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Abstract

Background: As one of the most common types of co-regulatory motifs, feed-forward loops (FFLs) control many cell
functions and play an important role in human cancers. Therefore, it is crucial to reconstruct and analyze cancer-related FFLs
that are controlled by transcription factor (TF) and microRNA (miRNA) simultaneously, in order to find out how miRNAs and
TFs cooperate with each other in cancer cells and how they contribute to carcinogenesis. Current FFL studies rely on
predicted regulation information and therefore suffer the false positive issue in prediction results. More critically, FFLs
generated by existing approaches cannot represent the dynamic and conditional regulation relationship under different
experimental conditions.

Methodology/Principal Findings: In this study, we proposed a novel filter-wrapper feature selection method to accurately
identify co-regulatory mechanism by incorporating prior information from predicted regulatory interactions with parallel
miRNA/mRNA expression datasets. By applying this method, we reconstructed 208 and 110 TF-miRNA co-regulatory FFLs
from human pan-cancer and prostate datasets, respectively. Further analysis of these cancer-related FFLs showed that the
top-ranking TF STAT3 and miRNA hsa-let-7e are key regulators implicated in human cancers, which have regulated targets
significantly enriched in cellular process regulations and signaling pathways that are involved in carcinogenesis.

Conclusions/Significance: In this study, we introduced an efficient computational approach to reconstruct co-regulatory
FFLs by accurately identifying gene co-regulatory interactions. The strength of the proposed feature selection method lies in
the fact it can precisely filter out false positives in predicted regulatory interactions by quantitatively modeling the complex
co-regulation of target genes mediated by TFs and miRNAs simultaneously. Moreover, the proposed feature selection
method can be generally applied to other gene regulation studies using parallel expression data with respect to different
biological contexts.
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Introduction

Central to all biological organisms, the deciphering of compli-

cated gene regulations between a group of regulators and target

genes is crucial to learn the intracellular physiological activities

and functions in the molecular level. It also helps to understand the

internal mechanisms of complex diseases in vivo. The regulators in

gene regulations include transcription factors (TFs), which are

proteins binding to specific sites in the promoter regions of target

genes, thus activating or inhibiting the expression of them. Other

regulators include endogenous small (19–24 nucleotides) non-

coding RNAs (miRNAs) that involve in the regulation of gene

expression at the post-transcriptional level [1] by inhibiting the

translation procedure or degrading target mRNAs. It has been

found that both TFs and miRNAs play an important role in

human cancers [1–5] by means of controlling many biological

processes in cancer development and progression.

Many studies have found that TFs and miRNAs are primary

gene regulators in animals and function in a similar regulatory

logic [6]. Hence TFs and miRNAs can regulate the same target

gene cooperatively at the transcriptional and post-transcriptional

level respectively. On the other hand, miRNAs are regulated by

TFs during their transcription from the genome within the nucleus

and the expression of TFs could also be modulated by miRNAs.

Therefore, gene regulations by TFs and miRNAs are often tightly

coupled, rendering a particular ‘Feed-forward loops’ (FFLs) [7]

structure with closed regulatory circuits. FFLs have been

demonstrated as one ofthe most common types of co-transcrip-

tional motifs [8] and it has been reported that hundreds of

miRNA-controlled FFLs are available at the genome level [9,10].
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By forming functional modules in gene regulatory networks

(GRNs), FFLs control many cell functions and also play an

important role in human cancers, for examples, by supporting

oncogenic properties of oncogenes [11] and influencing a plenty of

target genes in tumor cells by diverse biological pathways [12].

Thus, it becomes crucial to reconstruct and analyze TF–miRNA

co-regulatory FFLs in human cancers, in order to find out how

miRNAs and TFs cooperate with each other in cancer cells and

how they contribute to carcinogenesis.

One of the challenges in studying FFLs is the incomplete

information of regulatory targets. As there are only a small

number of experimentally verified targets, most FFL studies adopt

regulatory information from computational prediction. For

example, in order to find cancer-related miRNAs and TFs, Yan

et al. extracted and ranked FFLs from predicted TF and miRNA

targets using TRANSFAC and TargetScan [13]. Ye et al. also used

FFLs obtained from other prediction resources to construct and

analyze miRNA and TF co-regulatory network in T-cell acute

lymphoblastic leukemia [14]. However, these predicted results

contain a large proportion of false positives, and more critically

FFLs generated by above approaches are static and cannot

represent the dynamic and conditional regulation relationships

under different experimental conditions.

Currently, parallel microarray experiments have been per-

formed to investigate gene and miRNA expression in cancers

simultaneously [15,16], which provides a great opportunity to

address aforementioned issues by using expression data in

reconstruction of TF–miRNA co-regulatory FFLs. Recently, Lu

et al. proposed a Lasso regression model that utilizes computa-

tionally predicted regulatory interactions and cancer parallel

expression data to infer miRNA-target regulatory networks [17],

Yu et al. used stepwise linear regression model (STEP) that also

integrates predicted regulations with expression data to obtain a

combinatorial network of TF and miRNA in cancer [18]. These

two papers shed light on methodology for building miRNA-

involved GRNs and revolutionized our understanding of the

implication of TFs and miRNAs in human cancers. However,

study of FFLs requires precise co-regulatory information, as FFLs

represent themselves as a subtle kind of co-regulatory motif.

Therefore more sophisticated computational methods are pre-

ferred to accurately reconstruct FFLs from expression data with

the aid of predicted regulatory interactions.

In this study, we proposed a novel computational method based

on feature selection to reconstruct TF-miRNA co-regulatory FFLs

in human cancers. As a powerful machine learning technology,

feature selection has been widely used in many areas of

bioinformatics, such as gene selection from microarray data

[19], inference of gene networks [20], content and signal analysis

of sequence [21] and mass spectra analysis [21]. We employed two

popular feature selection strategies: filter and wrapper, to

efficiently discover co-regulations of TFs and miRNAs from

parallel microarray data of human cancers. Our results showed

that the proposed method significantly reduced the false discovery

rate in the inferred regulatory relationships, leading to more

accurate FFL reconstruction. Further analysis of the FFLs

identified by the proposed method showed that they included

many known cancer-related genes and miRNAs, indicating their

functional importance in human cancers.

Materials and Methods

Predicted regulatory interactions
Three types of regulatory interactions were investigated in this

study: TF to miRNA (TF-miRNA), TF to gene (TF-gene), and

miRNA to gene (miRNA-gene). We downloaded predicted TF-

miRNA interactions from cGRNB website [18] with 11,599

regulatory pairs. To retrieve candidate TF-gene interactions, TF

binding sites were first extracted from the TFbsConsSites file from

UCSC [22] by following the procedure described in [18] and then

used to scan the 1 kb upstream to 0.5 kb downstream of the

transcription start sites of all reference genes in UCSC. The results

were further combined to 7,059 TF-gene interactions from TRED

database [23], leading to totally 130,338 TF-gene interactions

including 16,534 target genes and 214 human TFs. For miRNA-

gene interactions, the results of three widely used miRNA target

prediction tools: PicTar [24], TargetScan [25] and miRanda [26]

were obtained from miRGen database [27], which contain 75,968,

75,613 and 41,804 predicted miRNA-gene interactions respec-

tively. The union of the prediction results, including 118,408

miRNA-gene interactions with 276 human miRNAs and 10,255

target genes, were used for further investigation.

Parallel mRNA and miRNA expression datasets
We used two parallel mRNA and miRNA expression datasets

for human cancers, which represent miRNA and mRNA

expression data obtained from the same samples and under the

same experiment conditions. The first dataset includes NCI-60

mRNA expression data based on the Affymetrix HG-U133 chips

[16] and the parallel miRNA expression data [15] from CellMiner

website. This pan-cancer dataset includes totally 60 different

human cancer cell lines, originating from melanomas, leukemia

and other solid tumors such as breast, colon, ovarian, lung and

prostate cancer. This parallel expression dataset consists of totally

8,388 genes and 195 miRNAs [18]. The second parallel mRNA

and miRNA expression dataset adopted in this study consists of

111 prostate cancer and 28 normal prostate samples, including

373 miRNAs and 19,253 mRNAs [28]. This dataset is available at

the GEO database with accession number: GSE21032.

Feature selection for identifying regulatory interactions
For each target (mRNA or miRNA), the set of initial features

(i.e. all predicted TFs or miRNAs that regulate this target) usually

contains more than one element due to a large number of false

positives in the predicted results. Then the feature matrix has n

rows and m columns indicating the n regulators and their

expression values in m samples. As the first step, we filtered the

feature set of each target using an efficient mRMR method

(minimal-redundancy-maximal-relevance) [19] based on mutual

information, which is a widely used measure to define dependency

of variables. Specifically, let p(x) and p(y) be the marginal

probability distribution functions of two variables x and y and

p(x,y) be the joint probability distribution function, the mutual

information is defined as:

I(x; y)~

ðð
p(x,y)log

p(x,y)

p(x)p(y)
dxdy ð1Þ

Suppose a target x with expression value Ex has two regulators yi

and yj with expression values Eyi and Eyj. For example, if yi and yj

represent a miRNA and a TF then Eyi and Eyj will be obtained

from the parallel miRNA and mRNA expression data, respective-

ly. The final feature set S after the filter step will satisfy two criteria

used in the mRMR method, i.e. maximum relevance with the

target and the minimal redundancy between regulators (i.e. to

select regulators that have not only minimal redundancy in mutual

information with respect to existing regulators, but also maximal

mutual information with the target), as formulated by equation (2)

Reconstruction of TF-miRNA FFLs in Human Cancers
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and (3) respectively. Here I represents the mutual information of

two variables. From the ranking results of mRMR, we selected up

to 20 top candidate regulators that are most likely to have

interactions with the target for further investigation, which should

include all possible regulators.

maxD(S,x), D~
1

Sj j
X
yi[S

I(Eyi
; Ex) ð2Þ

minR(S), R~
1

Sj j2
X

yi ,yj[S

I(Eyi
,Eyj

) ð3Þ

Next, features of each target were further optimized by the

wrapper feature selection method, and in this step we employed a

recursive backward elimination procedure. We modeled expres-

sion values of target i (Exi) and its p regulators (Eyi1,…, Eyip) with

linear regression (Equation 4), where bi is the regression coefficient

and ei represents the error term or noise generated from the

regression process. For each time, we deleted the regulator with

the smallest regression coefficient from the featureset and repeated

the process above with the remaining regulators until the feature

set became empty. The optimal features were determined by

smallest p-value (less than 0.01) of the linear regression model

using F-test.

Exi
~b1Eyi1

z � � �zbpEyip
zei, i~1, � � � ,n ð4Þ

Reconstruction and validation of TF-miRNA co-regulatory
FFLs

The co-regulatory interactions identified by filter-wrapper

feature selection method consist of three kinds of regulatory

relationships: TF-gene, miRNA-gene and TF-miRNA. To recon-

struct co-regulatory FFLs, we performed an exhaustive search base

on depth-first method for all target genes in the results. For TF-

FFLs, first a list of potential target genes that are controlled by at

least one TF and miRNA were generated. The miRNA regulators

of each target gene were then examined one by one and a TF-FFL

was generated if the target gene and its miRNA regulator were

both controlled by a TF. For miRNA-FFLs, the same target gene

list was used and a miRNA regulating both a target gene in the list

and its TF was selected to build a miRNA-FFL. Finally, to identify

the composite-FFLs the reconstructed miRNA-FFLs were further

examined iteratively to see whether the TFs in these FFLs also

regulate the corresponding miRNAs.

To validate the FFLs reconstructed from parallel expression

dataset and prior information from predicted regulatory interac-

tions, we randomly selected the same number of interactions from

predicted regulatory pairs from which we reconstructed the FFLs

using above approach. This procedure was repeated 1,000 times to

generate the empirical distribution under the null hypothesis that

the FFLs reconstructed by our approach indeed arise by chance.

We then performed one-sample t-test based on the number of TF-

FFLs, miRNA-FFLs and composite-FFLs reconstructed from pan-

cancer dataset and calculated the p-value to determine whether

this null hypothesis can be rejected at significance level of 0.01.

In addition, to further validate the importance of FFLs to

cancer, we evaluated the performance of the identified FFLs in

classifying prostate cancer and normal samples using parallel gene

expression data. LIBSVM [29], a public SVM library, was selected

for classification. Leave-one-out cross validation (LOOCV), which

is the most objective and rigorous method to assess a classifier, was

adopted to evaluate the classification performance of FFLs. For

comparision, we also used a baseline method, in which the labels

of cancer and normal expression dataset were permuted 100 times.

For each time, SVM classifiers using the same FFLs were

generated from the permuted expression data and then tested

with the same evaluation procedure. The classification results

obtained from all permutation tests were averaged to get the

baseline performance.

Three classification performance measurements used in this

study, accuracy (Acc), sensitivity (Sn) and specificity (Sp) are defined

as folllows:

Acc~
TPzTN

TPzTNzFPzFN
ð5Þ

Sn~
TP

TPzFN
ð6Þ

Sn~
TN

TNzFP
ð7Þ

Here TP, TN, FP and FN represent true positive, true negative,

false positive and false negative, respectively. Meanwhile, since the

sizes of the cancer and normal samples are very different,

Matthews correlation coefficient (Mcc) was used, which is a

balanced measurement of the quality of classifications [30]:

Figure 1. Examples of the filter and wrapper feature selection
process. (A) An example showing mutual information of all regulators
in the filter feature selection process. We chose the top-ranking
regulators selected by mRMR, which demonstrate larger mutual
information values that indicate high relevance with the target gene.
(B) An example illustrating p-value change of linear regression model in
the wrapper feature selection process. When 17 features are removed,
the optimal p-value (marked by red ‘*’) found by wrapper feature
selection is 3.961024.
doi:10.1371/journal.pone.0078197.g001

Reconstruction of TF-miRNA FFLs in Human Cancers
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Mcc~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFP)(TPzFN)(TNzFP)(TNzFN)
p ð8Þ

In addition, we also plotted the receiver operator characteristic

(ROC) curves for performance comparison, in which the x-axis

represents 1- Sp and y-axis represents Sn.

Results

Filter-wrapper feature selection
An example of the filter-wrapper feature selection procedure

using the pan-cancer dataset is illustrated in Figure 1. In filter

feature selection, top-ranking regulators selected by mRMR

demonstrate large mutual information, indicating high relevance

with the target gene (Figure 1A). Figure 1B shows at the beginning,

there are totally 20 candidate features with possible false positives

and the p-value of associated linear regression model is 0.27. When

wrapper feature selection is performed, the corresponding p-value

dramatically decreases, suggesting a better model that is more

close to real gene regulation mechanism. The final model consists

of three regulators with an optimal p-value of 3.961024.

Furthermore, the boxplot of the p-values for all target investigated

in this study (Figure 2A) shows feature selection generally renders

more accurate regression models. We also evaluated the proposed

method by calculating the Pearson correlation coefficient (PCC), a

widely used measurement for identifying regulatory relationships

[31], between candidate regulators and target. As a result,

significantly higher PCCs (U-test p-value: 4.46102167) were

observed in the regulatory interactions after feature selection

(Figure 2B). Taken together, the filter-wrapper feature selection

method greatly improves the reliability of identified regulatory

interactions by accurately modeling parallel expression data and

efficiently removing falsely predicted interactions.

To further assess the performance of the proposed method, we

permuted the expression values of expression data randomly for

100 times and calculated false discoveryrate (FDR) by regarding

interactions generated from the randomized datasets as false

positives. For comparison, we also evaluated the performance of

two other methods: Lasso [17] and STEP [18]. The testing process

Figure 2. Evaluation of the proposed model. (A) P-values of the linear regression models for all target genes before and after feature selection.
P-values significantly decreased after feature selection was performed. (B) Pearson correlation coefficients (PCCs) between all target genes and their
regulators before and after feature selection. Higher PCCs (U-test p-value: 4.46102167) were observed in the final identified regulatory interactions.
doi:10.1371/journal.pone.0078197.g002

Table 1. Comparison of false discovery rate for different methods.

Method STEP Lasso Filter feature selection Filter-wrapper feature selection

FDR mean 0.33 0.23 0.11 0.06

FDR variance 1.93 1.23 1.17 0.38

doi:10.1371/journal.pone.0078197.t001

Reconstruction of TF-miRNA FFLs in Human Cancers
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was repeated 3 times and the results are shown in Table 1. With

comparable variance, the mean value of FDR for filter feature

selection is 0.11, which is significantly smaller than that of Lasso

and STEP. Furthermore, by using filter and wrapper feature

selection together, we observed a dramatically reduction in FDR

variance from 1.24 to 0.38, indicating better consistency and

robustness compared to other approaches. Furthermore, this

method yielded a mean FDR of 0.06, which is 5% better than the

filter method. Taken together, these results demonstrate the

superior performance of filter-wrapper feature selection method.

Finally, we investigated miRNA regulatory interactions before

and after feature selection. As shown in Table 2, there were totally

190,976 predicted miRNA-target interactions and most of them

were removed when feature selection was applied, indicating these

predicted regulatory interactions were either false positives or

unrelated to human cancers. In addition, by resorting to

miRTarBase [32] that contains experimentally validated miRNA

targets, we found the fraction of known regulatory interactions was

significantly increased in the results (Table 2, Hypergeometric-test,

p-value: 2.461023 for filter feature selection, 4.061024 for filter-

wrapper feature selection), which also supports the utility of feature

selection in discovering regulatory interactions.

TF and miRNA co-regulatory FFLs in human cancers
From the 24,033 regulatory interactions identified by feature

selection, we identified three types of FFLs in human cancers

(Figure 3A): TF-FFL, miRNA-FFL and composite-FFL. In the

TF-FFL, the TF is the main regulator that directly regulates the

miRNA and target gene while the miRNA also regulates the target

gene. The miRNA-FFL has the same structure with TF-FFL but

the main regulator is instead miRNA. The composite-FFL is a

combination of TF-FFL and miRNA-FFL, in which the TF and

the miRNA regulate each other while they also regulate the same

target gene. Note these FFLs have also been reported in other

studies of cancer [7,13,14,33,34], suggesting the prevalence of

FFLs in gene regulation and mechanism of carcinogenesis. From

the pan-cancer dataset, we successfully reconstructed 98 TF-FFLs,

106 miRNA-FFLs and 4 composite FFLs from the identified

regulatory interactions by feature selection. To further validate

these cancer-related FFLs, we performed one-sample t-test by

comparing reconstructed FFLs to those generated by randomly

selected interactions from predicted regulatory pairs (see Method),

and the average number of TF-FFLs, miRNA-FFLs and

composite FFLs in randomized interactions was 56, 26 and 0.2,

which were all significantly lower (p-value: 1.261028 for TF-FFL,

2.0610243 for miRNA-FFL, 9.9610211 for composite-FFL) than

the number of FFLs identified in human cancers.

Table 2. Statistics of miRNA-target regulatory interactions before and after feature selection.

miRNA-target interactions Before feature selection Filter feature selection Filter-wrapper feature selection

Total number 190976 4108 1696

Fraction of known interactions (%) 0.4 0.7 1.0

Hypergeometric-test p-value 2.461023 4.061024

doi:10.1371/journal.pone.0078197.t002

Figure 3. Co-regulated FFLsin human cancers. (A) Three types of
3-vertex FFLs found in human cancers. According to the relationship
between the miRNA and TF, the mixed FFLs found in human cancers
were classified as the TF-FFL (the TF directly regulates the miRNA and
target gene while the miRNA also regulates the target gene), miRNA-
FFL (the miRNA directly regulates the TF and target gene while the TF
also regulates the target gene) or composite-FFL (the TF and the miRNA
regulate each other while they also regulate the same target gene). (B)
Common TF-FFLs found in both pan-cancer and prostate cancer
datasets. Red circles indicate target genes; blue triangles and orange
squares indicate TFs and miRNAs.
doi:10.1371/journal.pone.0078197.g003

Table 3. Comparison of classification performance using
identified FFLs.

Data ACC SN SP MCC

Baseline 71.2% 86.5% 10.7% 20.033

Normal prostate FFLs 95.0% 96.4% 89.3% 0.846

Prostate cancer FFLs 95.7% 97.3% 89.3% 0.866

All FFLs 97.1% 99.1% 89.3% 0.909

doi:10.1371/journal.pone.0078197.t003

Reconstruction of TF-miRNA FFLs in Human Cancers
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Meanwhile, we reconstructed TF-miRNA co-regulatory FFLs

using the prostate cancer dataset and compared them with those

generated from normal prostate expression data. The number of

co-regulatory FFLs in prostate cancer was 110, and much more

FFLs (425 in total) were identified in normal prostate cells.

Moreover, we found the composition of FFLs was also significantly

different (chi-square test, p-value: 1.761022), for example, the

percentage of miRNA-FFLs was 79% in prostate cancer while this

number increased to 89% in normal prostate tissue. This

phenomenon implies many normal co-regulatory FFLs are

dramatically suppressed or altered in prostate cancer. Finally, we

compared the FFLs reconstructed from pan-cancer and prostate

cancer datasets and identified 2 TF-FFLs (Figure 3B) that

appeared in both datasets. Interestingly, the miRNAs in these

two FFLs, hsa-let-7a and hsa-let-7e, belong to the hsa-let-7 family

that is related to prostate [35], breast [36], lung [37] cancers.

In addition, we performed classification analysis of prostate

cancer and normal samples by using the expression data of

miRNAs and genes in aforementioned co-regulatory FFLs. The

performance of normal and cancer FFLs were evaluated by using

LOOCV and shown in Table 3. Both normal and cancer FFLs

yield very good classification results with Acc of 95.0% and 95.7%,

repectively. Also the Sn, Sp and Mcc measurements show the

classfication results of both kinds of FFLs are very balanced. In

addition, by using all these FFLs the classification performance is

further improved with Acc, Sn and Mcc increasing to 97.1%, 99.1%

and 0.909, respectively, which are signficantly better than those of

the baseline method. These results are also corroborated by the

ROC curves of above approaches (Figure 4), suggesting the

effectiveness of these FFLs in classifying prostate cancer and

normal samples and their importance to cancer.

Key players in cancer-related FFLs
We calculated the occurrence of the TFs and miRNAs in pan-

cancer and prostate cancer FFLs. As shown in Table 4, the top

ranked TF and miRNA are STAT3 and hsa-let-7e, respectively.

Interestingly, we found STAT3 appeared in 18 FFLs of prostate

cancer (Table 5), which was significantly enriched compared to

those in normal prostate tissue (chi-square test, p-val-

ue = 2.6610212) and in pan-cancer (chi-square test, p-val-

ue = 3.861023). This phenomenon implies STAT3 is implicated

in prostate cancer. It has been reported that STAT3 is

constitutively activated in prostate cancer tissue [38] and induction

of STAT3 expression can induce a malignant change of normal

prostate epithelial cells [39]. Furthermore, STAT3 has been

shown as a promising therapeutic target for prostate cancer [40].

All these observations demonstrate that STAT3 is an important

cancer-related TF and has a prominent impact on occurrence and

development of prostate cancer. Moreover, we discovered more

Figure 4. The receiver operator characteristic (ROC) curves of
classification approches using different identfied FFLs. The
gray, blue, green and red curves are the ROC curves of baseline (one
permutation), cancer FFLs, normal FFLs and all FFLs, respectively. The
largest area under the curve indicates the best performances of
classification.
doi:10.1371/journal.pone.0078197.g004

Table 4. Occurrence of the TFs and miRNAs in pan-cancer
and prostate cancer FFLs.

Prostate cancer Pan-cancer

TFs

Gene FFLs Rank FFLs Rank Total FFLs

STAT3 18 1 13 6 31

HAND1 9 3 14 4 23

E2F2 7 4 7 10 14

MYB 2 17 12 7 14

PATZ1 4 10 8 9 12

SRF 7 5 4 22 11

CUX1 6 6 1 32 7

NFYC 4 9 2 27 6

MYOD1 1 25 4 21 5

RREB1 1 26 3 24 4

IRF2 2 16 1 34 3

HSF1 1 23 1 33 2

miRNAs

hsa-let-7e 41 1 68 1 109

hsa-let-7b 19 2 18 4 37

hsa-let-7c 13 5 24 2 37

hsa-let-7a 16 3 18 3 34

hsa-let-7i 16 4 12 6 28

hsa-let-7d 2 6 15 5 17

hsa-let-7g 1 8 9 7 10

hsa-let-7f 2 7 8 11 10

doi:10.1371/journal.pone.0078197.t004

Table 5. Statistics of STAT3-involved FFLs.

Data STAT3 FFLs Total FFLs P-value

Prostate cancer 18 110

Pan-cancer 13 208 3.861023

Normal prostate 5 425 2.6610212

doi:10.1371/journal.pone.0078197.t005

Reconstruction of TF-miRNA FFLs in Human Cancers
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than 24% of the target of STAT3 found in pan-cancer also

appeared in prostate cancer. Further analysis of functional

enrichment of STAT3 targets in prostate cancer showed these

target played an important role in various cellular process

regulations implicated in carcinogenesis, for example, cell surface

binding and the activity regulation of different kinds of proteinases

(Table 6). The results of pathway analysis also indicated these

target were abundant in Fructose and mannose metabolism and

Notch signaling pathway.

TF-miRNA co-regulatory networks in human cancers
Based on the FFLs reconstructed in the two datasets, we further

built pan-cancer and prostate cancer specific TF-miRNA co-

regulatory networks, and visualized them by using Cytoscape

software [41]. As shown in Figure 5, the pan-cancer co-regulatory

network contains a total number of 213 nodes, including 37 TFs,

17 miRNAs and 159 other genes. The prostate cancer specific

network consists of 118 nodes with 27 TFs, 8 miRNAs and 83

other genes (Figure 6). We calculated the degree (connectivity) of

each node and found that the hub with the largest degree in both

networks was the same miRNA hsa-let-7e. This result agreed with

the FFLs analysis discussed above, indicating that hsa-let-7e may

be crucial in various human cancers. Further literature study

shows that hsa-let-7e is a member of let-7 family that emerged as

tumor suppressor [36] and has been reported to play an important

role in the regulation of oncogenes in multipletumors [42,43].

The subnetwork of hsa-let-7e retrieved from pan-cancer FFLs

(Figure 7) includes 57 target genes and 12 TFs including many

cancer-related genes such as MYB, E2F2 and HAND1. MYB is

proto-oncogene that has been identified to cause a range of

leukemia [44]. E2F2 is cell-cycle regulator whose expression level

increases in the prostate cancer tissue [45]. HAND1 has also been

reported to play a critical role in carcinogenesis process [46]. We

also conducted functional enrichment analysis of hsa-let-7e targets

in pan-cancer and the results in Table 7 show that they are

significantly enriched in five pathways (hsa05200: Pathways in

cancer; hsa05220: Chronic myeloid leukemia; hsa00270: Cysteine

and methionine metabolism; hsa05222: Small cell lung cancer;

hsa05219: Bladder cancer), among which four pathways are

related to human cancers. In all, these results show that hsa-let-7e

Table 6. Functional enrichment analysis of STAT3 targets in
prostate cancer.

Category Term Count P-value

GOTERM_MF_FAT GO:0004857,enzyme inhibitor activity 13 0.011

GOTERM_MF_FAT GO:0004866,endopeptidase inhibitor
activity

8 0.033

GOTERM_MF_FAT GO:0030414,peptidase inhibitor
activity

8 0.042

GOTERM_MF_FAT GO:0043499,eukaryotic cell surface
binding

3 0.048

KEGG_PATHWAY hsa00051:Fructose and mannose
metabolism

5 0.008

KEGG_PATHWAY hsa04330:Notch signaling pathway 5 0.024

doi:10.1371/journal.pone.0078197.t006

Figure 5. TF-miRNA co-regulatory network based on FFLs reconstructed from the pan-cancer dataset. Red circles indicate target genes;
blue triangles and orange squares indicate TFs and miRNAs. Red T shape edge: miRNA regulation; blue arrow shape edge: TF regulation.
doi:10.1371/journal.pone.0078197.g005
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can inhibit the process of tumor occurrence and development in

different tumors by regulating different oncogenes.

Discussion

Human cancers are usually characterized by proliferation of

versatile genes at different stages of development with complicated

regulatory mechanism, therefore reconstruction of gene regulation

in human cancers, especially with respect to its complex, dynamic

and conditional feature, can greatly advance our knowledge on the

origin of cancer and its malignant behavior. In this study, we

utilized filter-wrapper feature selection method to identify

regulatory interactions between target genes and regulators, from

which we further reconstructed TF-miRNA co-regulatory FFLs in

human cancers. The proposed method takes full advantage of

parallel expression datasets and prior information from predicted

regulatory interactions to model and characterize the complicated

co-regulation mechanism in human cancers. By this way, we

successfully filtered out a large proportion of false positives in the

predicted regulatory interactions and obtained more accurate

miRNA-TF co-regulatory FFLs by greatly reducing the false

discovery rate. The results show that by combining information

from TF binding site and seed–pairing of miRNA with the

dynamic expression of gene and miRNA in human cancers, we

can efficiently infer the complicated co-regulation mechanism of

miRNAs and TFs under different experimental conditions.

Recent studies [13,14] have shown that regulations by miRNAs

and TFs are tightly coupled in FFLs, which inspired us to

concentrate on the regulatory network based on FFLs that may

work as the ‘core’ of the whole gene regulatory network. In the key

player analysis, we found two important regulators STAT3 and

hsa-let-7e in human cancers. We also identified hsa-let-7e as the

hub of both networks in the analysis of the pan-cancer and

prostate cancer co-regulatory networks. Further topological

analysis shows that both degree distributions of the two networks

approximate power law functions with the degree exponents

smaller than 3, which indicate that both networks exhibit distinct

topological properties such as small-world, scale-free, nonrandom

and non-uniform [47], rendering high robustness against acciden-

tal node failures.

At the same time, we also found some of the results reported in

this study are consistent with the results found in other studies of

cancer FFLs. For example, in accordance with the conclusion that

has-let-7e is key regulator in human cancer, in the work of Ye et al.

[14], has-let-7e is also found to be related to T-cell acute

lymphoblastic leukemia. Also, we reported that MYB is a top-

ranked TF in pan-cancer and prostate cancer, which is also

Figure 6. TF-miRNA co-regulatory network based on FFLs reconstructed from the prostate cancer dataset. Red circles indicate target
genes; blue triangles and orange squares indicate TFs and miRNAs. Red T shape edge: miRNA regulation; blue arrow shape edge: TF regulation.
doi:10.1371/journal.pone.0078197.g006
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verified by the work of Yan et al. [13] that lists MYB as one of the

most frequently appeared TFs in FFLs across six cancer datasets

including prostate cancer. Moreover, in this study three cancer

related genes, E2F1, SP1 and STAT3, are found to form multiple

significant FFLs, which are also corroborated by the results in [13].

The similarity of these findings suggests the importance of these

Figure 7. Subnetwork of miRNA hsa-let-7e base on FFLs found in pan-cancer dataset. The subnetwork was drawn with all direct linked
nodes of hsa-let-7e, which is shown to be the hub of the co-regulatory network.
doi:10.1371/journal.pone.0078197.g007

Table 7. Functional enrichment analysis of hsa-let-7e targets in pan-cancer.

Category Term Count P-value

GOTERM_MF_FAT GO:0003700,transcription factor activity 23 3.861025

GOTERM_MF_FAT GO:0043565,sequence-specific DNA binding 17 8.661025

GOTERM_MF_FAT GO:0030528,transcription regulator activity 27 6.161024

GOTERM_MF_FAT GO:0003677,DNA binding 36 7.461024

GOTERM_MF_FAT GO:0016564,transcription repressor activity 10 0.001

GOTERM_MF_FAT GO:0016831,carboxy-lyase activity 3 0.027

GOTERM_MF_FAT GO:0003777,microtubule motor activity 4 0.030

GOTERM_MF_FAT GO:0003774,motor activity 5 0.037

GOTERM_MF_FAT GO:0008134,transcription factor binding 10 0.038

GOTERM_MF_FAT GO:0004652,polynucleotide adenylyltransferase activity 2 0.043

KEGG_PATHWAY hsa05200:Pathways in cancer 8 0.026

KEGG_PATHWAY hsa05220:Chronic myeloid leukemia 4 0.029

KEGG_PATHWAY hsa00270:Cysteine and methionine metabolism 3 0.037

KEGG_PATHWAY hsa05222:Small cell lung cancer 4 0.039

KEGG_PATHWAY hsa05219:Bladder cancer 3 0.054

doi:10.1371/journal.pone.0078197.t007
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miRNAs/genes in cancer and the reliability of the method

proposed in this study.

While our approach has demonstrated its utility in reconstruc-

tion of co-regulatory FFLs, it is limited to studies where the

expression of both gene and miRNA are experimentally deter-

mined. However it is expected that more parallel miRNA and

mRNA expression datasets will be available given the fact that

many related researches are now underway or will be conducted in

the near future. In addition, high-throughput technologies, such as

microarrays and next-generation sequencing are becoming cost-

efficient and therefore affordable in caner studies with a large

number of patients involved. On the other hand, the FFLs

identified in this work can be further refined if knowledge of

human cancers can be applied in the modeling procedure,

especially information regarding cancer-related miRNAs and

TFs that have verified functional roles and altered expression in

human cancers. Finally, in this work we focused on 3-vertex FFLs

since they are the most prevalent and representative [7,13,14]. In

the future work we will take other types of FFLs, such as FFLs with

4 vertexes [7], into account and analyze them in more

comprehensive ways, for example, by exploring the causal

regulatory relationships of miRNA-gene and TF-gene [19], or

modeling the difference of regulation mechanisms of TFs and

miRNAs to specific target genes.

Conclusions

To investigate the co-regulatory mechanism in human cancers,

we proposed anovel filter-wrapper feature selection method to

accurately identify dynamic and conditional regulation relation-

ships by integrating prior regulation information with parallel

expression data. Our results showed the proposed method

achieved better performance with much lower false discovery rate

than existing approaches. By applying this method to two human

cancer datasets, we successfully reconstructed co-regulatory FFLs

mediated by TFs and miRNAs. Moreover, the indentified FFLs

showed effectiveness in classifying prostate cancer and normal

samples. Further analysis showed that the top-ranking regulator

STAT3 was significantly enriched in cancer-related FFLs,

suggesting its crucial regulatory role in human cancers. Mean-

while, another top-ranking regulator, miRNA hsa-let-7e, was

shown to be the hub of the two FFL-based co-regulatory networks,

which highlights its functional importance as a tumor suppressor.

In addition, functional enrichment analysis demonstrated that the

targets of these two key regulators in cancer-related FFLs were

significantly enriched in cellular process regulations implicated in

carcinogenesis and cancer-related signaling pathways. In conclu-

sion, we introduced an efficient computational approach to

reconstruct co-regulatory FFLs by identifying gene regulatory

interactions with feature selection, which can be generally applied

to other gene regulation studies using parallel expression data with

respect to different biological contexts.
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