, demonstrating the 

necessity of considering both variance parameters (τ, σ3) and covariance parameters (ρ) in 

testing a subgrouping of interest.

Description of GWAS datasets

ATD samples were genotyped on the ImmunoChip [24] a custom array targeting putative 

autoimmune-associated regions. Data were collected for GWAS-like analyses of dense SNP 

data [12]. The dataset comprised 2282 cases of Graves’ disease, 451 cases of Hashimoto’s 

thyroiditis, and 9365 controls.
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T1D samples were genotyped on either the Illumina 550K or Affymetrix 500K platforms, 

gathered for a GWAS on T1D [17]. We imputed between platforms in the same way as the 

original GWAS. The dataset comprised genotypes from 5908 T1D cases and 8825 controls, 

of which all had measured values of TPO-Ab, 3197 had measured IA2-Ab, 3208 had 

measured GAD-Ab, and 2240 had measured PCA-Ab. Comparisons for each autoantibody 

were made between cases positive for that autoantibody, and cases not positive for it. We did 

not attempt to perform comparisons of individuals positive for different autoantibodies (for 

instance, TPO-Ab positive vs IA2-Ab positive) because many individuals were positive for 

both.

To generate summary statistics corresponding to geographic subgroups, we considered the 

subgroup of cases from each of twelve regions and each pair of regions against all other 

cases (78 subgroupings in total). To maximise sample sizes, we considered T1D cases as 

‘controls’ and split the control group into subgroups.

Quality control

Particular care had to be taken with quality control, as Z-scores had to be relatively reliable 

for all SNPs assessed, rather than just those putatively reaching genome-wide significance. 

For the T1D/T2D/RA comparison, which we re-used from the WTCCC, a critical part of the 

original quality control procedure was visual analysis of cluster plots for SNPs reaching 

significance, and systematic quality control measures based on differential call rates and 

deviance from Hardy-Weinberg equilibrium (HWE) were correspondingly loose [10]. Given 

that we were not searching for individual SNPs, this was clearly not appropriate for our 

method.

We retained the original call rate (CR) and MAF thresholds (MAF ≥ 1%, CR ≥ 95% if MAF 

≥ 5%, CR ≥ 99% if MAF <5%) but employed a stricter control on Hardy-Weinberg 

equilibrium, requiring p ≥ 1 × 10-5 for deviation from HWE in controls. We also required 

that deviance from HWE in cases satisfied p ≥ 1.91 × 10-7, corresponding to |z|≤ 5. The 

looser threshold for HWE in cases was chosen because deviance from HWE can arise due to 

true SNP effects [27]. We also required that call rate difference not be significant (p ≥ 1 × 

10-5) between any two groups, included case-case and case-control differences. Geographic 

data was collected by the WTCCC and consisted of assignment of samples to one of twelve 

geographic regions (Scotland, Northern, Northwestern, East and West Ridings, North 

Midlands, Midlands, Wales, Eastern, Southern, Southeastern, and London [10]). In 

analysing differences between autoimmune diseases, we stratified by geographic location; 

when assessing subgroups based on geographic location, we did not.

For the ATD and T1D data, we used identical quality control procedures to those employed 

in the original paper [12, 17]. We applied genomic control [28] to computation of Za and Zd 

scores except for our analysis of ATD (following the original authors [12]) and our 

geographic analyses (as discussed above). In all analyses except where otherwise indicated 

we removed the MHC region with a wide margin (≈ 5Mb either side).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of three-categories model. Zd and Za are Z scores derived from GWAS p-values 

for allelic differences between case subgroups (1 vs 2), and between cases and controls (1+2 

vs C) respectively (left). Within each category of SNPs, the joint distribution of (Zd,Za) has a 

different characteristic form. In category 1, Z scores have a unit normal distribution; in 

category 2, the marginal variance of Za can vary. The distribution of SNPs in category 3 

depends on the main hypothesis. Under H0 (that all disease-associated SNPs have the same 

effect size in both subgroups), only the marginal variance of Zd may vary; under H1 (that 

subgroups correspond to differential effect sizes for disease-associated SNPs), any 

covariance matrix is allowed. The overall SNP distribution is then a mixture of Gaussians 

resembling one of the rightmost panels, but with SNP category membership unobserved. 

Visually, our test determines whether the observed overall Zd, Za distribution more closely 

resembles the bottom rightmost panel than the top.
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Figure 2. 
QQ plot from simulations demonstrating type 1 error rate control of PLR test. PLR values 

for test subgroups under H0 with either τ = 1 (random subgroups; grey) or τ > 1 (genetic 

difference between subgroups, but independent of main phenotype; blue) with cPLR values 

for random subgroups (black) and against proposed asymptotic distribution under simulation 

 solid red line; 99% confidence limits dashed red line). The distribution of 

cPLR for random subgroups majorises the distribution of PLR, meaning the PLR-based test 

is conservative. Further details are shown in the supplementary note.
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Figure 3. 
Observed absolute Za and Zd for T1D/RA. Colourings correspond to posterior probability of 

category membership under full model (see triangle): grey - category 1, blue - category 2, 

red -category 3. Contours of the component Gaussians in the fitted full model are shown by 

dotted lines.
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Figure 4. 
Power of PLR to reject H0 (genetic homogeneity between subgroups) depends on the 

number of SNPs in category 3 and the underlying values of model parameters σ2, σ3, τ, ρ. 

Dependence on number of case/control samples arises through the magnitudes of σ3 and τ 
(supplementary note). Leftmost figure shows power estimates for various values of π3, σ3, τ, 

ρ. Value N is the approximate number of SNPs in category 3, (∝π3). Each simulation was 

on 5 × 104 simulated autosomal SNPs in linkage equilibrium. Value ρ/(σ3τ) is the absolute 

correlation between Za and Zd in category 3. Also see supplementary figure 3.

Rightmost figure shows power of PLR to detect differences in genetic basis of T1D and RA 

subgroups of a combined autoimmune dataset, downsampling to varying numbers of cases 

(X axis). PLR is compared with: power to find ≥ 1 SNP with Zd score reaching genome-

wide significance (GWS, blue; p ≤ 5 × 10-8) or Bonferroni-corrected significance (BCS, 

green; p ≤ 0.05/(total # of SNPs)); and power to detect any SNP with Za score reaching 

genome-wide significance and Zd score reaching Bonferroni-corrected significance (sub-

BCS, grey; p ≤ 0.05/(total # of SNPs with Za reaching GWS)). Error bars show 95% CIs. 

Circles/solid lines for each colour show power for all SNPs, triangles/dashed lines for all 

SNPs except rs17696736. Power for sub-BCS drops dramatically but power for PLR is not 

markedly affected, indicating relative robustness of PLR to single-SNP effects.
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Figure 5. 
Za and Zd scores for age at diagnosis in T1D, excluding MHC region. Colour corresponds to 

posterior probability of category 2 membership in null model (since categories in full model 

are assigned on the basis of correlation), with black representing a high probability. Zd and 

Za are negatively correlated (p = 8.7 × 10-5 with MHC included, p = 0.002 with MHC 

removed) after accounting for LD using LDAK weights, and weighting by posterior 
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probability of category 2 membership in the null model, to prioritise SNPs further from the 

origin
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Table 1

Interpretation of parameter values in the fitted model. Parameters τ, σ2 and σ3 are dependent on sample sizes, 

but can be converted to sample-size independent forms (see supplementary note)

Model Interpretation

π1 H0 / H1 Proportion of SNPs not associated with case/control (category 1)

π2 H0 / H1 Proportion of SNPs associated with case/control status but not subgroup status (category 2)

π3 H0 / H1 Proportion of SNPs associated with subgroup status (category 3)

τ H0 / H1 Standard deviation of observed Zd scores (effect sizes for subgroup status) in category 3

σ2 H0 / H1 Standard deviation of observed Za scores (effect sizes for case/control status) in category 2

σ3 H1 only Standard deviation of observed Za scores (effect sizes for case/control status) in category 3

ρ H1 only ‘Absolute covariance’ between Zd scores (effect sizes for subgroup status) and Za scores (effect sizes for case/control status) in 
category 3
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Table 2

Fitted parameter values for models of T1D/RA, T1D/T2D, T2D/RA, and GD/HT. H1 is the null hypothesis 

(under which σ3 = 1, ρ = 0) that SNPs differentiating the subgroups are not associated with the overall 

phenotype; H1 is the alternative (full model). p values for pseudo-likelihood ratio tests are also shown.

π1 π2 π3 σ2 σ3 τ ρ p-val

T1D/RA H1 0.997 5.69 × 10-4 2.06 × 10-3 2.76 1.39 1.74 1.82 3.2 × 10-12

H0 0.997 6.26 × 10-4 2.48 × 10-3 2.71 - 1.67 -

T1D/T2D H1 0.573 0.426 9.63 × 10-4 1.00 2.03 2.25 1.68 1.6 × 10-9

H0 0.578 0.421 8.91 × 10-4 1.00 - 2.21 -

T2D/RA H1 0.573 0.426 8.71 × 10-4 1.00 2.23 1.75 1.69 5.1 × 10-9

H0 0.910 8.05 × 10-4 0.0892 2.25 - 0.97 -

GD/HT H1 0.506 0.487 0.007 1.12 2.90 1.65 2.61 2.2 × 10-15

H0 0.493 0.079 0.428 1.68 - 1.03 -
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