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Abstract: The current work deals with indoor radon (222Rn) concentrations and ambient
dose-equivalent rate measurements in the bauxite-bearing areas of the Adamawa region in Cameroon
before mining from 2022. In total, 90 Electret Ionization Chambers (EIC) (commercially, EPERM) and
175 Radon Track Detectors (commercially, RADTRAK2) were used to measure 222Rn concentrations
in dwellings of four localities of the above region. A pocket survey meter (RadEye PRD-ER,
Thermo Scientific, Waltham, MA, USA) was used for the ambient dose-equivalent rate measurements.
These measurements were followed by calculations of annual doses from inhalation and external
exposure. 222Rn concentrations were found to vary between 36 ± 8–687 ± 35 Bq m−3 with a geometric
mean (GM) of 175± 16 Bq m−3 and 43± 12–270± 40 Bq m−3 with a geometric mean of 101 ± 21 Bq m−3

by using EPERM and RADTRAK, respectively. According to RADTRAK data, 51% of dwellings have
radon concentrations above the reference level of 100 Bq m−3 recommended by the World Health
Organization (WHO). The ambient dose equivalent rate ranged between 0.04–0.17 µSv h−1 with the
average value of 0.08 µSv h−1. The inhalation dose and annual external effective dose to the public
were assessed and found to vary between 0.8–5 mSv with an average value of 2 mSv and 0.3–1.8 mSv
with an average value of 0.7 mSv, respectively. Most of the average values in terms of concentration
and radiation dose were found to be above the corresponding world averages given by the United
Nations Scientific Commission on the Effects of Atomic Radiation (UNSCEAR). Even though the
current exposure of members of the public to natural radiation is not critical, the situation could
change abruptly when mining starts.

Keywords: bauxite; radon; electret ionization chamber; radon track detector; external dose;
inhalation dose

1. Introduction

Mining activities are increasing in Africa. Several countries have recently instituted a mining code
to better organize this sector for their socio-economic sustainable development [1]. Like other
countries, Cameroon has various mineral ore deposits; however, most of them have not yet
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been exploited. A national project on strengthening the capacities of the mining sector is being
implemented by the Government of Cameroon [2]. The project resulted in new discoveries of more than
three hundred anomalies of mineral resources. A large number of mineral resources, such as uranium,
thorium, gold, diamond, bauxite, copper, rutile, cobalt, iron, and rare-earth metals, were discovered.
Further exploration is required to confirm the occurrence of the ore deposits of the above mineral
resources, which would rank Cameroon among the top countries with valuable underground mineral
resources. Multiple activities were organized by the Government to promote mining in Cameroon.
It is well known that mining leads to environmental pollution by naturally occurring radioactive
materials (NORM) and heavy metals. For most human activities involving minerals and raw materials,
the levels of exposure to these radionuclides are not significantly greater than normal background
levels, and when these raw materials with low concentrations of NORM are introduced in an industrial
process, the radionuclides can become more concentrated in the produced by-products or in waste
material such as red mud in bauxite mining [3,4]. Such activities significantly increase the exposure
of workers and the general public, meaning that they may need to be controlled by regulation in
order to ensure the protection from radiation of relevant people. The most frequently-occurring
radionuclides and their decay products found in bauxite and bauxite processing residuals include 238U,
235U, and 232Th series.

Bauxite ore is the primary source of aluminum in the world [5]. The ore must first be chemically
processed to produce alumina (aluminum oxide), which is then smelted using an electrolysis process
to produce pure aluminum metal. Bauxite is typically found in topsoil located in various tropical
and subtropical regions. Bauxite reserves are most plentiful in Africa, Oceania and South America.
Reserves are projected to last for centuries. Bauxite is a rock formed from a reddish clay material
called laterite soil and is most commonly found in tropical or subtropical regions. Bauxite is primarily
comprised of aluminum oxide compounds (alumina), silica, iron oxides and titanium dioxide. More than
160 million metric tons of bauxite are mined each year. The leaders in bauxite production include
Australia, China, Brazil, India and Guinea. Bauxite reserves are estimated to be 55 to 75 billion metric
tons, primarily spread across Africa (32%), Oceania (23%), South America and the Caribbean (21%)
and Asia (18%).

The bauxite deposits of Minim-Martap and Ngaoundal in southern Adamawa, Cameroon will be
exploited in the near future. Thus, pre-exploitation background radiation levels should be determined
for the accurate assessment of the impact of mining on the environment and the general public in
the post-exploitation environment [6–15]. In that perspective, field works were performed for soil
and water sampling, radon detectors were deployed in dwellings and ambient equivalent dose rates
measurements were performed. In this work, the results on radon measurements in 265 dwellings using
two types of detectors (EPERM and RADTRAK), ambient-equivalent dose rates measurements both
indoors and outdoors followed by inhalation and external dose assessments are reported. Additionally,
the limitations of EPERM detectors compared to RADTRAK detectors are discussed.

2. Materials and Methods

2.1. Study Areas

The study areas are located in Djerem Division, in the southern part of Adamawa Region
in Cameroon (Figure 1). The Division has about 200,000 inhabitants, with Tibati as the capital.
Several bauxite deposits are located particularly in Ngaoundal and Minim-Martap. The region is
mountainous and forms the barrier between the forest area of south Cameroon and the savannah area
of North Cameroon. The climate is typically tropical Sudanese with two seasons: the dry season from
November to April and rainy season from May to October. The annual rainfall varies between 900 mm
to 1500 mm. Temperatures vary between 10.1 to 41.6 ◦C, and the relative humidity varies between
10.2–99.9% throughout the year [16].
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Figure 1. Location map of the bauxite bearing areas of southern Adamawa.

Canyon Resources is an Australian mining company which has exploration and mining permits
covering several bauxite deposits in Cameroon, including in the Adamawa Region—the present
study area [17]. Its local branch, Camalco SA, is focused on developing the Minim-Martap Bauxite
Project (MMP). The MMP has identified a bauxite-rich plateau which was mapped after drilling and
prospection across the surface. The total area covered by the permits is 1349 km2. The bauxite is
generally high in alumina, with low total and reactive silica, high gibbsite, low boehmite and low
amounts of other contaminants [18]. The total indicated resources are 839 Mt at 45.2% of Al2O3 and
2.8% of SiO2. The bauxite also includes a high-grade (cut-off grade 45% Al2O3) indicated resource of
431 Mt at 48.8% of Al2O3 and 2.6% of SiO2 containing substantial zones of >50% of Al2O3 with very
low amounts of contaminants [17].

2.2. Methodology

2.2.1. Electret Ionization Chamber

E-PERM Electret Ion Chambers (EICs) were used to measure 222Rn indoors. The E-PERM EICs
were manufactured by Rad Elec Inc., Frederick, MD, USA. Detailed descriptions of their design and
operation have been given in the Rad Elec Manual and also published in [19]. An EIC for monitoring
radon consists of a stable electret (electrically charged Teflon® disc) mounted inside an electrically
conducting chamber. The electret serves both as a source of the electric field and as a sensor. The ions
produced inside the chamber are collected by the electret. The reduction in charge of the electret is
related to the total ionization during the period of exposure. This charge reduction is measured using
a battery-operated Electret Voltage Reader. Using appropriate calibration factors and exposure time,
desired parameters such as airborne radon concentration in the air can be calculated.

Ninety EIC type LLT (Low Sensitivity L+ Electret Long Term LT) devices were randomly
and equally distributed in Ngaoundal and Tibati—the most populated towns of Djerem Division,
representing about 50% of people living in the Division. About 40,000 and 60,000 inhabitants live in
Ngaoundal and Tibati, respectively. The exposure period was from December 2014 to February 2015
during the dry season. Although indoor radon concentrations are submitted to seasonal variations,
no correction was carried out. Dwellings were selected randomly with an in-situ request addressed to
the resident to place an EIC inside the house. EICs were exposed for two months relatively far from
the open access of house to avoid biased measurements due to the influence of outdoor air and at 1 m
above the ground. Most of the surveyed dwellings were built using locally made soil bricks, which
were sometimes covered by a thick layer of cement.
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Radon concentrations were given by the following equation:

CRn
(
Bq m−3

)
= 37×

(
I−F

CF.D − BG
)

f att
corr

(
pCi L−1

)
CF = A + B I+F

2

(1)

where I and F are the initial and final voltages of the electret expressed in volts [V], CF is the calibration
factor [V/pCi L−1 days], D is the duration of the exposure [days], BG is the background due to the
ambient dose expressed in radon equivalent concentration [pCi L−1] and f att

corr is the correction factor
taking into account of the dwelling altitude (alt) above sea level. The fitting parameters A and B are
given by the manufacturer as A = 0.02383 and B = 0.0000112.

BG = 0.120 pCi L−1

µR h−1

f att
corr = 0.996 + 0.00016.alt(m)

(2)

EICs are sensitive to background gamma radiation. The equivalent radon signal in picocuries per
liter (pCi L−1) per unit background radiation in micro-roentgens per hour (µR h−1) is determined by
the manufacturer depending on the type of EIC. This is specific to the chamber and not to the electret
used in the chamber. This parameter is 0.12 for L chambers. This value must be multiplied by the
gamma radiation level at the site (in µR h−1) and the product (in equivalent pCi L−1) subtracted from
the apparent radon concentration. The default value of the background was used for the present study.

The minimum voltage before exposing the EIC is fixed at 200 V. The accuracy of measurements is
ensured by using a radon reference chamber for quality control checking before each set of electret
readings using the Electret Voltage Reader. The voltage of the reference chamber when provided by
the manufacturer is (248 ± 1) V. This voltage is supposed to decrease less than 1 V each year and should
not be used for many years.

The precision was monitored in the present study by placing 10 EICs in the same conditions in a
dwelling for three months. The arithmetic mean of the indoor radon concentration and the standard
deviation were determined. The corresponding precision was determined to be 10% [6].

Regarding the uncertainty assessment, three sources of uncertainty were identified:
(1) uncertainty u1, regarding the active volume and electret thickness of the EIC estimated at 5%;
(2) uncertainty u2, related to the initial and final readings of the electret estimated at 1.4 V;
(3) uncertainty u3, regarding the gamma external radiation, estimated between 0.1–0.2 pCi L−1.
The uncertainties of the temperature, humidity and ventilation system were neglected.

Finally, the overall relative uncertainty combining all the above components was evaluated by
using the following equation:

u =
√

u2
1 + u2

2 + u2
3 (3)

2.2.2. Closed Alpha-Track Detector (RADTRAK2®)

A number of 175 RADTRAK detectors were deployed in Ngaoundal, Minim, Tibati and Tongo from
May to June 2019. A total of 169 detectors were collected after two months of exposure time and sent back
to the RADONOVA Laboratories for analysis in Uppsala, Sweden. The measurement was performed
following the standard ISO 11665-4 [20]. The detector container was manufactured from electrically
conducting plastic. Through a small slit (filter), radon gas entered the detector. The track-detecting
material (film) inside the detector is was then by alpha particles generated by the radon entering the
container and the decay products formed from it. On the film, the alpha particles made small tracks
which are enlarged with chemical etching and later counted in a microscope in order to determine the
radon exposure. The lowest detection limit for a measurement period of 3 months is 10 Bq m−3.
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The arithmetic mean of radon activity concentration (Bq m−3) is given as follows:

C =
(
ng − nb

)
1

t.SSSNTD.Fc
=

(
ng − nb

)
.ω

ω = 1
t.SSSNTD.Fc

(4)

where ng is the number of tracks after exposure, nb is the mean number of tracks caused by the
background radiation, t is the sampling duration, Fc is the calibration factor, ω is the correction factor
linked to the calibration factor and the sampling duration and SSSNTD is the detector area used for
counting the number of etched tracks in cm2.

For the most accurate value, nb is determined experimentally by reading n detectors that have
not been exposed to radon and have been processed under the same physico-chemical and counting
conditions. The value of nb may also be given by the manufacturer.

The standard uncertainty of C is given as follows:

u
(
C
)
=

√(
ng +

nb
n

)
.ω2 + C

2
.u2

rel(ω)

u2
rel(ω) = u2

rel(Fc) + u2
rel(S)

(5)

where urel is the relative standard uncertainty. The uncertainty of the sampling duration is
considered negligible.

2.2.3. Inhalation Dose

The inhalation dose due to the exposure to radon is given as follows:

Einh = Ainh × einh × Focc × Feq × t (6)

where Ainh is the geometric mean of radon concentration, einh is the inhalation dose conversion factor
of 9 nSv/(Bq h m−3), Focc is the occupancy factor of 0.6 for the study areas, Feq is the equilibrium factor
of 0.4 which is the default value given by UNSCEAR [21] and t corresponds to one year expressed
in hours.

It should be mentioned that the conversion factor proposed by UNSCEAR [21] has recently
been called into question by the International Commission on Radiological Protection (ICRP) [22],
which suggests a correction by a factor of 2 upwards. In 2017, the ICRP published new, higher dose
conversion factors for radon, which therefore increased the calculated radiation dose associated with
exposure to radon in workplaces [23]. For the calculation of doses following the inhalation of radon and
radon progeny in underground mines and in buildings, in most circumstances, the ICRP recommends
a dose coefficient of 3 mSv per mJ h m−3 (approximately 10 mSv WLM−1).

UNSCEAR, however, has confirmed in a report on lung cancer from exposure to radon in 2019 that
the evidence reviewed by its experts is compatible with the available data in the Committee’s previous
assessment of lung cancer risk due to radon [24]. Therefore, UNSCEAR concluded that there is no
reason to change its established dose conversion factor and recommends the continued use of the dose
conversion factor of 9 nSv per (Bq h m−3) EEC of 222Rn, which corresponds to 1.6 mSv (mJ h m−3)−1

for estimating radon exposure levels to a population. This new report was approved by the Fourth
Committee of the United Nations General Assembly in October 2019.

Finally, it is clear that the uncertainty in the dose conversion factor should be taken into
consideration when assessing inhalation dose due to radon indoors.

2.2.4. External Effective Dose

The Thermo Scientific RadEye PRD detector was used to measure the ambient dose-equivalent
rates prior to external dose assessment. It is a high-sensitivity gamma radiation detection and dose
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rate measurement tool incorporating a highly sensitive NaI(TI) scintillation detector with a miniature
photomultiplier for the detection of gamma radiation levels.

The radiation exposure from external sources is the result of natural and artificial ground radiation
as well as from the cosmic background. The value of the external effective dose is given by

Eext (mSv) = [(1− Focc)Hout + Focc ×Hin] × t (7)

where Hout and Hin are the arithmetic mean of the outdoor and indoor ambient equivalent dose rates
and Focc is the occupancy factor of 0.6 determined previously by Saïdou et al. [6].

3. Results and Discussion

3.1. Indoor Radon Distribution Using Electret Ionization Chambers (EPERM)

From the total of 90 EPERM detectors deployed, 69 were returned in a usable condition in
laboratory for the final voltage reading and radon concentration deduction. Figures 2 and 3 display the
distributions of indoor radon concentrations in Tibati and Ngaoundal, respectively. The minimum and
maximum radon concentrations were 36 Bq.m−3 and 569 Bq m−3 in Tibati, 37 Bq m−3 and 687 Bq m−3

in Ngaoundal respectively. The corresponding arithmetic and geometric means were 195 Bq m−3

and 150 Bq m−3 in Tibati, 270 Bq m−3 and 205 Bq m−3 in Ngaoundal, respectively. These values are
clearly above the world arithmetic mean of 40 Bq m−3 [21]. It has been proven that elevated radon
concentrations indoors depend on several factors such as the building material, radon exhalation rate
from the ground and house ventilation rate [25–28]. In most surveyed dwellings, the buildings were
poorly ventilated and were made out of soil bricks. Such conditions could explain the high indoor
radon concentrations. In its recent Publication 126 [29], the International Commission on Radiological
Protection (ICRP) strongly encouraged national authorities to set national reference levels in the range
of 100–300 Bq m−3 by taking into account the socio-economic factors of the country. It was found that
70% and 15% of surveyed dwellings had radon concentrations above 100 Bq m−3 and 300 Bq m−3,
respectively. In view of the latest scientific data, the WHO proposed a reference level of 100 Bq m−3 to
minimize health hazards due to indoor radon exposure [30]. If this level cannot be reached by taking
into account the Gross Domestic Product (GDP) of the country, the chosen reference level should not
exceed 300 Bq m−3 in houses.
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Figure 2. Distribution of radon in dwellings of Tibati (A) and Ngaoundal (B) using EPERM detectors.
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Figure 3. Lognormal distribution of 222Rn in houses of Ngaoundal (A) and Tibati (B) using RADTRAK
detectors. The numbers of houses are 48 and 56 in Ngaoundal and Tibati, respectively.

3.2. Indoor Radon Distribution Using Radon Track Detectors (RADTRAK)

As shown in Table 1, 222Rn concentrations were found to vary between 43± 12 and 270 ± 40 Bq m−3

with a geometric mean of 102 ± 21 Bq m−3. It was also found that 51% of dwellings had radon
concentrations above the reference level of 100 Bq m−3 recommended by the WHO [21]. About 4% of
dwellings had radon concentrations higher than 200 Bq m−3. No dwelling had a radon concentration
above 300 Bq m−3. Radon concentrations in Ngaoundal and Minim ranged between 68 ± 14
and 262 ± 40 Bq m−3 and 43 ± 12 and 172 ± 30 Bq m−3, respectively, with corresponding GMs
of 123 ± 24 Bq m−3 and 85 ± 18 Bq m−3, respectively. Radon concentrations in Tibati and Tongo ranged
between 56 ± 14 and 270 ± 40 Bq m−3 and 72 ± 14 and 174 ± 30 Bq m−3, respectively, with corresponding
GMs of 93 ± 20 Bq m−3 and 105 ± 21 Bq m−3. As shown in Figure 4 radon distribution in the whole
study area follows lognormal law.

Table 1. Activity concentrations of 222Rn determined by using Radon Track (RADTRAK) detectors.
AM: arithmetic mean, SD: standard deviation, GM: geometric mean, GSD: geometric standard deviation,
N: number of dwellings.

Statistical Parameters
Radon Concentration (Bq m−3)

Ngaoundal Tibati Tongo Minim Whole Study Area

Range 68–262 56–270 72–174 43–172 43–270
AM ± SD 131 ± 25 99 ± 21 107 ± 22 91 ± 19 108 ± 22

GM ± GSD 123 ± 24 93 ± 20 105 ± 21 85 ± 18 102 ± 21
Median 123 94 104 82 100

N 48 56 31 32 167

The above values were compared with other results from ore-bearing or mining regions
of Cameroon [6–15]. Indoor radon concentrations ranged between 46–143 Bq m−3 in Poli [12],
27–937 Bq m−3 in Lolodorf [15], 88–282 Bq m−3 in Betare-Oya [9], and 31–436 Bq m−3 in the coastal city
of Douala [11]. The average values were 82 Bq m−3, 97 Bq m−3, 133 Bq m−3 and 139 Bq m−3, respectively.
In total, 20% of dwellings had radon concentrations above 100 Bq m−3 in the uranium-bearing region
of Poli, 47% in the uranium-bearing region of Lolodorf, 76% in the gold mining areas of Betare-Oya
and 27% in Douala city. No house had a radon concentration above 300 Bq m−3 in Poli and Douala city.
Only 1% of houses had a radon concentration above 300 Bq m−3 in Lolodorf, and 3% in Betare-Oya.
These results indicate a large variation in the radon level in houses. It is clear that the above data make
a real contribution to radon-risk mapping in the country.
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Figure 4. Lognormal distribution (A) of indoor 222Rn in the bauxite-bearing Southern Adamawa.
Boxplot distribution (B) is made for each study area and the whole bauxite-bearing areas. The total
number of RADTRAK detectors analyzed was 169. Box plot refers to median, lower and upper quartiles.
Outliers are shown on either side of the rectangular box at the limit of the vertical line. The small filled
circle above the median represents the arithmetic mean.

As evidenced in Figure 5, the Pearson correlation factor of 0.4 shows that the correlation between
the indoor ambient-equivalent dose rate and 222Rn concentration is low in the bauxite-bearing areas
of southern Adamawa in Cameroon. This low correlation reveals an independence between indoor
gamma radiation and radon concentration due to the good ventilation of dwellings. Doors and
windows are diurnally open.
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Figure 5. Correlation between indoor ambient-equivalent dose rate and indoor radon in the
bauxite-bearing areas of southern Adamawa.

3.3. Comparison of the Results Obtained with EPERM and RADTRAK

Wide differences were observed between results given by EPERM and RADTRAK detectors.
Table 2 shows the coefficient of the ratio between EPERM and RADTRAK, which varied greatly from
0.80 to 2.50. Moreover, the Z-score test on the two sets of data confirmed the wide difference between
most of the values belonging to the two sets of data (EPERM and RADTRAK). EPERM is a detector
based on the principle of electrostatic collection; it has been shown that this type of detector is greatly
affected by humidity, such as with the Electrostatic Radon Monitor developed by Iida et al. [31].
Furthermore, Sorimachi et al. [32] showed how humidity, ambient aerosols and thoron influence the
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detection responses of EIC detectors. The present study area is a humid climate area with a yearly
humidity ranging between 10–99% [18]. This could explain the great difference between the two sets of
data. Furthermore, the dwellings surveyed by EPERM detectors in 2015 are not in general those where
222Rn was measured in 2019 using RADTRAK detectors.

Table 2. Ratio (RADTRAK/ EPERM) activity concentrations of indoor 222Rn and Z-score test.

222Rn Concentration
(Bq m−3) by EPERM

222Rn Concentration
(Bq m−3) by RADTRAK

Type Ratio
(RADTRAK/EPERM Z-Score

36 ± 8 43 ± 12 Minimum 0.80 −0.48
687 ± 35 270 ± 40 Maximum 2.50 7.8
233 ± 20 108 ± 22 Arithmetic mean 2.20 4.23
175 ± 16 101 ± 21 Geometric mean 1.70 2.8

3.4. External Effective Dose

Table 3 shows that the external effective dose in the studied areas of Ngaoundal, Minim, Tongo and
Tibati ranges between 0.3–1.8 mSv with an arithmetic mean of 0.7 ± 0.2 mSv. It ranges between
0.6–1.8 mSv in Ngaoundal, 0.3–0.7 mSv in Minim, 0.5–0.8 mSv in Tibati and 0.6–0.9 mSv in Tongo.
The corresponding arithmetic means are 0.9 ± 0.2 mSv, 0.5 ± 0.1 mSv, 0.6 ± 0.1 mSv and 0.8 ± 0.1 mSv,
respectively. Most of these values are lower than the world average value of 0.9 mSv (0.5 mSv for
terrestrial radiation and 0.4 mSv for cosmic radiation) given by UNSCEAR [21]. Currently, the exposure
of members of the public to external sources is not critical. The situation could change in Ngaoundal
and Minim, which are most close to the bauxite deposits. According to Canyon Resources, mining will
start in 2022, with a consequent increase in the external dose due to NORM.

Table 3. External and inhalation dose to members of the public in the bauxite-bearing areas
of Southern Adamawa. AM: arithmetic mean, SD: standard deviation, GM: geometric mean,
GSD: geometric standard deviation, N: number of dwellings.

Statistical Parameters
External Effective Dose (mSv)

Inhalation Dose (mSv)
Outdoor (Out) Indoor (In) Total Dose

(Out + In)

Ngaoundal

Range 0.20–0.70 0.39–1.07 0.64–1.77 1.29–4.96
AM ± SD 0.31 ± 0.08 0.56 ± 0.12 0.86 ± 0.18 2.43 ± 0.87
GM(GSD) 0.30 ± 1.24 0.54 ± 1.20 0.85 ± 1.18 2.30 ± 1.38

Median 0.30 0.53 0.82 2.26
N 48 48 48 48

Tibati

Range 0.18–0.30 0.28–0.54 0.50–0.84 1.06–5.04
AM ± SD 0.23 ± 0.03 0.39 ± 0.05 0.62 ± 0.06 1.87 ± 0.72
GM(GSD) 0.23 ± 1.14 0.39 ± 1.14 0.62 ± 1.12 1.77 ± 1.39

Median 0.23 0.38 0.62 1.78
N 56 56 56 56

Tongo

Range 0.21–0.35 0.35–0.63 0.63–0.94 1.36–3.30
AM ± SD 0.27 ± 0.03 0.50 ± 0.07 0.77 ± 0.08 2.03 ± 0.40
GM(GSD) 0.27 ± 1.13 0.49 ± 1.16 0.77 ± 1.10 1.99 ± 1.21

Median 0.28 0.49 0.78 1.97
N 31 31 31 31

Minim

Range 0.07–0.26 0.23–0.44 0.30–0.68 0.81–3.26
AM ± SD 0.17 ± 0.03 0.31 ± 0.05 0.48 ± 0.07 1.72 ± 0.62
GM(GSD) 0.17 ± 1.26 0.31 ± 1.16 0.48 ± 1.17 1.62 ± 1.43

Median 0.18 0.30 0.48 1.55
N 32 32 32 32

Whole study area

Range 0.07–0.70 0.23–1.70 0.30–1.77 0.81–5.04
AM ± SD 0.25 ± 0.07 0.44 ± 0.11 0.70 ± 0.18 2.03 ± 0.75
GM(GSD) 0.24 ± 1.32 0.43 ± 1.30 0.67 ± 1.28 1.92 ± 1.40

Median 0.25 0.43 0.68 1.90
N 166 166 166 166
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3.5. Inhalation Dose

As displayed in Table 3, the inhalation dose of the studied areas ranged between 0.8–5 mSv
with an average value of 2.0 ± 0.7 mSv. It ranged between 1.3–5 mSv, 0.8–3.3 mSv, 1.1–5 mSv and
1.4–3.3 mSv in Ngaoundal, Minim, Tibati and Tongo. respectively. The corresponding average values
are 2.4 ± 0.9 mSv, 1.7 ± 0.6 mSv, 1.9 ± 0.7 mSv and 2.0 ± 0.4 mSv, respectively. All the average values
were higher than the world average value of 1.2 mSv given by UNSCEAR [21]. Saïdou et al. [10]
previously reported natural radiation exposure to the public in some mining and ore-bearing regions of
Cameroon. It has been found that the average inhalation doses due to 222Rn are 1.5 mSv, 2 mSv, 2.5 mSv
and 2.6 mSv in the uranium-bearing region of Poli [12], the uranium and thorium-bearing region
Lolodorf [15], the gold mining areas of Betare-Oya [9] and the coastal city of Douala [11], respectively.
It can be noted that the above average values are comparable to those found in the current work.
As shown in Figure 6, the inhalation dose distribution of indoor radon follows the lognormal law.
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4. Conclusions

In this work, 222Rn was measured in 265 dwellings of the bauxite-bearing areas of southern
Adamawa in Cameroon using EPERM and RADTRAK detectors followed by indoor and outdoor
ambient equivalent dose rate measurements before the commencement of mining in 2022. The 222Rn
concentrations were found to vary between 43–270 Bq m–3, with a geometric mean of 101 Bq m−3—higher
than the world average value of 40 Bq m−3. It was also found that 51% of dwellings have radon
concentrations above the reference level of 100 Bq m−3. The inhalation dose due to 222Rn exposure
ranges between 0.8–5 mSv with an average value of 2 mSv—higher than world average value of 1.2 mSv.
The external effective dose ranges between 0.3–1.8 mSv with an average value of 0.7 mSv—lower than
the world average value of 0.9 mSv (0.5 mSv for terrestrial radiation and 0.4 mSv for cosmic radiation)
given by UNSCEAR. It clearly appears that the exposure level is not critical. The situation could change
in the near future during mining activity. Thus, radiation protection measures should be applied to
avoid the spread of NORM in the environment. Furthermore, the current results will contribute in
the ongoing project of establishing national reference levels for indoor radon in Cameroon within the
framework of the setup of the National Radon Action Plan and regulations of radon exposure.
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