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Abstract

As a target, the JNK pathway has been implicated in roles including cell death, prolifera-

tion, and inflammation in variety of contexts which span cardiovascular disease, neurode-

generative pathologies, and cancer. JNK1 and JNK2 have recently been demonstrated to

function independently, highlighting a new parameter in the study of the JNK pathway.

In order for JNK1 and JNK2-specific roles to be defined, better tools need to be

employed. Previous studies have relied upon the broad spectrum JNK inhibitor,

SP600125, to characterize the role of JNK signaling in a number of cell lines, including

the breast cancer cell line MCF-7. In line with previous literature, our study has demon-

strated that SP600125 treatment inhibited c-Jun and JNK phosphorylation and MCF-7

proliferation. However, in addition to targeting JNK1, JNK2, and JNK3, SP600125 has

been previously demonstrated to suppress the activity of a number of other serine/thre-

onine kinases, making SP600125 an inadequate tool for JNK isoform-specific roles to be

determined. In this study, lentiviral shRNA was employed to selectively knockdown

JNK1, JNK2, and JNK1/2 in MCF-7 cells. Using this approach, JNK phosphorylation was

fully inhibited following stable knockdown of respective JNK isoforms. Interestingly,

despite suppression of JNK phosphorylation, MCF-7 cell proliferation, cell cycle progres-

sion, or cell death remained unaffected. These findings raise the question of whether

JNK phosphorylation really is pivotal in MCF-7 cell growth and death or if suppression

of these events is a result of one of the many off-targets cited for SP600125.
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1 | INTRODUCTION

Protein kinases are attractive candidates as targets for the develop-

ment of new drugs due to the integral role they play in regulating

key inflammatory signaling pathways that underpin a host of disease

states.1 Members of the serine/threonine protein kinase family, such

as c-Jun N-terminal kinase (JNK), have been under investigation in

the cancer field due to the their essential roles in cell survival,

growth, and death processes.2,3 The major challenge these targets

present in drug development is the high degree of structuralAbbreviations: ANOVA, analysis of variance; BSA, Bovine Serum Albium; HCC,

hepatocellular carcinoma; JNK, Jun N-terminal kinase; MEFs, mouse embryonic fibroblasts;

NT, nontarget; WT, wild type.
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similarity across family members that make specificity difficult to

achieve without off targets and side effects.4,5

The JNK family consists of three proteins, JNK1, JNK2, and

JNK3, with JNK1 and JNK2 expressed ubiquitously while JNK3

expression is restricted to the brain, heart, and testis.6 JNK1 and

JNK2 has recently been demonstrated to function independently

therefore before success can be made in developing more selective

drugs that target this pathway, there has to be a clearer understand-

ing of the JNK1- and JNK2-specific roles. While inhibitors exist that

suppress the JNK pathway, so far they display poor potency7 and

are nonselective.8 Many studies investigating JNK as a target have

used pharmacological inhibition of the signaling pathway by

SP600125. In addition to targeting JNK1, JNK2, and JNK3,

SP600125 has been previously demonstrated to suppress the activ-

ity of a number of other serine/threonine kinases,9 which makes

SP600125 an inadequate tool for JNK1- and JNK2-specific roles to

be determined. Success in this area has been best illustrated in stud-

ies using JNK1 and JNK2 knock out mouse models. Studies using

mouse embryonic fibroblasts (MEFs) derived from JNK knockout

mice have revealed differences in JNK isoform function. Sabapathy

et al have demonstrated that JNK1 activated the transcription factor

c-Jun and played a role in promoting proliferation of MEFs, whereas

JNK2 functioned as a negative regulator by promoting c-Jun degra-

dation and slowing down fibroblast proliferation.10 JNK1 and JNK2

have also been shown to function differently in cell death induced

by ultraviolet (UV) radiation.11 JNK1 knockout resulted in partial pro-

tection against UV radiation in MEFs, whereas JNK2�/� MEFs

behaved similarly to wild type (WT). These findings demonstrate that

JNK isoforms can function differently and independently in both cell

death and cell growth processes in MEFs, however, a detailed under-

standing of JNK1 and JNK2 function needs to be more widely

explored in human cell models. This has been best exemplified in the

cancer field where different roles for JNK isoforms have been

demonstrated using a variety of different tools.

In hepatocellular carcinoma (HCC), JNK has been linked to both

the pathogenesis and poor prognosis of the disease.12 In this study,

lentiviral approaches were used to stably knockdown JNK1, JNK2, and

JNK1/2 in the HuH-7 HCC cell line to investigate the effects of JNK

knockdown on cell proliferation. JNK1 and JNK1/2 knockdown pro-

duced a decrease in proliferation, whereas JNK2 knockdown had no

significant effect on proliferation which translated to the development

of smaller tumors when implanted into nude mice, clearly linking JNK1

but not JNK2 to the tumorigenesis of HCC cells. Other studies have

used the JNK inhibitor, SP600125, to pharmacologically inhibit JNK

activity to implicate this pathway in breast cancer cell models.13,14

Studies carried out in the MCF-7 breast cancer cell line have shown

that the JNK pathway is required for cell death in response to UV15

and taxol16 and also for MCF-7 proliferation and cell cycle progres-

sion.15 Given the selectivity issues of SP600125, the roles attributed

to JNK1 and JNK2 remain unclear, therefore JNK as a target in this

context needs to be investigated further using more selective tools.

Here we explore JNK1 and JNK2 function in breast cancer cell lines

using lentiviral shRNA to selectively knock down these targets. In order

for comparisons to be drawn, SP600125 will be used to ensure that

previously published data can be reproduced in the MCF-7 cell line.

2 | MATERIALS AND METHODS

2.1 | Lentivirus production and lentiviral infection

shRNA targeting JNK1 (TAGATGCATCTATTACCAG), JNK2 (TCATG

ATCTAGCTCCATCT) and nontargeting control (ATCTCGCTTGGGCG

AGAGTAAG) cloned into a pGIPZ lentiviral plasmid were purchased

from DharmaconTM. These transfer vectors (2 lg) were cotransfected

into HEK-293T cells together with 2 lg of packaging vector pCMV—

dR8.2 dvpr (Addgene), 2 lg of envelope vector pCMV-VSV-G

(Addgene), and 12 lL of Turbofect (Thermoscientific) transfection

reagent in media lacking antibiotics. After 12-16 hours, media were

replenished with complete media. After a further 24 hours, the media,

now containing lentivirus particles, were harvested and the media

were replenished with a final harvest carried out after a further

24 hours. Lentivirus was concentrated 1009 using Lenti-X-concentra-

tor (Takara Bio USA Inc.). Lentiviruses were referred to as NT for non-

targeting and JNK1 and JNK2 for the targeted silencing of JNK1 and

JNK2. For lentiviral infection, MCF-7 cells were grown to 50% conflu-

ency and infected with either NT, JNK1, JNK2, or co transfected with

JNK1 and JNK2 lentivirus for 48 hours. For selection, media were

replaced with complete media containing 1 lg/mL of puromycin for a

further 48 hours or until all uninfected cells died. Cells were selected

every passage to maintain stable lines.

2.2 | Cell culture

The breast cancer MCF-7 cell lines were maintained in Dulbecco’s

modified Eagle’s medium containing 10% (v:v) fetal calf serum,

27 mg/mL glutamine, and penicillin/streptomycin (250 units/mL and

25 mg/mL, respectively) at 37°C in a humidified air containing 5%

CO2. For experiments, cells were seeded at specific densities: Wes-

tern blot and FACS analysis (150 000 cells/mL), MTT (10 000 cells/

mL), and clonogenics (120 cells/mL).

2.3 | Stimulations for western blot analysis

Cells were starved for 24 hours and stimulated with 10% FCS for

1 hour or 30 J/m2 UV radiation for 24 hours before cells were har-

vested in 19 Laemmli Sample Buffer. For taxol experiments, cells

were stimulated with 1% DMSO or 20 nmol�L�1 of taxol for

24 hours before cells were harvested in 19 Laemmli Sample Buffer.

For SP600125 (Sigma-Aldrich) experiments, cells were pretreated

with 30 lmol�L�1 of SP600125 for 1 hour prior to stimulation with

10% FCS or 30 J/m2 UV radiation.

2.4 | Western blot

For protein detection, cellular protein was subjected to 10% SDS-

PAGE and blotted onto nitrocellulose membrane. The membranes
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were blocked for nonspecific binding for 2 hours using 50 mmol�L�1

Tris buffer (pH 7.4), 150 mmol�L�1 NaCl, 0.1% (v:v) Tween-20 (TBS-

T), containing 5% Bovine Serum Albium (BSA) (w:v). Blots were then

incubated overnight in 0.5% BSA (w:v) TBS-T with primary antibody.

Blots were washed for 15 minutes in TBS-T before being incubated

for 2 hours in 0.5% BSA (w:v) TBS-T with 1:7500 dilution of HRP-

conjugated secondary antibody. Blots were developed using ECL

reagent followed by exposure to Kodak X-ray film. Antibodies: pJNK

1:1500 (cell signaling technology #9251), pc-Jun 1:1000 (Santa Cruz

SC-822), cleaved PARP 1:1000 (cell signaling technology #5625),

JNK1 1:7500 (cell signaling technology #3708), JNK2 1:7500 (cell

signaling technology #4672), and GAPDH 1:60000 (cell signaling

technology #2118).

2.5 | MTT

2.5.1 | Proliferation

On Day 1, cells from control, NT, JNK1, JNK2, and JNK1/2 cell lines

were seeded onto 96-well plates and incubated for 8 days at 37°C

in a humidified air containing 5% CO2, media were replenished on

day 4. On days 2, 4, 6, and 8, 10 lL of MTT (3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide) (Sigma–Aldrich) was added to

each well and cells were incubated for 2 hours. Media were then

removed from the wells and 100 lL of DMSO was added to dissolve

the purple formazan product. Absorbance (570 nm) was then mea-

sured to estimate cell viability.

For experiments with SP600125, MCF-7 cells were treated with

a lower concentration of SP600125 (20 lmol�L�1) due to repeated

treatment after the initial measurement on day 2 and on days 4

and 6. Controls of media alone and 1% DMSO were also replen-

ished.

2.5.2 | Cell viability

Cells were seeded onto 96 well plates and stimulated for 24 hours

with either 1% DMSO or 20 nmol�L�1 taxol. 10 lL of MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (Sigma-

Aldrich) was added to each well and cells were incubated for

2 hours. Media were then removed from the wells and 100 lL of

DMSO was added to dissolve the purple formazan product. Absor-

bance (570 nm) was then measured to estimate cell viability.

2.6 | Clonogenic assay

Cells were seeded onto 60 mm2 dishes and incubated overnight at

37°C in a humidified air containing 5% CO2. Cells were starved for

24 hours and then exposed to 10 J/m2 of UV radiation. Media were

replaced with complete media and plates were incubated for

12-15 days, with media replenished on days 5 and 10. After incuba-

tion, the media were removed; cells were washed with PBS, fixed

with methanol, and stained with Giemsa for 20 minutes. After stain

was removed, formed colonies were counted manually and survival

fractions were calculated. For SP600125 experiments, cells were

pretreated with 30 lmol�L�1 of SP600125 1 hour before exposure

to UV radiation, the media remained on the cells 6 hours after expo-

sure and were then replaced with complete media and followed the

same course as previously described.

2.7 | FACS

2.7.1 | Cell cycle

For cell cycle progression analysis, MCF-7 cells were starved for

24 hours and then replenished with complete media for 24 and

48 hours with samples collected at each stage. Cells were trypsi-

nized and fixed in 70% ethanol in PBS at 4°C for 20 minutes—

2 days. Cells were then washed in PBS, centrifuged at 1800g for

10 minutes and then resuspended in 250 lL of PBS. 50 lg/mL of

RNAse A (Sigma-Aldrich) was added to each sample and incubated

for 30 minutes at 37°C. 50 lg/mL of Propidium Iodide (Sigma-

Aldrich) was added to each sample and tubes were vortexed before

analysis. Samples were read in FACSCanto flow cytometer and data

were analyzed using FACS Diva software (FACS scan, Becton Dick-

inson, Oxford, UK). A total of 10000 events were measured per

sample and gating was determined using PI-stained populations.

Cell cycle events were gated on G1, S, G2/M, and sub G1and the

% of total events in each phase was measured. For SP600125

experiments, cells were treated with 30 lmol�L�1 of SP600125 or

1% DMSO when media were replenished after 24 hours of starva-

tion. For taxol experiments, cells were collected the same as above

after 24 or 48 hours treatment with 20 nmol�L�1 of taxol or 1%

DMSO.

2.7.2 | Apoptosis

After treatment with 1% DMSO or 20 nmol�L�1 taxol for 48 hours

or 500 lmol�L�1 H2O2 for 24 hours as positive control, cells were

trypsinized and washed twice in PBS. As suggested by company

guidelines, cells were resuspended in 100 lL of 19 Annexin V

binding buffer (BD bioscience) and stained with 5 lL of APC-

Annexin V (BD bioscience) for 15 minutes at room temperature.

Samples were read in FACSCanto flow cytometer and data were

analyzed using FACS Diva software (FACS scan, Becton Dickinson,

Oxford, UK). A total of 10 000 events were measured per sample

and gating was determined using APC-Annexin V individually

stained cells and data were represented as the % of Annexin V-

positive cells.

2.8 | Data analysis and processing

All statistics were calculated using GraphPad Prism version 5.01.

Datasets were analyzed for statistical significance using either a one

or two-way analysis of variance (ANOVA). P values <.05 were con-

sidered significant and means +/� standard errors of the mean

(SEM) are depicted in all figures.

WOOD ET AL. | 3 of 10



3 | RESULTS

3.1 | Inhibition of JNK by SP600125 causes cell
cycle arrest and a reduction in cell proliferation

Previous studies investigating JNK function in MCF-7 cells have

used transient methods of inhibition15 or knockdown17 to analyze

their effects on cellular processes. The JNK inhibitor SP600125 is

commonly used, therefore we initially sought to confirm if

SP600125 could inhibit JNK signaling in MCF-7 cells in our studies

and investigate the effect of inhibition on cell growth. Treatment

with 10% FCS increased the expression of pc-Jun by 1.59-

fold � 0.16, pJNK (54 kDa) by 2.39-fold � 0.75 and pJNK (46 kDa)

by 4.72-fold � 0.65 when compared with nontreated cells (Fig-

ure 1A). Similar results were produced by cells that were pretreated

with 1% DMSO (1.17 � 0.21, 2.49 � 0.76, and 4.36 � 0.76,

respectively), however, pretreatment with SP600125 reduced the

levels of phosphorylated c-Jun and JNK back to basal levels after

stimulation with 10% FCS (Figure 1A). Proliferation was also

reduced over 8 days when compared with the DMSO-treated cells

(Figure 1B). Control and DMSO-treated cells grew steadily over the

8 days with an average fold growth of 3.4 � 1.2 and 2.7 � 0.9,

respectively (Figure 1B). While treatment with SP600125 inhibited

cell growth to 1.5-fold � 0.2, suggesting that JNK is involved in

MCF-7 cell growth. To understand how JNK inhibition may be pre-

venting MCF-7 growth, the effects of SP600125 on cell cycle

(A)

(B)

(C)

pc-Jun pJNK 46 kDa pJNK 54 kDa

F IGURE 1 Inhibition of JNK by SP600125 causes cell cycle arrest and a reduction in cell proliferation. Cells were treated with media alone,
1% DMSO or SP600125 as stated in methods and the effects of JNK inhibition on (A) pc-Jun expression, (B) proliferation, and (C) cell cycle
progression were analyzed. Data represent the mean � SEM of 3 independent experiments where *P < .05, **P < .01 and ***P < .001
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progression was investigated using FACS analysis (Figure 1C). Treat-

ment with SP600125 produced an arrest which was represented by

an increase of 21.7% � 2.3 in the population of cells in the G2/M

phase of the cell cycle when compared with DMSO-treated cells.

These results coincide with those published by,15 thus confirming

reproducibility of this JNK phenomenon in MCF-7 cells.

3.2 | Generation of MCF-7 cell lines containing JNK
individual isoform knockdown

After confirming that inhibition of JNK by SP600125 influenced cell

cycle progression and proliferation, we next investigated which JNK

isoforms played a role in these processes. The Lentiviral delivery

method of shRNA has been used to knockdown JNK isoforms in dif-

ferent cell lines including human epithelial,18 human liver cancer,19

and mouse mammary tumor cells.20 As this has allowed differences

in isoform function to be determined in these studies, we used len-

tiviral shRNA to generate MCF-7 cell lines containing stable knock-

down of JNK1, JNK2, and JNK1/2. Western blotting experiments

confirmed that protein levels were reduced by 93.21% � 2.03 and

88.76% � 6.49 for JNK1 and JNK2, respectively, in lines containing

single knockdown and 70.54% � 6.39 (JNK1) and 92.47 � 3.65

(JNK2) in double knockdown lines when compared with control cells

(Figure 2).

3.3 | Knockdown of JNK isoforms has no effect on
MCF-7 proliferation, cell cycle progression or
phosphorylation of c-Jun

After cell lines were successfully generated and knockdown was

confirmed, these cells were used to investigate the effects of JNK

isoform knockdown on cell cycle progression using FACS analysis.

Our data show that over 48 hours there was a decrease in the per-

centage of cells in the G1 phase of the cell cycle (control

29.12% � 3.0, NT 23.43 � 4.3, JNK1 19.7 � 3.1, JNK2

24.37 � 4.2, and JNK1/2 22.83 � 5.2) and an increase in the S

(control 14.90% � 0.6, NT 14.04 � 1.6, JNK1 14.77 � 2.0, JNK2

14.20 � 2.1, and JNK1/2 13.0 � 2.5) and G2/M phase (control

14.67% � 1.9, NT 8.76 � 2.8, JNK1 5.06 � 1.1, JNK2 9.84 � 2.7,

and JNK1/2 10.03 � 2.6) (Figure 3A). Interestingly there were not

any major differences observed between the cell lines, including the

control and nontarget (NT) lines (Figure 3A). There was also no cell

cycle arrest produced by the knockdown of JNK demonstrating con-

trasting results when compared with the experiments using

SP600125. Similarly, JNK isoform knockdown had little effect on the

phosphorylation of cJun (Figure 3B) and the proliferation of MCF-7

cells (Figure 3C) where all cells produced a fold growth of between

five and sevenfold with slight variation between experiments taken

into consideration. Interestingly, when experiments using SP600125

were repeated in JNK isoform knockdown cells, loss of JNK expres-

sion did not alter the effects produced by SP600125 (Figure S1).

3.4 | UV-induced cell death is independent of JNK
in MCF-7 cells

Since the knockdown of JNK isoforms did not affect processes

involved in cell growth, we wanted to investigate whether the same

occurred when analyzing cell death. JNK has been previously

demonstrated to play a key role in UV-induced cell death in MEFs

where knockout of JNK prevented cell death for up to 28 hours

after exposure to UV radiation.11 Following serum starvation, MCF-7

cells were treated with 30 J/m2 of UV radiation for 24 hours and

the expression of cleaved PARP was measured (Figure 4A). Similar

to the cell growth experiments, knockdown of JNK isoforms did not

produce a great change in cleaved PARP expression with all cell lines

producing a fold stimulation of between five and eightfold (Control

7.54 � 0.79, NT 5.95 � 1.42, JNK1 knockdown 5.22 � 1.31, JNK2

knockdown 4.93 � 0.65, and JNK1/2 knockdown 7.1 � 1.53. This

was confirmed by clonogenic assay where cells were exposed to a

lower dose of 10 J/m2, immediately replenished with complete

media and then incubated for a longer period of 12-15 days. Again,

all cell lines produced a similar survival fraction (0.5-0.6) after treat-

ment with UV (Figure 4B), suggesting that JNK does not play a role

in UV-induced cell death in MCF-7 cells.

F IGURE 2 Confirmation of JNK1,
JNK2, and JNK1/2 knockdown in MCF-7
cell lines. MCF-7 cells were collected at
each passage and expression levels were
analyzed using Western blot. Results show
representative blot of (A) JNK1 and (B)
JNK2 knockdown. Data represent the
mean � SEM of 4 independent
experiments where ***P < .001

WOOD ET AL. | 5 of 10



F IGURE 3 Cell cycle progression, proliferation, and activation of c-Jun is independent of JNK. (A) Cells were starved for 24 hours and then
replenished with complete media for 48 hours, samples were analyzed by FACS for the % of cells in G1, S, and G2/M of the cell cycle. (B) The
number of viable cells measured by MTT represented as a fold increase relative to the number of viable cells on day 2. (C) Cells were starved
for 24 hours, stimulated with 10% FCS for 1 hour and then collected and expression levels of pc-Jun, JNK1, JNK2, and GAPDH were analyzed
by Western Blot. Data represent the mean � SEM of 3 independent experiments
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3.5 | Taxol-induced cell cycle arrest and death is
independent of JNK

To understand if JNK played a role in cell death produced by other

stimulants, we treated MCF-7 cells with 20 nmol�L�1 of taxol for

24-48 hours and assessed the effects of JNK isoform knockdown on

cell death. As expected, taxol-induced an increase in the expression

of cleaved PARP by 26.2 fold � 10.56 (control), 32.78 fold � 12.05

(NT), 25.15 fold � 1.38 (JNK1), 19.98 fold � 9.43 (JNK2), and 28.62

fold � 6.61 (JNK1/2) (Figure 5A) after 24 hours, although the fold

stimulation varied between the different cell lines, these differences

were insignificant when compared with control and NT samples.

Taxol also produced a decrease of 37.59% � 3.59 (control),

34.57% � 12.10 (NT), 35.65% + 1.10 (JNK1), 38.74% � 5.06

(JNK2), and 35.09% � 5.27 (JNK1/2) in the number of viable cells

after 24 hours (Figure 5B) and an increase of 14.56% � 5.54 (con-

trol), 14.94% � 4.84 (NT), 12.27% � 7.39 (JNK1), 9.7% � 3.69

(JNK2), and 11.17% � 5.60 (JNK1/2) in the percentage of apoptotic

cells after 48 hours of treatment with taxol (Figure 5C). Similar to

the UV experiments, knockdown of JNK did not reverse cell death

induced by Taxol over 24 or 48 hours. Finally, the role of JNK iso-

forms in taxol-induced cell cycle arrest was investigated. As

expected, treatment with taxol for 24 hours caused the percentage

of cells in the G2/M phase of the cell cycle to increase by

31.73% � 4.8, 34.1% � 4.26, 37.87% � 2.77, 35.40% � 1.42, and

36.07% � 3.20 for control, NT, JNK1, JNK2, and JNK1/2 knock-

down lines, respectively. Again, this was the similar across all 5 cell

lines confirming that JNK does not play a role in taxol-induced cell

death in MCF-7 cells.

4 | DISCUSSION

Extensive research has been carried out to demonstrate that the

JNK pathway, and now more specifically the individual JNK isoforms

themselves, play key roles in both cancer cell survival and cell death

processes.21 The outcome of this signaling is determined by a num-

ber of variables including cell type,22 cell location,23 stimulant type,24

length of stimulation,25 and protein location.26 Due to the plethora

of variables involved, characterization of the JNK pathway can be

difficult as every model, cell type or technique can produce a differ-

ent result. Many studies investigating JNK function to date have

used pharmacological inhibition of the signaling pathway by

SP600125. Although this inhibitor does block JNK signaling, it has

also been reported to inhibit 13 other protein kinases, including

AMPK, CDK2, and SGK.9 Although JNK is an attractive target, there

is yet to be a successful drug developed which can inhibit this pro-

tein without off-target effects.8 In order for progress to be made in

this area, more selective approaches need to be adopted to ensure

that the effects observed are due to JNK and not one of the many

off-targets inhibited by SP600125.

In our own investigation, we managed to recapitulate previously

published findings using the SP600125 inhibitor. If the pharmacolog-

ical data generated using SP600125 were to be solely relied upon,

our data would similarly support a role for JNK signaling in MCF-7

cells proliferation and cell cycle progression. However the data pre-

sented in our study highlight the critical need of adopting a more

selective approach when interrogating the JNK pathway and not

relying solely on the use of SP600125.

In this study, stable and selective lentiviral knockdown of JNK1

and JNK2 was achieved in MCF-7 cells. Although consistent JNK

isoform knockdown was achieved, no effect on cell death induced

by UV radiation or taxol was observed. This was confirmed using a

variety of approaches including cell viability assays, Western blotting,

and FACS analysis. These results were surprising given that previous

studies using SP600125 had proposed that JNK play a role in both

UV15,27 and taxol-28 induced cell death in MCF-7 cells. Similarly,

knockdown of JNK1 or JNK2 in our studies had no effect on cell

growth. This was observed for both proliferation and cell cycle pro-

gression experiments. Again, these results were surprising given that

(A)

(B)

F IGURE 4 UV-induced cell death is
independent of JNK. (A) Cells were starved
for 24 hours, exposed to 30 J/m2 of UV
radiation for 24 hours and then samples
were collected and expression levels of
cleaved PARP, pJNK, JNK1, JNK2, and
GAPDH were analyzed. (B) Cells were
starved for 24 hours, exposed to 10 J/m2

UV radiation, cells were replenished with
complete media and incubated for 12-
15 days. A clonogenic assay was used to
measure successful colonies formed for
both exposed and unexposed cells. Data
represent mean � SEM of 3 independent
experiments
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JNK signaling has been linked to both proliferation17 and cell cycle

progression15 in MCF-7 cells when treated with SP600125. JNK is a

known regulator of c-Jun in a number of different cell lines.10,29

While loss of JNK in our studies resulted in inhibition of JNK phos-

phorylation, this did not impact phosphorylation of c-Jun. Interest-

ingly, inhibition of JNK with SP600125 clearly inhibited MCF-7

proliferation and phosphorylation of c-Jun, producing contrasting

results to experiments conducted using lentiviral knockdown of JNK.

The fact that both methods of protein targeting resulted in inhi-

bition of JNK phosphorylation suggests that the cellular events

downstream of UV and taxol are independent of JNK. In light of the

numerous off-targets cited for SP600125, we cannot rule out the

possibility that inhibition of these kinases may be a contributing fac-

tor to the contrasting results produced in this study (summarized in

Figure 6). When combination experiments were carried out using

SP600125 in JNK isoform-specific knockdown cell lines, SP600125

clearly inhibited MCF-7 proliferation and cell cycle progression. This

suggests that the actions of SP600125 may be independent of JNK.

Two such proteins inhibited by SP600125, namely SDK30 and

CDK2,31 have been linked to breast cancer cell proliferation and cell

(A)

(B)

(C)

(D)

F IGURE 5 Taxol-induced cell death is independent of JNK. Cells were treated with DMSO or taxol for (A, B, D) 24 hours or (C) 48 hours
and samples were collected and analyzed for (A) expression levels of cleaved PARP, pJNK, JNK1, JNK2, and JNK1/2 by Western Blot. (B) Cell
viability using an MTT assay, (C) Apoptosis using FACS analysis of Annexin V positive cells and (D) cell cycle arrest induced by taxol using
FACS analysis gated on PI positive cells represented as the number of positive cells in G1, S, G2/M, and Sub G1 phase of the cell cycle. Data
represent the mean � SEM of 3 independent experiments
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cycle progression. Inhibition of these kinases may be contributing to

the pronounced effects observed in SP600125 studies.

Trying to determine JNK isoform function in cancer is very chal-

lenging due to the differences in JNK function between cancer

types,19,32 however, with more selective tools becoming available it

should be possible. Studies using JNK knockout animals clearly pre-

sent a good rationale for why targeting JNK isoforms may be of

therapeutic value,10 however firm translation of these findings into

human cell models is crucial. For example, JNK1 but not JNK2 was

shown to be required for UV-mediated death in MEFs.33 However,

in this study JNK knockdown had no effect on MCF-7 cell death

induced by UV exposure. Differences in the translation of these

events from mouse cells to human cell models may account for

these conflicting findings. The use of JNK knockdown, or gene dele-

tion approaches such as CRISPR, in other cell systems may help to

shed some light on the role for JNK in human cell growth and

death.

What is clear from our study is that any interpretations derived

from studies that rely solely on the use of SP600125 need to be

treated with caution when attributing the JNK pathway to MCF-7

cell growth and death. Due to the sheer number of other serine/

threonine kinases inhibited by SP600125, it would be wise to

employ more selective ways to validate the role of JNK in cancer

cell function. While shRNA approaches have their own set of chal-

lenges to ensure complete knock down of protein levels are

achieved, the availability of gene editing approaches such as CRISPR

will pave the way for a better fundamental understanding of the role

of JNK (or any other target) in human cancer cell function. This will

be essential if progress in the field is to be made and new targets

are to be identified for anticancer therapies.
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