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Abstract

Soil spatial heterogeneity involves nutrients being patchily distributed at a range of scales

and is prevalent in natural habitats. However, little is known about the effect of soil spatial

configurations at the small scale on plant foraging behavior and plant growth under different

resource amounts. Here, we experimentally investigated how a stoloniferous species, Trifo-

lium repens, responded to varied resource amounts and spatial configuration combinations.

Plant foraging behavior (i.e., the orientation of the primary stolon, mean length of the primary

stolon, foraging precision, and foraging scale) and plant growth (i.e., total biomass, root bio-

mass, shoot biomass, and root/shoot) were compared among differently designed configu-

rations of soil resources in different amounts. The relationships of foraging behavior and

plant biomass were analyzed. The results showed that the effect of the spatial configuration

of soil resources on Trifolium repens depended on the resource amount. Specifically, when

the total resource amount was low, fragmented soil patches promoted root foraging and

increased Trifolium repens plant biomass; however, when the total resource amount was

high, the soil spatial configuration did not affect foraging behavior or plant growth. Our

results also showed that plant growth was facilitated by root foraging scale to adapt to low

resource amounts. We conclude that the spatial configuration of soil resources at small

scales affects whole plant growth, which is mediated by a distinct foraging strategy. These

findings contribute to a better understanding of how the growth strategy of clonal plants

responds to heterogeneous environments caused by different resource amounts and its

spatial configurations.

Introduction

Plant growth depends on the available resources, such as soil nutrients, water, and light [1–3].

At the microsite scale, soil resources are often distributed heterogeneously [4, 5], showing dif-

ferent amounts of soil resources and spatial configurations. Plants, especially clonal plants,
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have developed foraging behavior by plastic adjustments in foraging organs such as root sys-

tems and spacers (e.g., stolons or rhizomes) to cope with heterogeneous soil patches [6–8].

They can, for example, increase root proliferation and place more ramets in nutrient-rich

patches [3, 9, 10], and increase specific root length in nutrient-poor patches [11]. These forag-

ing behaviors can improve the ability of plants to capture resources efficiently [12].

Plant foraging behavior is affected by the spatial configuration of the supply of resources [9,

13]. Soil spatial configuration is commonly referred to as the soil patch size of their location

[14]. For instance, with the same supply amount of soil resources, some researchers found that

root proliferation in nutrient-rich patches was more significant in large patch treatments than

in small patch treatments [13, 15, 16]. Under competition, root proliferation in nutrient-rich

patches was observed in both the large patch treatment and small patch treatment; when indi-

vidual plants grew alone, foraging behavior was observed only in the large patch treatment

[17]. This finding indicates that the availability of resource amount for plants might affect

plant foraging behavior in spatial configurational soil habitats since competition mainly limits

the availability of resource amount for individual plants [18]. However, current studies on the

effects of the spatial configurations of soil resources on plants have been conducted irrespec-

tive of the amount of soil resources. How individual plants respond to soil spatial configura-

tions under varying total resource amounts remains largely unexplored.

Considering different resource amounts when studying the response of plants to changes in

spatial configurations in heterogeneous soil is necessary for several reasons. First, resource

amount needed for plant growth is very important because it can determine root proliferation,

below- and aboveground allocation, plant productivity and plant distribution [19–22]. Second,

previous studies have shown that there are joint effects of soil heterogeneity and nutrient avail-

ability on plant assemblages [23, 24]. For some species, in comparison to the main effect of

resource amount, the effect of resource amount interacting with soil heterogeneity on plant

growth is greater [24]. For example, it has been shown that the proportion of Lolium perenne
aboveground biomass was affected by the joint effects of nutrient availability and heterogeneity

but not by nutrient availability alone [24]. However, these studies are focused on plant assem-

blages, and they failed to elucidate the root growth of individual species in response to soil het-

erogeneity under different resource amounts.

Although foraging behavior has often been found to occur in heterogeneous soil, its roles in

plant growth remain unclear [25–27]. Some studies have shown that increasing root prolifera-

tion and placing more ramets in nutrient-rich patches could promote the amount and effi-

ciency of resource capture by these ramets, thus increasing their growth [15, 16, 26].

Moreover, due to clonal integration (i.e., resource sharing between ramet systems), their effi-

ciency in capturing resources in nutrient-rich patches could also promote the growth of the

whole plant [28–30]. However, other studies found no benefits from foraging behavior for

plant growth [17, 27, 31]. A possible reason for the inconsistency in these results is that the

resource amount may also affect the importance of foraging behavior in plant growth. For

example, Sammul et al. (2011) found that the advantage of foraging behavior (i.e., long spacers)

is weaker in nutrient-rich conditions than in nutrient-poor conditions [6]. Moreover, the mea-

surements of foraging behavior used in such studies are often different and difficult to

compare.

To assess the effect of soil heterogeneity in terms of both amount and configuration of soil

resources on foraging behavior and plant growth and to explore the importance of different

foraging behaviors for the growth of the whole plant, we designed an experiment with Trifo-
lium repens grown in six different patterns of heterogeneous soil (i.e., three different soil spatial

configurations with two different resource amounts). Specifically, we tried to answer the fol-

lowing questions: (1) Does the effect of the spatial configuration of soil resources on foraging
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behavior and on plant growth depend on the total resource amount? (2) Does plant growth

benefit from foraging behavior? If so, which foraging behavior?

Materials and methods

Species

Trifolium repens L. (Fabaceae) is a common stoloniferous herbaceous perennial species [32]. It

is a clonal plant consisting of ramets (or its repeating modules) connected by stolons [32]. Tri-
folium repens is not only a valuable forage legume in pastures and intensively managed tem-

perate grasslands, but it also contributes as a robust clonal species to city greening [33]. We

chose Trifolium repens as our study species because it is a clonal plant that is characterized by a

plastic structure, and its performance is linked to heterogeneous environments and resource

availability [34, 35]. Moreover, its aboveground stoloniferous organs allow us to record its

aboveground foraging behavior.

Experimental design

The experiment was carried out on the rooftop of the Life Science building of Nanchang Uni-

versity, Nanchang, China. Six combinations of two resource amounts (i.e., low and high

resource amounts) and three spatial configurations were formed based on the arrangement of

the potting soil and vermiculite in 41 × 41 × 8 cm3 (length × width × height) plastic pots (Fig

1A). The potting soil and vermiculite can be treated as nutrient-rich and nutrient-poor soil,

respectively. Both of them were bought from commercial suppliers. Information on the soil

characteristics information was provided by the manufacturer. For each 50 L potting soil,

organic substance� 65%, N+P2O5+K2O� 5%, pH = 5.5–6.5. We did not measure the char-

acteristics of vermiculite because it is a well-known nutrient-poor substrate [36]. The resource

amount was characterized by altering the percentage of nutrient-rich soil; i.e., a low resource

amount contained 25% nutrient-rich soil and a high resource amount contained 50% nutri-

ent-rich soil. Different spatial configurations of resource amounts were characterized by alter-

ing the patch size (or patch number) (Fig 1A). The smaller the patch size is, the more

fragmented the resource amount is. To create these six heterogeneous patterns, each pot was

divided into 4×4 cells using plastic plates before adding these substrates, and after adding the

substrates we slowly pulled out the plastic plates. Thus the 16 soil cells in each plot were inter-

connected, and roots could grow freely throughout the whole pot. Twelve replicates were pro-

vided for each pattern and a total of 72 pots were established. At the end of April 2019, 72

seedlings that were approximately ten days old and of similar size were planted into the center

of each pot. The pots were randomly placed to eliminate the influence of other factors such as

light on the results. The quantity (1.5 L per pot) and frequency (once every 3–4 days) of water-

ing for the 72 pots were controlled, and water was irrigated gently and slowly in each pot to

avoid disturbing the soil. Weeds were regularly removed from all pots. Photo-ecology agricul-

tural films fixed with a plastic frame were used to cover the experiment on rainy days.

Harvest and measurements

The experiment ended after eight weeks when Trifolium repens almost completely covered the

patterns. We harvested the aboveground parts (including leaves, petioles, stolons, and inflores-

cences) and root parts located in nutrient-rich cells and nutrient-poor cells separately in each

pot. Length and number of stolons were measured. Both shoots and roots were carefully

washed to remove all soil. Finally, all shoots and roots were oven-dried at 80˚C for 48 h and

weighed.
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Four foraging traits were used: orientation of the primary stolon (proportion of the primary

stolons growing toward the nutrient-rich patches), mean length of the primary stolon, foraging

precision, and foraging scale [37–39]. Foraging precision measures the proportion of plant

roots in nutrient-rich patches [7, 27]. Foraging scale is generally measured using a proxy such

as root length, total surface area, breadth, or biomass [7]. The more extensive the rooting is,

the more biomass found in outer cells and the larger the foraging scale. Thus, the foraging

scale was calculated as the ratio of root biomass per outer nutrient-rich cell to root biomass per

inner nutrient-rich cell (Fig 1B).

Four growth traits were calculated: total biomass, root biomass, shoot biomass (above-

ground biomass), and the ratio of root biomass to shoot biomass (root/shoot).

Data analysis

T-test or Wilcoxon rank-sum test (for data with non-normal distribution) were used to test

the overall difference in plant foraging behavior and growth between high and low resource

amounts. In this step, we disregarded the soil spatial configuration.

One-way analysis of variance (ANOVA) or Kruskal-Wallis H test (when ANOVA assump-

tions were not met) was used to test the effect of soil spatial configuration on plant foraging

behavior and growth under high and low resource amounts. ANOVA results do not provide

detailed information regarding the differences among configurational groups. Therefore, post-

hoc multiple comparisons were used to clarify the differences between particular pairs of con-

figuration groups under the same resource amount. In addition, multiple comparisons are

usually accompanied by an increased type I error issue [40], and it is necessary to adjust the P

value accordingly. Therefore, for post-hoc multiple comparisons, pairwise t-test (after

ANOVA) and pairwise Wilcoxon rank-sum tests (after Kruskal-Wallis H test) with Benja-

mini-Hochberg adjustment were used. We chose the Benjamini-Hochberg adjustment because

Fig 1. Schematic representation of the experimental design. In (A): Each pot (4 × 4 cells) represents a unique pattern

determined by different resource amounts and spatial configurations. In (B): the light grey cells can be described as

outer cells, and the dark grey cells can be described as inner cells.

https://doi.org/10.1371/journal.pone.0263290.g001
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it is one of the most commonly used methods, and it not only reduces false positives, but also

minimizes false negatives [41], and increases the reliability of the results.

To explore the effect of foraging behavior on whole plant growth at low and high resource

amounts, multiple linear regression was used to test the relationship between foraging behav-

ior variables and total plant biomass. All the foraging behavior variables were standardized to a

mean of 0 and a standard deviation of 1, therefore the relative importance among foraging

behavior variables could be directly compared. The variance inflation factor (VIF) of each for-

aging behavior variable was lower than 2, so multicollinearity was not a problem. All above sta-

tistical analyses were performed using R 4.0.3 for Windows [42].

Results

Overall, the orientation of the primary stolon (Wilcoxon test, p = 0.773), mean length of the

primary stolon (t-test, p = 0.457), foraging precision (Wilcoxon test, p = 0.222), foraging scale

(Wilcoxon test, p = 0.205), total biomass (Wilcoxon test, p = 0.723), root biomass (Wilcoxon

test, p = 0.218), and shoot biomass (Wilcoxon test, p = 0.496) did not differ significantly

between the groups with high and low resource amounts. However, the root/shoot was signifi-

cantly higher at low resource amounts than at high resource amounts (Wilcoxon test,

p = 0.011).

The effect of soil spatial configuration on plant behavior and growth depended on the

resource amount (Figs 2 and 3). Under low resource amounts, the soil spatial configuration

had a significant effect on the foraging scale (Fig 2G), total biomass (Fig 3A), root biomass (Fig

3C), and shoot biomass (Fig 3E), but had no significant effect on the orientation of the primary

stolon, mean length of the primary stolon, foraging precision or root/shoot (Figs 2A, 2C and

3E, 3G). The foraging scale, plant total biomass, root biomass, and shoot biomass were signifi-

cantly greater in the small patch patterns than in the large patch patterns (Figs 2G and 3A, 3C

and 3E). However, under high resource amounts, the soil spatial configuration did not signifi-

cantly affect neither plant foraging behavior nor plant growth (Figs 2 and 3).

Overall, foraging behavior explained plant growth better under low resource amounts than

under high resource amounts (Table 1). Foraging scale had the strongest positive impact on

plant total biomass at low resource amounts but not at high resource amounts. The mean

length of the primary stolon had a marginally positive effect on plant total biomass, while the

orientation of the primary stolon and foraging precision had no significant effect on plant total

biomass at both low and high resource amounts (Table 1).

Discussion

We found that a lower resource amount led to a higher root/shoot irrespective of soil spatial

configuration, suggesting that biomass partitioning is adjusted to equalize the limitation of

resource amount on plant growth [22]. Developing aboveground parts is more costly than

developing belowground parts, and thus, plants allocate more biomass into roots when the

resources are low [43].

Our results indicate an interesting phenomenon that the effect of spatial configuration

depends on resource amount, leading to diverse effects of soil spatial configurations on plant

foraging behavior and growth. This result is in line with that of Maestre and Reynolds (2007),

who found that plant assemblages had more biomass and root proliferation in heterogeneous

soil than in homogeneous soil, and these differences increased with increased nutrient avail-

ability [24]. However, they did not investigate plant responses to different spatial configura-

tions of soil heterogeneity and failed to distinguish the root foraging behavior of individual

plants under different resource amounts. In our case, under low resource amounts,
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fragmented spatial configuration positively affected the foraging scale and plant biomass, indi-

cating that the fragmented spatial configuration facilitates root foraging extensively. Plants

tend to promote nutrient capture by developing extensive root systems [38, 44]. Some nutrient

elements are movable, such as nitrogen (N), and some elements are immobile in the soil such

as phosphorus (P) and potassium (K). In comparison to a clustered soil configuration, a frag-

mented spatial configuration results in more dispersed nutrient distribution due to spatial

autocorrelation, thus enhancing the opportunity for an individual plant with a large foraging

scale to uptake multiple nutrients and lead to greater whole plant growth [45]. However, the

Fig 2. Effect of soil spatial configuration on plant foraging behavior (mean ± SE) under low and high resource

amounts. (A) and (B): orientation of the primary stolon. (C) and (D): length of the primary stolon. (E) and (F):

foraging precision. (G) and (H): foraging scale. Bars sharing the same letters or no letters above indicate that there are

no significant differences (p > 0.05), while different letters indicate that there are significant differences among these

treatments (p < 0.05).

https://doi.org/10.1371/journal.pone.0263290.g002
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soil spatial configuration had a neutral effect on plant behavior and growth under high

resource amount conditions. One possible reason is that when the resource amount is suffi-

cient, plants do not simulate forage extensively, and plant growth does not differ in different

soil spatial configurations. Similar results were found in the clonal plants Buchloe dactyloides
and Hydrocotyle vulgaris when grown under 50% resource conditions [17, 31]. In contrast, soil

spatial configuration significantly affected Glechoma Hederacea when the resource amount

was 50%, and greater biomass was produced in clustered soil configurations than in frag-

mented spatial configurations. These results indicate that the effect of soil spatial configuration

in heterogeneous environments also differs among species [14].

Fig 3. Effect of soil spatial configuration on plant growth (mean ± SE) under low and high resource amounts. (A)

and (B): total biomass. (C) and (D): root biomass. (E) and (F): shoot biomass. (G) and (H): root/shoot. Bars sharing the

same letters or no letters above indicate that there are no significant differences (p> 0.05), while different letters

indicate that there are significant differences among different patterns (p< 0.05).

https://doi.org/10.1371/journal.pone.0263290.g003
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In our study, the orientation of the primary stolon and mean length of the primary stolon

did not significantly differ among the different resource amounts or soil spatial configurations.

This result may be because roots are the component of the clonal growth form that is most

responsive in terms of foraging for nutrients in soil patches [15], whereas the aboveground

parts of clonal plants, such as stolons and branches, mainly respond to heterogeneous light

conditions [43]. In our study, light was a homogeneous resource.

The foraging behavior explained plant growth better at low resource amount than at high

resource amounts, and plant growth was positively correlated with root foraging scale only

under low resource amounts. In addition, among foraging behavior variables, the foraging

scale was one of the important foraging behaviors for plant growth. Experimental evidence

showed that in comparison to the strategy of allocating more root biomass in nutrient-rich

patches, the strategy of growing long roots is more important for nutrient uptake [44]. Our

results support this: foraging scale seemed to be more important for plant growth than other

foraging behaviors.

Our results might give an insight into how soil spatial configuration affects plant foraging

behavior and plant growth and the roles of foraging behavior in whole plant growth under

different resource amounts. It should be mentioned that our experiment was relatively

short (typically on the order of weeks). Plants with lower resource amounts may especially

benefit from a larger foraging scale at the beginning of their life [20]. However, the long-term

(across seasons or years) growth of perennial plants involves large amounts of nutrients to

compensate for the losses due to root turnover [46]. Thus, further experiments can focus on

a longer timeframe. In addition, since plant responses to soil spatial configurations must be

considered species-specific, more research is needed to further assess the effects of soil spatial

configurations with different resource amounts on other species, population levels and com-

munity levels.
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