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Background.Next generation sequencing platforms can generate shorter reads, deeper coverage, and higher throughput than those
of the Sanger sequencing. These short reads may be assembled de novo before some specific genome analyses. Up to now, the
performances of assembling repeats of these current assemblers are very poor. Results.To improve this problem, we proposed a new
genome assembly algorithm, named SWA, which has four properties: (1) assembling repeats and nonrepeats; (2) adopting a new
overlapping extension strategy to extend each seed; (3) adopting sliding window to filter out the sequencing bias; and (4) proposing
a compensational mechanism for low coverage datasets. SWAwas evaluated and validated in both simulations and real sequencing
datasets. The accuracy of assembling repeats and estimating the copy numbers is up to 99% and 100%, respectively. Finally, the
extensive comparisons with other eight leading assemblers show that SWA outperformed others in terms of completeness and
correctness of assembling repeats and nonrepeats. Conclusions.This paper proposed a new de novo genome assembly method for
resolving complex repeats. SWA not only can detect where repeats or nonrepeats are but also can assemble them completely from
NGS data, especially for assembling repeats. This is the advantage over other assemblers.

1. Background

Over the past twenty years, genome sequencing technologies
havemade great progress inmany aspects, such as speed, cost,
coverage, and so forth. The automated Sanger sequencing
is regarded as the first-generation genome sequencing tech-
nology which has the ability to read longer than 1000 base
pair (1000–2000 bp). The latter sequencing technologies are
referred to as the next-generation sequencing (NGS) tech-
nologies. Currently, the available commercial NGS platforms
include GA, MiSeq, and HiSeq from Illumina [1], SOLiD
and Ion Torrent from Life Technologies [2], RS system from
Pacific Bioscience, and Heliscope from Helicos Biosciences
[3–7]. Next generation sequencing machines can sequence
the whole human genome in a few days, and this capability
has inspired a flood of new projects that are aimed at
sequencing large kinds of animals and plants [8, 9]. NGS can
be characterized by highly parallel operation, higher yield,
simpler operation, shorter reads, and much lower cost [10].

However, the NGS technologies all share a common intrin-
sic characteristic of providing very short read length (30∼
250 bp), which is substantially shorter than the Sanger
sequencing reads.

These short reads may be assembled de novo before
further genome analysis if the reference genome is not
available. Currently, there are tens of genome assem-
bly algorithms and software. Among them ABySS [11],
ALLPATHS-LG [12], Bambus2 [13], CABOG [14], MSR-
CA (http://www.genome.umd.edu/masurca.html), SGA [15],
SOAPdenovo [16], and Velvet [17] are the typical ones. Each
of them is able to run large and whole genome assembly
using NGS short read data from mate-pair or paired-end
information. In terms of repeats smaller than read length,
these current assemblers performed well. But for the repeats
longer than read length, most of them performed poorly in
completeness and accuracy of assembling repeats from NGS
data. It is shown that repetitive DNA comprises a significant
fraction of the eukaryotic genomes, for example, ∼20% of
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Caenorhabditis elegans and Caenorhabditis briggsae genomes
[18] and∼50%of the human genome [19] have been identified
as repetitive DNA. Most of these repetitive DNA sequences
have some important biomedical functions and are closely
related to some complex disease [20, 21], such as cancer [22],
neuropsychiatric disorders [23], and autism [24]. Thus, it
is necessary to improve the genome assembly algorithms,
especially in assembling repeats.

To this end, we proposed a new genome assembly algo-
rithm aiming for assembling repeats and nonrepeats, named
SWA (sliding window assembly), which can assemble repeats
and nonrepeats completely and accurately. In SWA, sliding
window function is used to filter out the sequencing bias
caused by sequencing process and improve the confidence
of separating repeats and nonrepeats. There are five typical
properties.

(1) Assembling repeats and nonrepeats completely and
accurately. SWA can assemble repeats and nonrepeats
from NGS data directly in a parallel way which can
reduce thememory usage and executive time. In addi-
tion, SWA cannot only detect where repeats or non-
repeats are but also can assemble them completely.
Therefore, SWA provides an alternative solution to
resolve long repeats in some extent.

(2) Adopting dynamic overlapping strategy to extend
each seed. The so-called dynamic overlapping strat-
egy is to compute the reads overlapped with seed in
intervals composed of maximum overlap and min-
imum overlap. This strategy can search the optimal
read for extension in dynamic interval and jump over
the short repeats.

(3) Adopting sliding window to filter out the sequencing
bias so as to improve the confidence of detecting
boundary of repeats. NGS data is always full of
sequencing bias and is highly uneven, which caused
the difficulty of distinguishing where repeats or non-
repeats are. Sliding window technique is used to
filter out the sequencing bias in the genome assembly
process so as to increase the confidence of detecting
boundary of repeats.

(4) Proposing a compensational mechanism for the loss
caused by low coverage. Low coverage makes the
statistical properties of read counts less significant. To
improve the statistical significance, SWA proposed a
compensationalmechanismbased on slidingwindow.
This mechanism can improve the statistical signif-
icance of read counts under the condition of low
coverage.

(5) Estimating copies of assembled ones as an auxiliary
function.

The main contributions of our approach are as follows.
(1) Assembling repeats and nonrepeats completely and accu-
rately rather than only detecting where repeats or nonrepeats
are. Complex repeats structures have very important biomed-
ical functions. Consequently, the completeness and accuracy
of assembling repeats are what SWA is mainly concerned

about the completeness of assembled repeats and nonrepeats
rather than the continuity of whole genome assembly. (2)
Sliding window functions to filter out the sequencing bias
are used in genome assembling process. Filtering noise by
window function is very common in information processing
but is rare in genome assembly process. SWA adopts sliding
window to filter out NGS data bias and improve the statistical
significance of read counts. In addition, a compensational
mechanism based on sliding windowwas embedded in SWA.
This mechanism can improve the significance of read counts
under the condition of low coverage.

The assessments were performed in simulated datasets
and real NGS datasets which are all generated by Illumina
sequencer. Simulated study is only used to validate the perfor-
mances of SWA. Therefore, it has little meaning to compare
with other assemblers in simulated datasets. Extensive com-
parisons were conducted with other eight famous assemblers,
such as ABySS, ALLPATHS-LG, Bambus2, CABOG, MSR-
CA, SGA, SOAPdenovo, and Velvet, in real NGS datasets.
The results indicate that for whatever small genomes or large
genomes, SWA outperformed other eight leading assemblers
in the completeness of assembling repeats. SWA is freely
available at http://222.200.182.71/swa/SWA.rar.

2. Results

2.1. SWA Algorithm. SWA runs in five key steps (Figures
1 and 2): preprocessing, unique processing (Figure 2(b)),
hash index (Figure 3), seed selection (Figure 2(c)), and seed
extension (Figures 2(d), 4, and 5).

Firstly, preprocessing is performed. SWA firstly filters out
the raw reads that contain any “𝑁”, which is noninformative,
or any low quality value region, whichmay contain errors and
lead to false positive overlaps with other reads (Figure 2(a)).
And then the parameters are set in advance (see parameters):
the maximum overlapping length max, dynamic overlapping
interval 𝐿𝑑, read length 𝐿𝑟, length of sliding window 𝐿𝑤,
threshold of repetitive seeds 𝐻𝑝, threshold of nonrepetitive
seeds 𝐿𝑝, threshold of repeats assembly 𝑇2, threshold of
nonrepeats assembly 𝑇1, and sequencing depth after filtering
by sliding window 𝑆fd.

Thirdly, unique processing is performed (Figure 2(b)),
which is used to find the unique reads and corresponding
frequencies in raw datasets. This step is performed using
unique function provided by MATLAB platform. For exam-
ple, 𝐶 = unique (𝐴) for the array 𝐴 and returns the same
values as in 𝐴 but with no repetitions. The values of 𝐶
are in sorted order. For the sequencing reads, this step is
performed in a similar way. The reads that are exactly the
same—that is identical reads—are collapsed into one unique
read and the corresponding frequency is also recorded. For
each raw read, the reverse-complement is also used. After
unique processing, all unique reads are sorted in a table 𝑅,
which is a variable to store these processed data. By unique
processing, the amount of data is decreased, especially for the
high coverage data, which can also reduce the computational
requirement and accelerate the running time.
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Figure 1: High-level diagram of the SWA assembly pipeline. The assembly has three main modules: preparatory stage, constructing repeats,
and constructing nonrepeats. Preparatory stage includes data cleaning, unique processing, and hash index constructing. The stage of
constructing repeats and constructing nonrepeats can be performed in parallel or in series. Figure 1 shows the parallel manner. The specific
steps of constructing repeats and nonrepeats are detailed in Methods.

Thirdly, hash index is constructed (Figure 3). As it is
time consuming to identify unique reads by directly com-
paring the whole raw reads one by one, SWA constructs
the indirect hash index of unique reads which is able
to index complex and nonsequential data in a way that

facilitates rapid searching. The indirect hash index struc-
tures firstly transform the keywords to the quaternary inte-
gers and then index these integers rather than the strings
directly. This is especially appropriate for DNA sequencing
reads.
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Figure 2: Some key steps of SWA. (a) Raw reads processing. Input reads containing any “𝑁” or a low quality region are discarded and then
sorted in alphabetical order. (b) Graphical illustration of unique process. The five different color lines represent the five unique reads in
preprocessed raw reads. Each of them appears more than twice. By unique processing, the identical reads are collapsed into one unique and
corresponding frequency. (c) Seed selection. The unique reads are ranked by read count (from high to low). Unique reads with read count
larger than𝐻𝑝 are selected as seeds for repeat (the red dotted frame), while unique reads with read counts smaller than 𝐿𝑝 are selected as seeds
for nonrepeat extension (the blue dotted frame). (d) The graphical example of extending repeats using sliding window function in dynamic
overlapping interval. The dotted box represents the dynamic overlapping interval 𝐿

𝑑
. After overlapping with seed in 𝐿

𝑑
, the overlapped read

counts are recorded and then sliding window function is used to filter out the read bias in this interval continuously, as shown in C1. C2 is the
corresponding results filtered by sliding window function, and then the mean value of this interval is recorded in variable𝑀𝑛 to detect the
boundary of repeats (Figure 4) and nonrepeats (Figure 5). In this extension, SWA regards 𝑟1 as the optimal extendable read.The extension of
nonrepeats is performed in a similar way. The detailed extension and boundary detection are graphically shown in Figures 4 and 5.

Fourthly, seed selection is conducted. In SWA, each
extension requires a unique read, called a seed, to initiate
the extension. In an extension-based assembler, a good seed
should not contain any sequencing errors and should not
be selected from the boundary of repeats and nonrepeats.

Consequently, data cleaning is necessary in the data
preprocessing stage before seed selection, and then the seeds
are selected in table 𝑅. In addition, theoretically, a read
from repetitive region usually has a high read count because
identical repeats from other loci are counted as well; a read
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Figure 3: Schematic of a hash index of short sequences strategy.
Sequence reads with associated read identifiers are shown, with the
regions that will be used for seed selection in capital letters and
matched seeds of two bases from AA to TT. Given read identifiers
are associated with the seeds using a hash function (e.g., a unique
integer representation of each seed). Once such hash table has been
built for unique reads; the corresponding data can be scanned with
the same hash function, resulting in a much smaller subset of reads
to more exactly search the extendible reads.
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Figure 4: Schematic of extending repeats and boundary detec-
tion. The graphic illustration of extending repeats and boundary
detection. Red line represents the extended repeats, blue line
represents the extending repeats, and the green line represents the
potential nonrepeats. The yellow lines represent the supporting
reads overlapped with the extended contig. We assume that the
sequencing depth 𝑆𝑑 = 2, and let 𝑇2 = 3. Therefore, in the process
of extending repeats, the mean value 𝑀𝑛 of dynamic overlapping
interval filtered by sliding window as shown in Figure 2(d) should
be larger than or equal to𝑇

2
.The dotted box represents the potential

boundary of repeats. Consequently, if we set𝑀𝑛 > 𝑇2, the extension
will be stopped at B1 or the extension will be stopped at B2.

from nonrepetitive region always has a low read count. On
the other hand, the read from the boundary always has the
middle read count; these seeds always lead to misassembled
and short contigs.Thus, the seeds for repeats are chosen with
high read count in table 𝑅, larger than𝐻𝑝, while the one for
nonrepeats should be chosen with low read count in table 𝑅,
smaller than 𝐿𝑝. And seeds with middle read count should
be avoided. In order to avoid the risk of selecting seed with
full errors, the lower limit of read count is also necessary.
Furthermore, in seed selection stage, sequencing base quality
value will be used to avoid the risk of picking seedwith errors,
especially for seed of nonrepeats. For the seedswith same read
count, SWA selects the one with higher quality value, because
higher base quality means lower errors. This strategy can
avoid the risk of picking seed with errors tomaximum extent.

Fifthly, seed extension (Figures 2(d), 4, and 5). We first
define some terms. Let𝐿𝑟 be the length of each read and𝑥 and
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Figure 5: Schematic of extending nonrepeats and boundary detec-
tion. The graphic illustration of extending repeats and boundary
detection. Green line represents the extended nonrepeats, blue line
represents the extending nonrepeats, and the red line represents
the potential repeats. The yellow lines represent the supporting
reads overlappedwith the extension.We assume that the sequencing
depth 𝑆𝑑 = 2, and let 𝑇1 = 3. Therefore, in the process of
extending nonrepeats, the mean value𝑀𝑛 of dynamic overlapping
interval filtered by sliding window should be smaller than or equal
to 𝑇1. The dotted box represents the potential boundary of repeats.
Consequently, if we set𝑀𝑛 < 𝑇1, the extension will be stopped at B1
or the extension will be stopped at B2.

𝑦 be two unique reads in table 𝑅. We say that 𝑥 and 𝑦 overlap
if the suffix 𝑡 bases of 𝑥 are identical to the prefix 𝑡 bases of 𝑦,
where min ≤ 𝑡 ≤ max (max and min are, resp., the allowed
maximal andminimal numbers of overlapping bases) and the
default value of them are 𝐿𝑟/2 ≤ min < max = 𝐿

𝑟
− 1. More

explicitly, we say that the 3-end of 𝑥 overlaps with the 5-end
of 𝑦. In the circumstances of long reads, the max overlap max
is not needed to use this default value, and the empirical value
is min < max < min{100, 𝐿𝑟 − 1}. The dynamic overlapping
interval 𝐿𝑑, that is the 𝑘-mer in SWA, and is defined as
𝐿𝑑 = 𝑘-mer = max−min. Given a seed, SWA first extends
it at the 3-end and then at the 5-end. A read is extendable
for 𝑟seed if its 5

-end overlaps with the 3-end of 𝑟seed and its
3-end overlaps with one or more unique reads. To extend
a seed 𝑟seed at the 3-end, SWA searches all unassembled
unique reads in table 𝑅 for extendable reads in the dynamic
range of [1, 𝑘-mer], that is, from maximal overlapping to
minimal overlapping. The read counts overlapping with seed
in this interval are recorded (as shown in Figure 2(d)). Then
sliding window function is used to filter out the read count
bias of this interval, and then the mean value 𝑚𝑦 filtered by
sliding window is recorded in variable 𝑀𝑛 which is used to
detect the boundary of repeats. For the extension of repeats
(Figure 4), the extension will continue if𝑀𝑛 > 𝑇2, where 𝑇2
is the threshold of repeats, else the extension will be stopped
at this end. For the extension of nonrepeats (Figure 5), the
extension will continue if𝑀𝑛< 𝑇1, where 𝑇1 is the threshold
of nonrepeats. Meanwhile, the mean value of variable𝑀𝑛 can
be used to estimate the copy numbers.

In seed extending stage, dynamic overlapping interval 𝐿𝑑
is used to search the optimal read to extend seed and which
has three functions: (1) the optimal read can be searched in
this interval for seed extension (Discussion); (2) the bias of
the read counts in this interval can be filtered out by sliding
window function so as to increase the confidence of detecting
boundary (Figures 4 and 5); (3) copies of assembled contig
can be estimated based on the combination of this interval.
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Moreover, sliding window is a determinant factor of judging
whether the extension of seed is up to the bound of repeats
or nonrepeats. The threshold for repeats and nonrepeats
is closely related to the sliding window and filtered times,
which determines the accuracy and correctness of repeat or
nonrepeat contig construction.

The concrete contents and abbreviations are described in
detail in methods and parameters.

2.2. Compensational Mechanism. Another property of SWA
is the mechanism of compensating the loss caused by low
sequencing depth. In practice, the genome sequencing pro-
cess is highly uneven among the whole genome and full
sequencing bias. High coverage can decrease the influence of
sequencing bias on the statistical significance of read counts.
However, under the condition of low coverage, sequencing
bias reduces statistical significance of read counts, which
leads to difficulty of distinguishing boundary of repeats. In
order to improve the statistical significance of read counts
under low coverage, sequencing bias will be filtered out more
completely. To this end, SWA proposed a compensational
mechanism by the combination of filtered times and sliding
window function. The so-called filtered times 𝑁𝑓 is the
parameter of SWA which means the times of sequencing
data filtered by sliding window function. For example, if the
read counts filtered by sliding window function is filtered by
sliding window once more, that is filtered times𝑁𝑓 = 2. The
main idea of the compensational mechanism is as follows:
SWA can increase the length of dynamic overlapping interval
𝐿𝑑 and the size of sliding window 𝐿𝑤 and then coalesce
several points into one point, which can be achieved by both
increasing the size of sliding window and number of filtered
times.

The relationship between sequencing depth filtered by
sliding window, filtered times 𝑁𝑓, and average sequencing
depth 𝑆𝑑 is given as follows:

𝑆fd = 𝑆𝑑 × 𝐿
𝑁𝑓

𝑤 .
(1)

After filtering by sliding window, read counts will be more
flat. To run this compensational mechanism, we suggest that
only the values, size of slidingwindow, and filtered times,may
need to be adjusted. The empirical value of optimal sliding
window should be set in the range 𝑘-mer/5 ≤ 𝐿𝑤 ≤ 𝑘-mer/3,
where 𝑘-mer is the size of dynamic overlapping interval, and
optimal filtered times𝑁𝑓 should be set𝑁𝑓 = 2.

Notably, this compensationalmechanism is a double edge
sword. On the one hand, it can decrease the sequencing
bias and compensate the read loss of low coverage. On
the other hand, it reduces the sensitiveness of detecting
boundary of repeats and increases the computing complexity
and executive time. In order to get the best assembly, the high
coverage NGS data is also preferred.

2.3. Copy Number Estimation. The auxiliary function of
SWA is to estimate the copy numbers of each assembled
contig including repeats and nonrepeats directly from NGS
data rather than aligning them back to reference genomes.
Copy number estimation is also an important factor for

the genomic function analysis related to CNVs. SWA esti-
mates the copy number of the assembled contig when its
extension is stopped at both ends. SWA output this finished
contig and its corresponding copies simultaneously. Further-
more, the accuracy of estimated copy numbers is high up to
99% as shown in assessments in simulated datasets. Because
in the process of extension of a seed, the mean value of
each extension is recorded in variable 𝑀𝑛, which is used to
estimate the copy number of corresponding items (Methods).

3. Assessments

3.1. Metrics. In order to evaluate the ability of SWA for
assembling repeats and nonrepeats independently, we use
the metrics including Types of Repeat Contigs (TRC), Copy
Number of each Repeat Contig (CNRC), Number of Nonre-
peat Contigs (NNC), Number of Contig (Number C), N50,
N90, Mean Contig, Maximum Contig, CN-accuracy, Rep-
accuracy, C-accuracy, E-size, and Genome coverage.

TRC is the types of repeats and CNRC is the copy
numbers of each corresponding type of repeat. These two
metrics are used to evaluate the correctness of assembled
repeats. NNC is the number of nonrepeat contigs which is
used to evaluate the correctness of assembled nonrepeats.
Because N50 size might sometimes be a misleading statistic,
we also computed another statistic, which we called E-size.

(i) CN-accuracy is the accuracy of estimated copy num-
ber of each repeat. And which is designed to evaluate
the accuracy of estimating copy number of each
repeat contig and defined as CN-accuracy = 1 −

(∑𝑁error/𝑁total), where 𝑁total is the sum of the copy
numbers of all types of repeats and 𝑁error is the
absolute value between estimated copy numbers and
theoretical copy numbers. Therefore, the larger CN-
accuracy is preferred. The larger the CN-accuracy is,
the better the performances of SWA of estimating
copy numbers of repeats will be.

(ii) Rep-accuracy (Rep-acc) is the accuracy of assembled
repeat contigs, which is designed to evaluate the
correctness of all types of assembled repeat contigs
and defined as Rep-accuracy = 1−(∑ |𝐿𝑎−𝐿𝑟|/ ∑ 𝐿𝑟),
where 𝐿𝑟 represents the length of real repeat and
𝐿𝑎 represents the length of assembled repeat con-
tig. |𝐿𝑎 − 𝐿𝑟| is the error tolerance. The higher
Rep-accuracy represents the better performances of
SWA for assembling repeat contigs. So higher Rep-
accuracy is preferred.

(iii) C-accuracy is the accuracy of the total contigs, which
is designed to evaluate the accuracy of all assembled
contigs totally and defined as C-accuracy = 1 −

(𝐿error/𝐿 total); 𝐿 total represents the total number of all
contigs including repeats and nonrepeats and 𝐿error is
the sum of all error contigs.

(iv) The E-size is designed to answer the question: if you
choose a location (a base) in the reference genome
at random, what is the expected size of the contig
or scaffold containing that location? This statistic is
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Table 1: The performances of assembling different kinds of repeats.

Sequence (Containing) Repeat Contigs (kb) Accuracy (%) Genome coverage (%)
TRC CNRC NNC N50 Max CN-accuracy Rep-accuracy C-accuracy

Interspersed repeats 6 3, 6, 8, 5, 10, 8 73 9.1 26 100 99.9 100 100.9
Tandem repeats 6 6, 18, 9, 4, 20, 9 51 13.2 31.3 100 99.8 100 101
Compound repeats 12 Appendix 110 13.9 32.9 100 99.8 100 101
Three sequences with length 𝐿 = 500 kb, 500 kb, and 1Mb containing different types of repeats. Contigs of repeat and nonrepeat are generated independently
by SWA with basic parameters: read length 𝐿𝑟 = 50, filtered times = 1, sliding window size 𝐿𝑤 = 3, and 𝑘-mer = 10. Contigs smaller than 200 are removed.

Table 2: The effect of depth to SWA.

Sequencing depth Repeat Contigs (kb) Accuracy (%) Genome coverage (%)
TRC CNRC NNC N50 Max CN-accuracy Rep-accuracy C-accuracy

6 5 3, 4, 2, 6, 5 21 19 48 100 99.9 100 100.4
4 5 3, 4, 6, 5, 2 25 19 48 100 99.9 100 100.4
2 9 Appendix 100 7.2 20.8 100 89.2 100 101.1
1 15 Appendix 323 2.1 11.8 100 86.7 100 101.9
0.5 14 Appendix 950 0.3 3.0 100 66.7 100 63.3
0.2 17 Appendix 54 0.2 1.0 80 56.7 100 8.3
Sequence length 𝐿 = 500 kb containing five types of repeats. Sequencing depths are changing from 6 to 0.2. Contigs of repeat and nonrepeat are generated in
an independent ways by SWA at different depths with basic parameters: read length 𝐿𝑟 = 60, filtered times = 1, sliding window size 𝐿𝑤 = 3, and 𝑘-mer = 10.
Contigs smaller than 200 are removed.

one way to answer the related question: how many
genes will be completely contained within assembled
contigs or scaffolds, rather than split into multiple
pieces? E-size is computed as E = ∑

𝑐
(𝑙𝑐)
2
/𝐺, where

𝑙𝑐 is the length of contig𝐶 and𝐺 is the genome length
estimated by the sum of all contig lengths.

For evaluating correctness, the metrics, such as CN-
accuracy, Rep-accuracy, and C-accuracy, are all computed
by aligning the corresponding items back to the reference
genome using program swalign from MATLAB platform.
Swalign constructs local pairwise alignments between two
sequences using Smith-Waterman algorithm [25].

Among these metrics, TRC, CNRC, NNC, CN-accuracy,
and Rep-accuracy are specially designed for judging the
correctness of assembling repeats and nonrepeats. Notably,
the length of contigs is not what we are mainly concerned
about due to following reasons.

(1) The primary goal of SWA is to resolve repeats by
assembling repeats regions and nonrepeats regions
separately. Therefore, the correctness of assembling
repeats and nonrepeats is what SWA is firstly con-
cerned about.

(2) In order to separate repeat or nonrepeat correctly,
SWA must detect the boundary of them accurately
and stop extending seed at the boundary automati-
cally.

(3) The assembly with larger contig is always preferred.
However, if the contig is assembled or constructed
with errors, the larger the contig is, the worse the
assembly will be. So accuracy is another important
metric for the correct contig.

3.2. Assessments in Simulated Datasets. In this part, we vali-
dated the performances of SWA in three kinds of simulated
datasets containing interspersed repeats, tandem repeats,
and compound repeats, respectively. And then the effect of
sequencing depth and read length to SWA was evaluated,
respectively. The detailed results were shown in Tables 1, 2,
and 3.

FromTable 1, three kinds of simulated datasets containing
interspersed repeats, tandem repeats, and compound repeats
were used to validate the performances of SWA.The repetitive
contents contained in these three sequences represented a
wide range of repeats with different copies and lengths. The
maximum of copy number and length of repetitive sequence
are set up to 18 and 5 kb, respectively. The CN-accuracy,
C-accuracy, and Rep-accuracy were almost up to 100%
and 99.9%, respectively, which indicated that the estimated
copy numbers of assembled repeats and the constructed
contigs were all absolutely correct, and the error tolerance of
constructed repeats was lower than 0.2%. The error rate of
genome coverage was up to 1% low. All of these indicate that
SWA not only can assemble different kinds of repeats and
nonrepeats independently but also can estimate their copy
numbers accurately.

From Table 2, we can clearly see that sequencing depth
has a great influence on the performances of SWA. When
depth = 6 or 4, the performances of SWA were so much
better, metrics such as TRC, CNRC, CN-accuracy, and C-
accuracy were absolutely correct and high. Rep-accuracy and
N50 were a little down but still good; when depth dropped to
2 or 1, TRC and NNC were increasing, while N50, Max, and
Rep-accuracy were decreasing; meanwhile the completeness
of assembled repeats is getting worse. All of these indicated
that the performances of SWA were degenerating; that is,
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Table 3: The effect of read length to SWA.

Read length Repeat Contigs (kb) Accuracy (%) Genome coverage (%)
TRC CNRC NNC N50 Max CN-accuracy Rep-accuracy C-accuracy

36 10 Appendix 33 19 34 100 98.2 100 100.1
50 9 Appendix 23 19 48 100 99 100 100.3
101 7 3, 4, 6, 5, 2, 2, 2 21 19.1 48.1 100 99.2 100 100.8
150 6 3, 4, 2, 6, 5, 2 22 19.3 48.3 100 99.6 100 101
Sequence length 𝐿 = 500 kb containing five types of repeats. Read length is changing from 36 to 150. Contigs of repeat and nonrepeat are generated in an
independent ways by SWA at different levels with basic parameters: sequencing depth 𝑆𝑑 = 4, filtered times = 1, sliding window size 𝐿𝑤 = 3, and 𝑘-mer = 10.
Contigs smaller than 200 are removed.

Table 4: The effect of sliding window to SWA.

Window size Repeat Contigs (kb) Accuracy (%) Genome coverage (%)
TRC CNRC NNC N50 Max CN-accuracy Rep-accuracy C-accuracy

3 11 Appendix 1016 0.4 3.0 100 76.1 100 81.2
7 10 Appendix 688 1 4.0 100 98.7 100 101
11 15 Appendix 612 1.1 4.0 100 89.6 100 101
Sequence length 𝐿 = 500 kb containing four kinds of repeats. Size of sliding window varies from 3 to 11. Contigs of repeat and nonrepeat are generated in an
independent way by SWA at different levels with basic parameters: sequencing depth 𝑆𝑑 = 0.5, filtered times = 1, read length 𝐿𝑟 = 60, and 𝑘-mer = 20. Contigs
smaller than 200 are removed.

long repeats and nonrepeats were assembled into several
short fragments. CNRC of corresponding assembled repeat
contig was shown in Appendix. But CN-accuracy and C-
accuracy were still up to 100% which indicated that the copy
number estimation of each assembled repeat contig was still
right.When depth fell to 0.5, themetrics except CN-accuracy
and C-accuracy were almost not accurate. Particularly, the
Rep-accuracy was only 66.7%, which indicated that the
completeness of repeats was destroyed. Notably, when depth
dropped to 0.2, almost all metrics were getting bad. TRC
and NNC were far from the real value. CN-accuracy and
Rep-accuracy were so low that almost half repeats were not
assembled and their copy numbers were estimated with large
errors. N50 and Max were so small which indicated that
all long repeats and nonrepeats were broken into smaller
fragments. The assembled repeats and nonrepeats were far
from completeness. But C-accuracy was more robust than
other metrics, which indicated that although these contigs
were so small they were at least correct. All of these indicate
that sequencing depth affects the performances of SWA
greatly. Some extent of high coverage depth is necessary for
SWA to generate best assembly.

From Table 3, we can clearly see that read length has little
influence on the performances of SWA. When read length
varied from 36 to 150, almost all metrics were good and had
little change except TRC and NNC. TRC and NNC were
decreasing, which indicated that long repeats and nonrepeats
were assembled more completely. Therefore, N50 increased
a little with the increase of read length. What is more,
the Rep-accuracy and genome coverage were increasing a
little with the increasing of read length, which indicated the
completeness of assembled repeats and assembly redundant
were increasing simultaneously.

From Tables 1, 2, and 3, the property of assembling
repeats and nonrepeats independently and separately was
validated. The effect of sequencing depth and read length to
the performances of SWA was also evaluated, respectively.
From these results we can safely come to a conclusion that
SWA can assemble repeats and nonrepeats independently
and correctly; meanwhile sequencing depth has a greater
influence on SWA than read length. In high coverage depth,
the total performances of SWA are perfectly good. But in
a low coverage depth situation, the performances of SWA
are a little down. In practice, the higher coverage generated
increases the higher sequencing cost. So a compensational
mechanism of low sequencing depth is described in the
following section.

In the following section, we evaluated the effect of sliding
window and filtered times to SWA in low sequencing depth
situation, respectively. The detailed results were shown in
Tables 4 and 5.

Table 4 indicated that the performances of SWA were not
so much good in low sequencing depth and sliding window
can improve the performances of some metrics, such as
TRC, NNC, and Rep-accuracy.When sliding window size 𝐿𝑤
varied from 3 to 11, the performances of SWA were getting
from good to bad, then to bad generally. Particularly for the
metric of Rep-accuracy, which was getting up to 98.7% from
76.1% and then getting down to 89.6%. So the appropriate
sliding window can improve the performances of SWA and
compensate the read loss of low coverage depth. The choice
of optimal sliding window is very important for the effect
of compensational mechanism and is closely related to read
length, sequencing depth, and dynamic overlapping interval.

It was clearly shown in Table 5 that the appropriate
increase of filtered times could also improve the accuracy
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Table 5: The effect of filtered times to SWA.

Filtered times Repeat Contigs (kb) Accuracy (%) Genome coverage (%)
TRC CNRC NNC N50 Max CN-accuracy Rep-accuracy C-accuracy

1 11 Appendix 801 0.3 2.3 100 66.8 100 53.4
2 12 Appendix 418 1.8 7.6 100 82.1 100 101.9
3 13 Appendix 1025 0.3 2.3 100 68 100 77.4
Sequence length 𝐿 = 500 kb containing five kinds of repeats. Contigs of repeat and nonrepeat are generated in an independent way by SWA at different levels
with basic parameters: sequencing depth 𝑆𝑑 = 0.5, size of sliding window 𝐿𝑤 = 3, read length 𝐿𝑟 = 60, and 𝑘-mer = 15. Contigs smaller than 200 are removed.

of assembling repeats. The effect of sliding window is to
filter out the bias caused by sequencing process; therefore the
increase of filtered times can improve the effect of filtering
bias. It is clear that the Rep-accuracy was up to 82.1% after
being filtered twice from 66.8% but got worse to 68% after
three times filtering. So too much filtered times can lead to
misassembled contigs across the boundary of repeats and
nonrepeats as shown in Table 5.Therefore, for real NGS data,
some compromise is necessary for choosing optimal filtered
times.

3.3. Assessments in Reference Datasets. In this section, we
validated the performances of SWA in reference genome
datasets of three species inMaterials.We analysed their repeat
structures by whole genome scan using RepeatScout [26].
The repeats structures including lengths and copies were
detailed in the Appendix and the link detected repeats and
their copies in Table 6 in supporting data. The results of SWA
are presented in Table 6.

Table 6 shows the assembly statistics of three species by
SWA. All contigs were corrected and verified by aligning
them back to reference genome, so the C-accuracy was
100%. For chrIV-S.c datasets, SWA generated 32 repeats and
315 nonrepeats; the copy numbers of assembled repeats are
presented in the Appendix. In our whole genome scanning,
41 repeats longer than 200 were identified. By aligning these
assembled repeats back to the reference, 4 tandem repeats
were assembled together and the left were all correct. So
the CN-accuracy is about 88%, but C-accuracy and genome
coverage are almost up to 100%. For E. coli, SWA generated 50
repeats and 259 nonrepeats; the copy numbers of assembled
repeats are presented in the Appendix. By whole genome
scanning, 57 repeats were identified. So CN-accuracy is
about 88%, but genome coverage is 99.7%. For chrIII-C.e
datasets, SWA generates 198 repeats and 5471 nonrepeats. In
our whole genome scanning, 339 repeats longer than 200
were identified. By aligning these assembled repeats back to
reference, 103 short tandem repeats were assembled together.
So the accuracy is about 89%. But the genome coverage is a
little lower.

3.4. Assessments in NGS Datasets. In order to assess the
performances of SWA more comprehensively, we performed
comparisons with other eight leading genome assemblers
presented in GAGE [27], such as ABySS, ALLPATHS-LG,
Bambus2, CABOG, MSR-CA, SGA, SOAPdenovo, and Vel-
vet. We used the assembly evaluation script provided by

GAGE to assess various assembly metrics. Briefly, the GAGE
script aligns contigs back to the reference genome and
calculates the corrected N50 length by breaking contigs at
misassembled sites. Tables 7, 8, and 9 show the assembly
metrics for SWA and eight others in three species including
S. aureus, R. sphaeroides, and human chromosome 14. We
did not run these assemblers on the whole human genomes
due to the following reasons: (1) some of the assemblers in
our comparison would take many weeks to assemble the
complete genome and others would fail entirely; and (2) high
computing platform is not available. The statistics for these
eight assemblers were taken from GAGE study. In order to
compare the ability of assembling repeats fairly, all contigs are
aligned back to repeats using swalign function [25].

Table 7 shows the assembly statistics for S. aureus dataset
by nine assemblers. For S. a, SWA performs best in assem-
bling repeats and nonrepeats. By aligning them back to
repeats, SWA generated 30 repeats with total size 20.7 kb.
SGA generated 18 repeats with total size 19.4 kb. Velvet
generated 15 repeats with total size 13.8 kb. In terms of the
completeness of types of repeats, SWA achieved the best
assembly. The Rep-acc of SWA and SGA and Velvet are
82% and 83.8%, respectively. Therefore, for the accuracy
of assembling repeats, SWA and SGA are the top two
assemblers. Other assemblers had poor performances in the
accuracy of assembling repeats and nonrepeats. Particularly,
Allpath-LG only generates 3 repeats with size 2.6 kb and Rep-
acc 4.3%. Because Allpath-LG achieved the longest corrected
N50 length (66.2 kb), long contig can cross the boundary
of repeat and lead to indistinguishable contig. So the better
the continuity of assembler is the worse the completeness of
assembling repeats and nonrepeats will be. For the continuity
of assembly, SWA was read loss to other eight assemblers.
However, for the assembly size and genome coverage, SWA
was also the best one with assembly size 2,939 kb and genome
coverage 100.1%, which is most approximate to the real
genome size. So in terms of completeness of assembly, SWA
achieved the best assembly.

Table 8 shows the assembly statistics for R. sphaeroides
dataset by nine assemblers. By aligning them back to repeats,
SWA generated 13 repeats with total size 7.8 kb. AByss,
SGA, and SOAPdenovo generated 13 repeats with total
size 8.3 kb, 9 repeats with total size 3.9 kb, and 9 repeats
with total size 3.7 kb, respectively. The Rep-acc of them is
44.5%, 44.5%, 64.3%, and 84.5%, respectively. Therefore,
in terms of accuracy of assembling repeats, SOAPdenovo
outperformed others. But for the completeness of size of
repeats, SWA and AByss are the top two assemblers. Other
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Table 6: The results of SWA in reference genome datasets.

Species Repeat Contigs (kb) Accuracy (%) Genome coverage (%)
TRC CNRC NNC N50 Max CN-accuracy Rep-accuracy C-accuracy

chrIV-S.c 32 Appendix 315 9.4 32.7 88 93 100 100
E. coli 50 Appendix 259 46.5 190.5 88 99.8 100 99.7
chrIII-C.e 198 Appendix 5471 4.6 26.7 89 92 100 97.7
Contigs of repeat and nonrepeat are generated in an independent way by SWA with basic parameters: sequencing depth 𝑆𝑑 = 2, read length 𝐿𝑟 = 60, filtered
times = 1, and sliding window = 3. Contigs smaller than 200 are removed.

Table 7: Assemblies of S. aureus (genome size 2,903,081).

Assemblers Repeat Contigs (kb)
𝐸-size Assembly

size (kb)
Genome

coverage (%)TRC NNC Rep-size Rep-acc Num.C N90 Mean N50 Max
SWA 30 1834 20.7 kb 82% 1864 0.8 1.6 2.5 14.4 3115 2939 100.1
ABySS 7 293 6.8 kb 30% 302 7.0 12 24.8 125 31403 3647 125.6
Allpaths-LG 3 57 2.6 kb 4.3% 60 31 47 66.2 234 90078 2869 98.8
Bambus2 6 103 7.5 kb 35% 109 11 15 16.7 158 19610 2833 97.6
MSR-CA 7 87 4.4 kb 15% 94 21 30 48.2 139 50381 2862 98.5
SGA 18 1232 19.4 kb 83.8% 1252 1.0 2.2 4.0 16.8 4712 2833 97.6
SOAPdenovo 9 98 7.5 kb 38.6% 107 35.5 27 62.7 518.7 68002 2909 100.2
Velvet 15 147 13.8 kb 39.3% 165 11.4 17.6 41.5 169 48511 2847 98
N50, N90, and mean values are based on the same genome size. The contigs are all corrected and those smaller than 200 were removed.

Table 8: Assemblies of Rhodobacter sphaeroides (genome size 4,603,060).

Assemblers Repeat Contigs (kb)
𝐸-size Assembly

size (kb)
Genome

coverage (%)TRC NNC Rep-size Rep-acc Num.C N90 Mean N50 Max
SWA 13 1774 7.8 kb 44.5% 1787 1.3 2.6 4.2 29.4 5812 4600.3 99.94
ABySS 13 1910 8.3 kb 44.5% 1915 1.1 2.5 4.2 54.7 6877 4969.5 108
Allpaths-LG 2 202 1.4 kb 6.7% 204 11.5 22.5 34.4 106 35973 4587.8 99.6
Bambus2 2 175 1.3 kb 9.2% 177 6.1 8.5 12.8 279 16281 4371.6 94.9
CABOG 1 312 0.3 kb 8.9% 322 6.5 13 17.9 88.5 21539 4238 92
MSR-CA 7 388 4.1 kb 25.4% 395 5.7 11.3 19 83.7 21579 4465 97
SGA 9 3053 3.9 kb 64.3% 3067 0.66 1.4 2.9 29.5 4067 4502.7 97
SOAPdenovo 9 195 3.7 kb 84.5% 204 7.8 11.8 14.3 376 18553 4596 99.8
Velvet 5 578 2.2 kb 24.5% 583 4.6 7.7 14.5 60.7 16711 4503 97.8
N50, N90, and mean values are based on the same genome size. The contigs are all corrected and those smaller than 200 were removed.

Table 9: Assemblies of human chromosome 14 (genome size 88,289,540).

Assemblers Repeat Contigs (kb)
𝐸-size Assembly

size (kb)
Genome

coverage (%)TRC NNC Rep-size Rep-acc Num.C N90 Mean N50 Max
SWA 198 26824 129.3 kb 88.3% 27021 1.6 3.3 6.7 52 8737 87936 99.6
ABySS 143 51647 121.4 kb 30.1% 51924 0.7 1.7 2.0 30 3134 73341 83
Allpaths-LG 88 4441 156.7 kb 47.3% 4529 9.7 18.7 21.0 240 27157 84435 95.6
Bambus2 154 13437 293 kb 66.7% 13592 2.4 3.1 4.3 261 6345 68243 77.3
CABOG 70 3291 255 kb 39.9% 3361 13.7 21.6 23.7 296 30689 86232 97.6
MSR-CA 190 29901 526 kb 85.3% 30103 1.2 2.7 4.3 53.9 5927 83291 94.3
SGA 187 56278 283 kb 50.4% 56939 0.6 1.4 2.7 30 3737 82375 93.3
SOAPdenovo 188 21552 476 kb 73.3% 22689 1.8 4.2 7.4 141 9801 92603 104.9
Velvet 192 45294 339 kb 56.9% 45564 0.7 1.6 2.1 22.5 3049 74740 84.6
N50, N90, and mean values are based on the same genome size. The contigs are all corrected and those smaller than 200 were removed.
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five assemblers performed worse in assembling repeats and
nonrepeats. Particularly, Allpath-LG, Bambus2, and CABOG
only generated less than three repeats with length less than
1.4 kb, because in terms of continuity, these three assemblers,
Allpath-LG, Bambus2, and CABOG, are the top ones. But
long contigs can lead to indistinguishable contigs. However,
in terms of assembly size and genome coverage, SWA also
achieved the best assembly with genome size 4,600 kb and
genome coverage 99.9%, which is most approximate to the
real genome size. So in terms of completeness of assembly,
SWA performed best among these nine assemblers.

Table 9 shows the assembly statistics for human chro-
mosome 14 dataset by nine assemblers. For H. s 14, SWA
performs best in assembling repeats and nonrepeats. By
aligning them back to repeats, there are four top assemblers
in terms of assembling repeats, such as SWA, MSR-CA,
SOAPdenovo, and Velvet. There are 198 repeats with total
size 129.3 kb, 190 repeats with total size 526 kb, 188 repeats
with total size 476 kb, and 192 repeats with total size 339 kb
generated by SWA, MSR-CA, SOAPdenovo, and Velvet,
respectively. The Rep-acc of corresponding items is 88.3%,
85.3%, 73.3%, and 56.9%, respectively. For the accuracy of
assembling repeats, SWA and MSR-CA achieved the best
results. In terms of completeness of types of repeats, SWA
achieved the best results. However, in terms of continuity,
Allpath-LG, CABOG, and SOAPdenovo outperformed SWA.
But for the genome size and genome coverage, SWA achieved
the best results with assembled size 8,7936 kb and genome
coverage 99.6%. So in terms of completeness of assembly,
SWA outperformed other assemblers.

One can safely come to a conclusion from Tables 7, 8, and
9 that SWA performed best in assembling repeats and non-
repeats in three NGS datasets. In terms of assembling repeats
and completeness of repeats, SWA is the top one among these
nine assemblers. One may argue that the contiguity of SWA
is not better than others; the metrics such as N50, N90, and
E-size are smaller than some of the other assemblers. This
is because SWA is specially designed for assembling repeats
and nonrepeats. Therefore, SWA stops extending contigs
automatically when the boundary of repeats is detected.
Meanwhile, the continuity of assembly and the completeness
of repeats and nonrepeats are the pair of contradiction.
On the other hand, the better completeness of repeats and
nonrepeats requiers that contigs must be stopped at the
boundary of repeats. Therefore, the continuity of assembly
will be down.

4. Discussions

4.1. Sequencing Strategies for SWA. The uniformity of the
sequencing process is very important for SWA, because
assembling repeats and nonrepeats independently of SWA
is based on the combination of coverage depth and sliding
window. The effect of sliding window is to filter out the
bias caused by sequencing process, because sequencing bias
makes the frequency of repeat and nonrepeat more ambigu-
ous to determine, so large sequencing bias may result in short
contigs or misassembly. For the appropriately uniformed

sequencing data, SWA cannot only assemble repeats and
nonrepeats independently but can also estimate their copy
numbers correctly. In this situation, contigs of repeats and
nonrepeats can be easily grouped into scaffolds by SWA
using only the short insert paired-end information, while
other current assemblers all need the good combination
of several mate-pair libraries with different insert lengths,
which increase the cost of sequencing and complexity of
technologies. Therefore SWA provides a simple sequencing
strategy for NGS technologies; that is, long-distant library is
not necessary. So similar to the strategies recommended by
ALLPATHS-LG [19], we recommend that for the Illumina
technology one should use an overlapping paired-end library
with a suitable insert size to generate PE raw reads for contig
assembly and there is no need for several mate-pair libraries
with different insert lengths to generate long-distant jumping
reads for scaffolds. The average genome coverage is at least
100× or higher. For generating overlapping paired-end reads,
we provide a simple formula to calculate the insert size for
constructing a paired-end library: insert Size = (read length
(𝑙) + max error tolerance (𝑚)) × 2 − max overlap length (𝑛).
For example, if the read length is 𝑙 = 150 bp, the max overlap
length 𝑛 = 100 bp and the max error tolerance 𝑚 = 50; then
the recommended insert size is 300 bp.

4.2. Seed Selection. In an extension-based assembler, a good
seed should not contain any sequencing errors and should
not be selected from the boundary of repeats and nonrepeats.
A read from repeat region usually has a high read count
because identical repeats from other loci are counted as
well. On the other hand, a read from nonrepeat region
always has a low read count. However, the read from the
boundary always has the middle count under the condition
of uniformed sequencing process. These seeds are hard to
determine whether they belong to repeat region or nonrepeat
region and always lead tomisassembly or short contigs.Thus,
the seeds for repeat region are chosen with high read count,
while the one for nonrepeat region should be chosen with
low read count, and seeds with middle read count should be
avoided.

4.3. Parallel Operation. Obviously, parallel operation can
save the executive time and reduce the memory use. SWA
can assemble repeats and nonrepeats independently by using
two different computers without any communication. This
property can shorten the executive time almost a half and
reduce the memory use in some extent. Furthermore, the
raw data also can be classified into two parts, repeats and
nonrepets, according to read count. This strategy can reduce
the memory usage largely.

4.4. Optimal Sliding Window. The sliding window plays an
important role in contig construction in SWA. By filtering out
sequencing bias, SWA can distinguish repeats and nonrepeats
from NGS data easily so as to assemble repeats and nonre-
peats independently. The mean value of read count in sliding
window determines whether the extension should continue
or not. So too small sliding window cannot filter out the
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bias efficiently but has high sensitiveness of detecting changes
of read count. A too large sliding window can filter out the
bias efficiently but decreases the sensitiveness of detecting
repeats and leads tomisassembly.Theoptimal slidingwindow
should have both the property of filtering bias efficiently and
detecting repeats sensitively. So the compromise is necessary
in practice.

4.5. Optimal Read. In the stage of seed extension, the optimal
read is needed in order to extend the seed in dynamic
overlapping interval.

In SWA, the optimal read was identified using the
following strategy: the one overlapped most bases with seed
in dynamic overlapping interval was taken as the optimal
read. In theory, longer overlapping with seed means higher
accuracy of assembly. But this strategy has low speed, because
the seed only extends one or two bases at one extension.
Of course, the other strategy for choosing optimal read in
dynamic overlapping interval also can be adopted, such as the
optimal read can be identified as the one with read counts
nearest to the theoretically sequencing depth. This strategy
has a higher speed, but the correctness of extension will be
low compared with the first strategy. In practice, the strategy
of identifying optimal read can be chosen by users.

4.6. Comparisons. SWA is specially designed for assembling
repeats and nonrepeats, respectively. What we are mainly
concerned with is the correctness and accuracy of assembling
repeats and estimating their copy numbers rather than the
length of assembled contigs, so SWA stops extending contig
automatically when detecting the boundary of repeat and
nonrepeat. Duo to this, the validations and evaluations are
performed rather than comparisons with other assemblers
in simulations and reference datasets. In real NGS datasets,
the comparisonswere performed comprehensivelywith other
eight leading assemblers. But the accuracy and completeness
of repeats are what we are firstly concerned with.

5. Conclusions

In this paper, we developed a de novo genome assembly
algorithm named SWA, which can assemble repeats and
nonrepeats independently. The most important features of
SWA are (1) assembling repeats and nonrepeats completely
and accurately; (2) adopting sliding window function to
filter out sequencing bias in genome assembly process; (3)
compensating the loss of low coverage; and (4) estimating
the copies of each assembled contigs. Consequently, in this
study, we have validated the performances of SWA and
compared them with other leading assemblers in three real
NGS datasets. For comparisons in real NGS datasets, the
metrics such as TRC, NNC, and Rep-size are used to evaluate
the completeness of assembled repeats and nonrepeats; the
metrics such as Rep-accuracy, C-accuracy, and CN-accuracy
are used to evaluate the accuracy of assembled repeats and
nonrepeats, while the N50, N90, and maximum contig are
used to evaluate the continuity of whole genome assembly.
Results indicated that SWA outperformed other leading

assemblers in the completeness and correctness of assembling
repeats, but the continuity was not better than some of the
others. It is natural, because SWA is not specially designed
for whole genome assembly and continuity is not what SWA
is firstly concerned with.

In general, without long insert-size libraries, repeats that
extend beyond the paired-end insert sizes will be difficult
to resolve and assemble. Although, some of the compared
assemblers can assemble long repeats with simple structure,
the completeness and accuracy are not good. It is natural that
the continuity is what a whole genome assembler is mainly
concerned with. However, SWA is not a whole genome
assembly. So bridging two unique sequences around a repeat
is not allowed by SWA in order to ensure the completeness of
separating repeats and nonrepeats. Even though SWAwas not
aiming for the whole genome assembly, SWA also provided
another solution to resolve long repeats without the help of
long insert-size libraries by assembling fromnonrepeats com-
pletely. In theory, for the whole genome assemblers, if repeats
and nonrepeats are assembled correctly and completely, their
copies are estimated correctly. Scaffolds can be grouped easily
by using short-insert paired-end information rather than the
good combination of several libraries. In practice, repeat
characteristics in different genomes can vary extensively and
depths of sequencing can be highly uneven along the genome,
so the expected theoretical de novo assembly results from
different genomes will also vary.

6. Methods

6.1. The Detailed Outlines

6.1.1. The Steps of Extending Repeats (Figure 4)

(1) Selecting a seed in repeat regions with high frequency
larger than𝐻𝑝 in table 𝑅.

(2) Computing read counts overlapped with seeds in
dynamic overlapping intervals.

(3) Filtering the overlapped read counts by sliding win-
dow and then computing the mean value of this
interval and recording in𝑀𝑛.

(4) Judging whether the extension of seed is out of the
bound of repeat or not. If𝑀𝑛 > 𝑇2, the extension will
continue or else stop extension at this end.

(5) Extending seed using the optimal read in the dynamic
overlapping interval. The optimal read in SWA is the
unique read with longest overlapped bases.

(6) Continue Step 2–Step 5 until this seed is stopped at
both 3-end and 5-end.

(7) If repetitive seed sets are not empty, go to Step 1 and
repeat these steps, else repetitive contigs construction
are finished.

6.1.2. The Steps of Extending Nonrepeats (Figure 5)

(1) Selecting a seed in nonrepeat regions with low fre-
quency smaller than 𝐿𝑝 in table 𝑅.



BioMed Research International 13

(2) Computing read counts overlapped with seeds in
dynamic overlapping intervals.

(3) Filtering the overlapped read counts by sliding win-
dow and then computing the mean value of this
interval and recording in𝑀𝑛.

(4) Judging whether the extension of seed is up to the
boundary of repeat or not. If𝑀𝑛 < 𝑇1, the extension
will continue, or else stop extension at this end.

(5) Extending seed using the optimal read in the dynamic
overlapping interval. The optimal read in SWA is the
unique read with longest overlapped bases.

(6) Continue Step 2–Step 5 until the extension is stopped
at both 3-end and 5-end.

(7) If nonrepetitive seed sets are not empty, go to Step
1 and repeat these steps, else nonrepetitive contigs
construction are finished.

6.2. Sliding Window. Coverage bias is inevitable in genome
sequencing process and is usually caused by whole genome
amplification (WGA) [28]. Three primary forms of WGA
have been developed: multiple displacement amplification
(MDA) [29], primer extension preamplification (PEP) [30],
and degenerate oligonucleotide primed PCR (DOP) [31].
Furthermore, coverage bias also can be amplified by data
cleaning and error correction stage.The existence of coverage
bias increases the nonuniformity of read depth for detecting
copy numbers of repeats, which can lead to extending contigs
crossing the bound of repeats and incorrect estimation of
copy numbers of repeat contigs. How to eliminate or decrease
these noises is a very important step in constructing contigs
of repeat or nonrepeat regions. So the sliding window is used
to filter out the noise caused by coverage bias so as to improve
the performances of distinguishing repeats from nonrepeats
and estimating the copy number of each repeat contig.

In order to decrease the coverage bias, we use rectangular
window function to smooth coverage bias. Rectangular win-
dow function is defined as follows:

𝑤 (𝑛) = {

1, 0 ≤ 𝑛 ≤ 𝐿𝑤 − 1

0, otherwise,
(2)

here 𝐿𝑤 is the length of sliding window. So

𝑤 (𝑖) =

1

𝐿𝑤

𝑖+(𝐿𝑤/2)

∑

𝑗=𝑖−
(
𝐿𝑤/2)

𝑥𝑗, 𝑖 = 1, 2, . . . , 𝐿𝑑, (3)

where 𝑥𝑗 represents read counts by overlapping 𝐿𝑟 − 𝑗 bases.
In theory, the longer the 𝐿𝑤 is, the better the sliding effect

will be. However, 𝐿𝑤 cannot be too large or too small which
is closely bounded to read length 𝐿𝑟 and length of dynamic
overlapping interval 𝐿𝑑. In order to guarantee the correctness
of SWA, we set 𝐿𝑑 ≥ (3/4)𝐿𝑟, 2 ≤ 𝐿𝑤 ≤ 𝐿𝑑/2. Of course, this
is an empirical value.

6.3. The Effect of Window Function. By mathematical deriva-
tion, we can clearly see that the variances smoothed by

window function are smaller than the original ones. Letting
𝑋𝑛 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be the 𝑛 preprocessed data points and
𝐸(𝑋𝑛) = (1/𝑛)∑

𝑛

𝑖=1
𝑥𝑖 be the mean of 𝑋𝑛, the variance of

𝑋𝑛 is as follows: 𝐷(𝑋𝑛) = (1/𝑛)∑

𝑛

𝑖=1
(𝑥𝑖 − 𝐸(𝑋𝑛))

2. Letting
sliding window function 𝑦 = 𝑤(𝑥), 𝑌𝑛 = {𝑦1, 𝑦2, . . . , 𝑦𝑛}

be corresponding smoothed data points, 𝑦𝑖 = 𝑤(𝑥𝑖) =

(1/𝐿𝑤) ∑
𝑖+𝐿𝑤/2

𝑗=𝑖−𝐿𝑤/2
𝑥𝑖, the mean value of 𝑌𝑛 is 𝐸(𝑌𝑛) =

(1/𝑛)∑

𝑛

𝑖=1
𝑦𝑖. It is clear that 𝐸(𝑋𝑛) = 𝐸(𝑌𝑛); 𝐷(𝑌𝑛) =

(1/𝑛)∑

𝑛

𝑖=1
(𝑦𝑖 − 𝐸(𝑌𝑛))

2. One can easily prove that 𝐷(𝑌𝑛) ≤
(1/𝐿𝑤)𝐷(𝑋𝑛).

6.4. Hash Index. Overlap computing is the most time con-
suming stage for all against all. In order to speed up SWA,
we use hash index to store the location of each keyword and
read rather than the keyword itself in hash index. The details
are as follows. For each read, the 𝑁 continuous bases from
3-end and 5-end are selected and then mapped into two
variables, forward and backward, respectively. And then,map
𝐴 → 0, 𝐶 → 1, 𝐺 → 2, 𝑇 → 3. So a string consisting of𝑁
continuous bases is transferred into quaternary integers; the
quaternary integers then are transferred into decimal integer.
So each keyword ismapped to a unique location in hash index
which stores the identification of unique processed reads. We
define the hash function as

𝐻(𝑆 [𝑖, 𝑖 + 𝐿𝑘]) = 𝑄𝑖𝑄𝑖+1, . . . , 𝑄𝑖+𝐿𝑘
(quaternary) , (4)

where

𝑄𝑖 =

{

{

{

{

{

{

{

{

{

0, 𝑠 [𝑖] = “𝐴”
1, 𝑠 [𝑖] = “𝐶”
2, 𝑠 [𝑖] = “𝐺”
3, 𝑠 [𝑖] = “𝑇”;

(5)

𝐿𝑘 is the length of keywords in hash function.

6.5. Parameters of Kernel SWA Program. The kernel program
of SWA has eight parameters: the maximum overlapping
length max, dynamic overlapping interval 𝐿𝑑, read length
𝐿𝑟, length of sliding window 𝐿𝑤, threshold of repetitive
seeds 𝐻𝑝, threshold of nonrepetitive seeds 𝐿𝑝, threshold
of repeats assembly 𝑇2, threshold of nonrepeats assembly
𝑇1, and sequencing depth after filtering by sliding window
𝑆fd. On the basis of the extensive comparisons of three
species as shown in the paper, we suggest that the only
values of maximum overlapping length, length of dynamic
overlapping interval, and read lengthmay not be adjusted.We
recommend the following: 𝐿𝑟 = 101, max = 100, 𝐿𝑤 = 9, and
𝑘-mer can be set in the range [35, 50]. These four parameters:
𝐻𝑝, 𝐿𝑝, 𝑇1, and 𝑇2 are closely related to sequencing depth 𝑆𝑑
and length of sliding window 𝐿𝑤. For example, if sequencing
depth is 𝑆𝑑 = 2, length of sliding window 𝐿𝑤 = 3 and
filtered times 𝑁𝑓 = 1, and then 𝐻𝑝 should be higher than
double sequencing depth; that is,𝐻𝑝 = 5. 𝐿𝑝 should be lower
than sequencing depth, so let 𝐿𝑝 = 1. 𝑇1 should be a little
higher than the filtered sequencing depth 𝑆fd = 𝑆𝑑 × 𝐿

𝑁𝑓

𝑤 =

2 × 3 = 6, so let 𝑇1 = 8. 𝑇2 should be a little lower than
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the 2 × 𝑆fd = 2 × 6 = 12, so let 𝑇2 = 10, where sequencing
depth is 𝑆𝑑 = 𝑁𝑟/𝐿, coverage is 𝐶 = (𝑁𝑟/𝐿) × 𝐿𝑟 = 𝑆𝑑 × 𝐿𝑟,
and𝑁𝑟 is the number of reads.

Parameters have a great influence on the performances
of SWA. Therefore, in practice, fine tuning is necessary for
special genome with intrinsic complex repeat structure or
different backgrounds of sequencing bias. We suggest that
the parameters needed to fine tune are 𝑇1 and 𝑇2. The
abbreviations are presented in the Abbreviation Section.

6.6.Thresholds. The threshold for repeats and nonrepeats are
based on the size of confidence intervals and significance
testing, which are closely related to coverage depth, size of
sliding window, and filtered times.

Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be the overlap numbers in
dynamic overlapping stage and the mean of 𝑋 is 𝑚𝑥 =

(1/𝑛)∑𝑥𝑖. Let 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑛} be the read counts filtered
by sliding window, so the mean of 𝑌 is 𝑚𝑦 = (1/𝑛)∑𝑦𝑖 ≈

𝑚𝑥 × 𝐿𝑤. According to the law of large number in the
probability and statistic theory, we can easily get 𝑌 ∼

𝑁(𝑚𝑦, 𝜎
2
). So if the average sequencing depth is 𝑆𝑑, the

average read counts filtered by slidingwindow is 𝑆fd = 𝑆𝑑×𝐿𝑤.
Thus, the read counts of the nonrepeat region filtered by
sliding window should be 𝑆fd if sequencing bias is free, and
the corresponding items of repeat region with two copies
should be 2𝑆fd. Clearly 𝑆fd = 𝑚𝑦 if sequencing bias is free.
Let 𝛿 = 𝐹𝑑/2; random variable 𝑚𝑦 is the mean read counts
filtered by sliding window.

If 𝑃{𝑚𝑦 ≤ 𝐹𝑑 + 𝛿1} ≥ 1 − 𝛼, so the confidence upper
limit 𝑇1 of nonrepeat region at the confidence level 1 − 𝛼
is 𝑇1 = 𝐹𝑑 + 𝛿1 which is the threshold of nonrepeats. If
𝑃{𝑚𝑦 ≥ 2𝐹𝑑 − 𝛿2} ≥ 1 − 𝛼, the confidence lower limit 𝑇2 of
nonrepeat region at the confidence level 1−𝛼 is𝑇2 = 2𝐹𝑑−𝛿2
which is threshold of repeats, where 0 ≤ {𝛿1, 𝛿2} ≤ 𝛿, and
{𝛿1, 𝛿2} can be used to control the type-I error and type-
II error since the statistical tests of overlapping intervals of
windows are not independent. The construction of repeat
contig and nonrepeat contig is generated separately.

6.7. Estimating Copy Numbers. The copy number of each
repeat contig is estimated by using significant testing meth-
ods. After finishing contig construction, the variable𝑀𝑛 has
stored the whole filtered read counts and its mean value
is computed. The copy number of corresponding items is
estimated by rounding mean(𝑀𝑛)/𝑆fd to the nearest integer.

7. Materials

In this study, three kinds of datasets are used to validate the
performances of SWA and compare with other assemblers.
They are real simulated datasets, reference datasets, and real
NGS datasets.

For real simulated datasets, the model sequences, A,
B, and C are randomly sampled from {A, T, C, and G}
with different repetitive contents. These three sequences
contain tandem repeats, interspersed repeats, and compound
repeats, respectively (as shown in Figure 6). These repeti-
tive contents represent a wide range of length and copies.

Sequence A—
interspersed repeats

Sequence B—
tandem repeats

Sequence C—
compound repeats

Figure 6: The graphic explaining the real simulated datasets. The
yellow lines represent the model of random sequences. The red
lines, blue lines, and purple lines represent different contents of
repeats. Sequence A represents the interspersed repeats that is
different repeats do not link each other closely. Sequence B represents
tandem repeats that is same repeats link each other in the cascade
manner. Sequence C contains the compound repeats, which is the
combination of sequence A and sequence B. The detailed generation
process is presented in supplementary materials.

The detailed information is presented in supplementary table
(see Table S3 in Supplementary Material available online
at http://dx.doi.org/10.1155/2014/736473). And the generation
process is also presented in supplementary materials. Then,
the paired-end NGS reads are randomly sampled from the
fragments with normal distribution𝑁 (300, 30).

For reference genome datasets, we download the
reference genome of S. cerevisiae, C. elegans from UCSC
(http://hgdownload.soe.ucsc.edu/downloads.html) and E.
coli k12 (GenBank:U00096.3). For S. cerevisiae andC. elegans,
we only randomly take chromosome IV and chromosome
III, respectively. The sizes of chrIV-S.c, E. coli, and
chrIII-C.e are 1,531,933 bp, 5,132,068 bp, and 13,783,700 bp,
respectively. Their repeats structures can be easily analyzed
by RepeatScout [26], which is a very effective and sensitive
de novo repeats identification method for large genomes and
is freely available at http://bix.ucsd.edu/repeatscout/. The
repeats structures including lengths and copies are detailed
in the Supplementary Materials Appendix and are freely
available at http://222.200.182.71/swa/Table6.rar.

For real NGS datasets, two bacterial genomes
(Staphylococcus aureus and Rhodobacter sphaeroides, genome
sizes of 2.9 and 4.6Mb, resp.) and human chromosome
14 (genome size of 88.3Mb) were downloaded from
http://gage.cbcb.umd.edu/data/. In the GAGE study [27],
all reads were error-corrected before assembly by ABySS,
ALLPATHS-LG, Bambus2, Celera Assembler with the Best
Overlap Graph (CABOG), Maryland Super-Reads Celera
Assembler (MSR-CA), SGA, SOAPdenovo, and Velvet. For
a fair comparison, we also obtained these corrected datasets
for using in GAGE.These three species have perfect reference
genomes.Therefore, their real repeats structures can be easily
detected by RepeatScout [26]. For S. a, R. s, and H. s 14,
there are 52 repeats, 21 repeats, and 259 repeats detected
by RepeatScout [26], respectively, with length longer than
100 bp; their total sizes are 15.8 kb, 3.6 kb, and 146.5 kb,
respectively.

7.1. Implementation. Table 10 presents the detailed memory
usage and CPU times of SWA in three real NGS datasets.
Different stages have different requirements of memory. The
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Table 10: Memory usage and CPU times of SWA.

Species Memory usage CPU times
S. aureus 2.5 GB 59.5 minutes
Rhodobacter sphaeroides 3.4GB 96.3 minutes
Human chromosome 14 22.6GB 56.2 hours

memory usage presented in Table 10 is the maximum mem-
ory. The CPU times refer to the run time of main procedure
except for the preprocessing stage. Because a different assem-
bler has different hardware requirements; therefore the direct
comparisons are not reasonable to some extent. However,
Table 10 gives users a rough guidance for hardware require-
ment and run time.Those of others have been accessed clearly
in GAGE study and are freely available at http://genome
.cshlp.org/content/early/2012/01/12/gr.131383.111/suppl/DC1.

SWA is implemented in MATLAB computing environ-
ment. Programming language: m language. Operation sys-
tems: Windows, Linux. Computing platform: 3.5 GHz eight
Intel Celeron CPU with 32GB RAM and 64-bit operational
system.

8. Availability of Supporting Data

The supporting data including NGS data and assem-
bling results are freely available at http://222.200.182.71/swa/
Results.rar.

The detected repeats and their copies of three species used
in Table 6 can be freely found at http://222.200.182.71/swa/
Table6.rar.

The detected repeats and their copies of three species used
in Table 7, 8, 9 can be freely found at http://222.200.182.71/
swa/Tables789.rar.

Abbreviations

SWA: Sliding window assembling
TRC: The types of repetitive contigs
CNRC: Copy number of each repeat contig
NNC: Number of nonrepeat contigs
Rep-acc: The accuracy of assembled repeat contigs
C-accuracy: The accuracy of the total contigs
CN-accuracy: The accuracy of estimated copy number of

each repeat
𝑘-mer: Maximum overlap minus the minimum

overlap
𝑁𝑓: The number of filtered times by sliding

window
𝐿𝑤: The length of sliding window
𝐿𝑟: The length of reads
𝐿𝑑: The length of dynamic overlapping

interval
𝐻𝑝: The threshold of repetitive seeds
𝐿𝑝: The threshold of nonrepetitive seeds
𝐿𝑑: The length of sequencing reads
𝑆𝑑: The sequencing depth
𝑇1: Threshold for nonrepeats extension
𝑇2: Threshold for repeats extension.
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