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Abstract

The strategy of bulk DNA sampling has been a valuable method for studying large numbers of individuals through genetic
markers. The application of this strategy for discrimination among germplasm sources was analyzed through information
theory, considering the case of polymorphic alleles scored binarily for their presence or absence in DNA pools. We defined
the informativeness of a set of marker loci in bulks as the mutual information between genotype and population identity,
composed by two terms: diversity and noise. The first term is the entropy of bulk genotypes, whereas the noise term is
measured through the conditional entropy of bulk genotypes given germplasm sources. Thus, optimizing marker
information implies increasing diversity and reducing noise. Simple formulas were devised to estimate marker information
per allele from a set of estimated allele frequencies across populations. As an example, they allowed optimization of bulk
size for SSR genotyping in maize, from allele frequencies estimated in a sample of 56 maize populations. It was found that a
sample of 30 plants from a random mating population is adequate for maize germplasm SSR characterization. We analyzed
the use of divided bulks to overcome the allele dilution problem in DNA pools, and concluded that samples of 30 plants
divided into three bulks of 10 plants are efficient to characterize maize germplasm sources through SSR with a good control
of the dilution problem. We estimated the informativeness of 30 SSR loci from the estimated allele frequencies in maize
populations, and found a wide variation of marker informativeness, which positively correlated with the number of alleles
per locus.
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Introduction

DNA bulks are valuable for studying large numbers of

individuals and markers. Each bulk is a combination of DNA

from several individuals, usually up to 30 samples, coming from a

given group. The source can be a family, a local population

sample, a taxonomical unit, a variety, a set of selected individuals,

etc. The analysis of the bulk genotype can be of the type absent/

present band scoring, or based on estimation of allele frequencies

by band intensity.

Bulked segregant analysis was developed to find markers linked

to a given trait [1]. Two sets of individuals are selected from the

segregant progeny of a cross, being chosen from the opposite

extremes of the phenotypic range of a trait. DNA is isolated from

both mixtures, and a given set of marker loci is assayed on both

bulks. This approach helped the authors of this method to identify

marker loci linked to downy mildew resistance in lettuce, by

scoring absence or presence of bands on the electrophoretic

patterns generated by the RAPD approach. The same approach

was used to find a SCAR marker for early sex determination in

Carica papaya, through RAPD analysis of bulked DNA from 25

hermaphrodite and 25 female plants [2]. Bulk DNA sampling has

been extended to cases that do not involve planned crosses. For

example, an AFLP marker strategy was used on 10 male and 10

female bulks from collected individuals of the tree Eucommia

ulmoides, a dioecious plant, to develop a SCAR type marker for

early sex identification [3]. Polymorphic loci between male and

female bulks were validated through the analysis of 20 plants from

each sex. Also, in the algae Gracilaria gracilis, sex-linked PCR

markers were identified from male and female bulks [4]. With the

aid of bulked DNA analysis in maize landraces, the Dwarf8 gene

was found to be involved in climatic adaptation through

diversifying selection for flowering time [5].

DNA pooling is useful in large scale association studies to reduce

the cost of analyzing resistance and susceptibility genes for several

diseases [6]. In human genetics pooling was first used for an

association study in type I diabetes mellitus [7]. The pooling

approach was also used in the identification of a Bardel-Biedl

syndrome locus in humans [8]. An effective use of DNA pooling

for mapping traits might be in a two-stage design, where putative

genes identified through bulks are validated through individual

genotyping [6]. Highly homozygous cultivars allow an association

mapping approach based on a single sample per variety. Through
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this sampling scheme and a linear mixed model approach, six

main effect QTL for ordinal traits were identified from 257

soybean cultivars [9].

Bulk DNA methods are widely used for assessing diversity in

plants. For example, this approach has been employed for RFLP

diversity estimation among maize populations, allowing the

evaluation of allele frequencies from band analysis in three

independent balanced DNA bulks of ten individuals randomly

sampled from 65 populations [10]. Bulk DNA analysis was also

used to study the introduction of temperate maize to Europe based

on SSR markers [11]. However, loci had to be filtered for

suitability of estimation of allele frequencies, based on correlation

with true allele frequencies from SSR assays in line mixtures,

selecting approximately 50% of the tested loci. Also for maize

populations, a comparison was made between individual geno-

typing and the bulk approach to estimate SSR allele frequencies in

European flint maize populations [12].

A simpler approach for bulk DNA analysis of diversity and for

cultivar identification is the use of balanced pools for marker

assays, followed by binary scoring of absence or presence of bands.

This strategy was used to study nine germplasm sources of alfalfa

with AFLPs [13]. The bulks were composed of 30 plants from each

population under study, producing binary scores for 34 primer

combinations. Binary data were used to estimate genetic distances

based on the Jaccard’ s coefficient of similarity. The UPGMA

cluster analysis revealed hierarchical patterns among the nine

germplasm sources, associated with their geographic, subspecific,

and intersubspecific hybrid origins. In a similar way, 96 safflower

accessions were characterized through AFLP markers in DNA

bulks isolated from groups of 12 plants per entry [14].

Electrophoretic patterns were scored in a binary fashion, and

data were analyzed with distances based on the proportion of

unmatched markers and the UPGMA algorithm. In this way,

AFLP markers distinguished safflower populations and revealed

that the genetic structure was different between regions. The bulk

DNA approach with binary scoring has also been applied to SSR

markers. The genetic diversity among 54 maize landraces from

Southwestern China was assessed through 42 microsatellite loci in

bulked DNA from samples of 15 plants [15]. The UPGMA

clustering supported the hypothesis that maize landraces in

Southwestern China were initially introduced from India into

Sichuan. The study also showed that, although the bulk DNA

sampling analysis partially masked genetic diversity among

landraces, it was effective to evaluate their genetic relationships.

In rice, a bulk-based microsatellite analysis with binary scoring

and pools composed of five plants allowed a study of genetic

diversity associated to agronomic traits in Pakistani landraces [16].

Although bulk DNA sampling with binary scoring has been

successfully used in several applications to characterize popula-

tions and to study diversity, a theoretical study is necessary to

define optimum sampling strategies and to select informative loci.

Variation in sample sizes and sampling strategy has been found in

the literature and there is not yet a consensus method to define

sampling schemes from preliminary data on allele frequencies.

In the bulked DNA approach, a single DNA fingerprint is

obtained in an attempt to characterize, identify or discriminate the

given biological unit. From the standpoint of informativeness, two

aspects must be considered: (i) the ability to differentiate between a

set of populations, i.e. the discriminating power, and (ii) the

consistency of DNA fingerprints through replicated sampling, i.e.

the opposite of sampling variation, or noise in the jargon of

information theory. It would be misleading to evaluate a set of

bulk DNA fingerprints for several populations only through a

diversity measure such as PIC, or by its ability to differentiate

between units, because hidden noise is not being considered. In

fact, it is expected that if the bulk size is reduced, sampling

variance will increase, rendering an inconsistent bulk-based

fingerprint, albeit with different DNA profiles for different

germplasm sources.

In this work we approach bulk DNA fingerprinting for

germplasm characterization through binary scoring, with the

aim to define: (i) optimum bulk sizes, based on preliminary

estimations of allele frequencies, (ii) strategies to deal with the

problem of undetected alleles due to small frequency and PCR

failure, and (iii) a method for selection of informative markers.

Rather than association mapping, the analysis is aimed at

optimizing the characterization of accessions and varieties on a

large scale in order to monitor changes in polymorphism levels

and presence of rare alleles in geographically and genotypically

diverse populations in different growing seasons. This would allow

better management of local landrace populations and the

identification of germplasm which could be incorporated into

conservation schemes. The general framework for this research is

information theory. This branch of mathematics has been applied

in several situations involving genetic markers; for example in the

measurement of linkage disequilibrium [17], inference of ancestry

[18], SNP selection for association studies [19,20], statistics for

association [21], information for QTL mapping [22] and

transcriptome analysis [23]. The Shannon entropy, a key concept

in information theory, can be used as a general, firmly

mathematically founded, framework for calculating information

provided by genetic markers for population and individual

identity.

Methods

Mutual information between DNA bulk profiles and
germplasm sources

Bulk DNA fingerprinting in its simplest form is the conversion of

allele frequencies into a binary code resulting from band present-

band absent scoring, through the processing of DNA samples from

a mixture of plants. We expect that only those allele frequencies

above a certain threshold will be likely to produce bands. Thus,

the presence of a band indicates that a given allele is present in the

sampled population, whereas its absence can be interpreted as

absence of the given allele or a lower than threshold frequency in

the reference population. From the mathematical point of view,

we want to maximize the average information gained about the

identity of a given germplasm source in the space of N

populations, with the knowledge of the band profile of the

corresponding bulk. In this work, average information will be

based on the foundations of information theory [24]. Let M be a

random variable with possible values m1,m2,:::,mg and probabil-

ities p1,p2,:::,pg, respectively. The Shannon entropy of M is

defined as follows:

H(M)~{
Xg

i~1

pilog2(pi): ð1Þ

The expression 0log2(0) equals 0 by definition. This concept

leads to the definition of mutual information, i.e. the information

conveyed about a random variable X by a variable M, as the

average reduction of the uncertainty or entropy of X given

knowledge of the value of the variable M [25]:

Information of Markers for Bulk Genotyping
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I(X ; M)~H(X ){H(X jM)~H(M){H(MjX ), ð2Þ

where H(X jM) is the average Shannon entropy of X , given

knowledge of the value of the variable M. In the context of this

work M~m1,m2,:::,mg denotes marker genotypes whereas

X~x1,x2,:::,xN represents germplasm sources. Mutual informa-

tion in equation (2) can be interpreted as the expected reduction in

the entropy or uncertainty about the identity X of a random

population caused by the knowledge of its marker genotype M.

Mutual information is symmetrically defined in terms of entropies;

in fact, as we see in in equation (2), it can also be expressed as the

expected reduction in the uncertainty about a marker genotype M

caused by the knowledge of the member identity X . Furthermore,

if X represents either individuals or genetically homogeneous

populations then H(MjX ) becomes zero, because of null marker

diversity within those units. Under this particular situation, mutual

information in equation (2) becomes simply H(M), i.e. the

Shannon entropy of the distribution of marker genotypes [26].

In DNA bulk fingerprinting for germplasm source identity we

want to maximize I(X ; M). However, if genetic heterogeneity is

present within the tested populations and thus sampling error, the

term H(MjX ) is not assumed to be zero by the fact that there is

potential variation in marker genotypes provided by different

assays. The term H(M) will be called diversity, whereas H(MjX )
will be called noise. Through optimizing I(X ; M) diversity will be

increased among the single or multilocus binary profiles of

different groups of individuals, while reducing noise in order to

carry out a reliable sampling.

To find an analytical solution for an optimal sampling size in

bulks, a pattern of distribution of allele frequencies across varieties

would have to be assumed. However, a practical approach, which

has been used as an example in this work, is to use previous

knowledge of allele frequencies in different populations of a species

and several loci for a given marker type, and find a consensus

sample size that is highly informative. Furthermore, locus selection

may be done through estimating the mutual information I(X ; M).
If noise, i.e. the H(MjX ) term, which represents the variation

among DNA bulks from the same source, can be ignored, then

marker informativeness can be calculated simply through the

entropy of genotypes among germplasm sources, i.e. H(M). The

so-calculated value of information is given in bits, and can be

interpreted as the number of fully informative binary loci, or

briefly, the effective number of binary loci [26].

Average bulked DNA marker information per allele
Consider a random bulk with n alleles or n=2 individuals in a

random mating diploid population, where the absence or presence

of a given allele is scored through a marker system. The maximum

information that a given allele can provide is 1, and it depends on

the variation of its frequency across germplasm sources and the

bulk size. Let fi, i~1,2,:::,N , be the allele frequency at the i{th

germplasm source. Thus the probability of the allele being absent

at the i{th germplasm source is (1{fi)
n assuming random

sampling. If we consider each germplasm source as being equally

frequent within a defined set, then the global probabilities of

absence and presence of a given allele in a random bulk would be

their average probabilities across germplasm sources. Thus the

entropy of the binary marker genotypes for a given allele is:

H(M)~{

PN
i~1 (1{fi)

n

N

 !
log2

PN
i~1 (1{fi)

n

N

 !"

z 1{

PN
i~1 (1{fi)

n

N

 !
log2 1{

PN
i~1 (1{fi)

n

N

 !#
: ð3Þ

This is the diversity part of equation (2). The entropy of the

marker genotypes conditional on germplasm sources H(MjX ), is

the average entropy of the binary genotypes across populations:

H(MjX )~
{
PN

i~1 (1{fi)
nlog2(1{fi)

n

N

{
PN

i~1 1{(1{fi)
nð Þlog2 1{(1{fi)

nð Þ)
N

: ð4Þ

This is the noise part of equation (2). The information provided

by the binary scoring of the given allele is H(M){H(MjX ). We

expect that the value of equation (4) will descend as we increase

the bulk size, becoming more replicable. In fact, the limit of

H(MjX ) when n tends to infinity is zero, and information is

H(M).

So far we have considered only the noise due to sampling error.

However, there are technical issues that introduce undesirable

variation. They are complex and most of them need to be studied

on experimental basis [27]. In the case of SSRs, the presence of

stutter bands potentially introduces incorrect artificial variation

[28]. There are generic problems associated to all electrophoresis-

based genetic markers. Two of them are the technical homoplasy,

i.e. when two bands are mistakenly considered homologous, and

oversplitting, in which bins are too thin and may split variant

locations of the same amplicon [27]. Other problems are the

occurrence of false positives and false negatives, associated to the

so-called bayesian error rates, which represent the probabilities of

mis-scoring the presence or absence of alleles. We expect that all

the mentioned technical factors reduce the mutual information.

For instance, let us consider the case of sensitivity, defined as the

probability of an allele being detected given that it is a present in a

given bulk. Under the absence of sampling error, if we fix

sensitivity to a value of S, with P being the frequency of bulks with

the presence of a certain allele, then mutual information is

modified to I(X ; M)~H(PS,1{PS){PH(S,1{S), where entropies

are calculated with the probability vectors in their subscripts. It

can be graphically demonstrated that information is monotonically

increasing with sensitivity, reaching a maximum of H(P,1{P) with

S~1 and a minimum of 0 with S~0. In this work we analyze one

aspect of technical noise: the allele dilution effect on its detection.

The problem of allele dilution
We have assumed so far that any allele present in a bulk will be

revealed by the given marker system. However, that is not always

the case because it has been observed that, depending on the

marker system, a low frequency allele in a bulk may not be

detected. For RFLP and RAPD in tomato, it was found that an

allele was still detectable at a proportion of 0.05 in a DNA pool

[1]. Kuboki, Yoshimura and Yano [29] reported a similar

threshold of detection in rice. These reports were confirmed by

Dubreuil et al. [10], who found that an RFLP allele is barely

detectable when present in a proportion of 0.05 within a DNA

pooled-sample.

Information of Markers for Bulk Genotyping
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For AFLPs, the lowest ratio at which an allele was still detected

in a range of crop species was 1:24, i.e. with a dilution threshold of

approximately 0.05 [30]. However, below the 1:4 ratio only a few

bands of high original intensity could still be recovered. For SSR

markers in maize, Reif et al. [12] found that alleles in a dilution

below 0.2 were most often undetected. For SSR markers, Dubreuil

et al. [11] tested dilutions of 0.025, 0.05, 0.10, 0.20, 0.30, 0.40 and

0.50 for inferring allele frequencies from DNA bulk data. From the

optimal SSR markers they found a range of correlations from 0.79

to 0.99; however they did not report a specific detection threshold.

In view of the above information, we considered a range of

threshold dilutions from 0.05 to 0.2 in order to evaluate a strategy

for coping with the dilution problem. The selected strategy to

overcome the technical problem of rare allele amplification was

the use of fractionated bulks, in the same way as the strategy used

by Dubreuil et al. [10] for genotyping 10 maize populations from

North America, where three independent bulks of 10 plants were

randomly selected from each population.

Let d be the threshold dilution for a given marker, this being the

minimum dilution from which an allele can be detected in a bulk

of n alleles randomly sampled from a population with allele

frequency q. The probability of the allele being undetected in a

bulk is:

P(x=nvd)~
X
xvdn

n

x

� �
qx(1{q)n{x, ð5Þ

where x is the number of copies of the allele in the bulk. The size

of the bulk is equivalent to n=2 plants from a random mating

population. If the sampling strategy consists in k independent

bulks of sample size n, the probability of the allele being

undetected is P(x=nvd)k. The scoring scheme under this strategy

would be to assign the symbol 1 if the allele shows up in at least

one of the k bulks, and 0 otherwise.

To further check the problem of allele dilution and to validate

the tested range, we assayed three SSR loci for corn: phi093,

phi072 and phi064. The biological material comprised three

maize accessions collected in the state of Puebla in Mexico. The

plants were analyzed both individually and in fractionated samples

ranging from 22 to 30 plants, divided into bulks of four to 10

plants. The number of different SSR alleles in those samples

ranged from 3 to 10. PCR reactions were carried out using

standard protocols and run on a 3730 ABI DNA ANALYZER.

Scoring was carried out with the GeneMapper Software Version

4.0 (AppliedBiosystems).

Bulk DNA sampling with SSRs across maize populations
As an example application of the model, a set of 56 maize

populations was sampled by selecting 10 random plants per

germplasm source, which were individually genotyped using

microstatellite markers, called SSRs. The source of this genetic

material was the active collection of the USA maize germplasm

bank, curated by the USDA in the North Central Regional Plant

Introduction Station (NCRPIS) at Ames, Iowa. These populations

were collected in USA, Mexico, Argentina, Peru, Brazil, Chile,

Ecuador, Paraguay and Uruguay. A total of 31 SSR primers were

used for microsatellite amplification. Genomic DNA was extracted

from leaves of young maize seedlings by using the commercial

PUREGENE DNA Isolation Kit [31]. The PCR products were

separated and visualized in polyacrylamide gels (4% denaturing 6

M urea, 29:1 acrylamide:bisacrylamide), and a file containing the

information for each gel was generated by the ABI GeneScan

software. The gel files generated by the ABI GeneScan software

were scored using the computer software STRand [32] following

the local Southern algorithm for estimating allele sizes. The 31

SSR assays resulted in 198 polymorphic bands. These data have

been submitted to USDA; part of them are already in the page

http://www.ars-grin.gov/npgs/(Accessed 2013 September 2) and

the remaining are in process of being curated.

A total of 191 of the 198 alleles identified in this study were

selected for optimization, since complete data sets were available

for these alleles. Equations (3) and (4) were written as R functions

[33] to estimate diversity, noise and information for bulk sizes of

10 to 100 alleles, with increments of 10. Plots were exhaustively

examined to see the trends across increasing bulk sizes, and an

average plot was constructed.

To examine the dilution problem, a sample of 60 alleles divided

into 1, 2, 3, 5, 6, 10, 15 and 30 bulks, was evaluated for the

probability of a given allele being undetected, by equation (5).

These numbers of divisions of the sample were restricted to

generate bulks with an integer number of plants, i.e. 30, 15, 10, 6,

3 and 1, respectively. The first case is the situation when the 60-

allele sample is not divided. The last case represents the

genotyping of 30 individual plants. The evaluated threshold

dilutions were 0.05, 0.1, 0.15 and 0.02. The allele frequencies were

set as 0.1, 0.2 and 0.3.

Information for 30 SSR marker loci was calculated through

simulated bulks of 30 plants for each of the 56 maize populations,

based on the estimated allele frequencies. A multinomial

simulation was performed to generate each set of 60 sampled

alleles through the rmultinom command in R [33]; afterwards, the

absence or presence of each allele in the sample was tested, and

then encoded as either 0 or 1, respectively, thus generating a

vector of size equal to the number of alleles of the given SSR in all

populations. After bulk simulation for each SSR locus, the entropy

of the electrophoretic patterns, coded by binary vectors, was

estimated through equation (1). This value of H(M) was taken as

the amount of information per SSR locus, since we did not

consider H(MjX ) due to the fact that with 60 sampled alleles this

term becomes almost zero. One of the SSR loci from the set of 31

was not considered due to missing data.

Results and Discussion

Bulk size optimization
Although the sample size of 10 maize plants per population was

small, this survey allowed us to evaluate general tendencies of

allele frequencies for DNA bulked SSR marker information in this

species. Based on the estimated allele frequencies, Fig. 1 depicts

plots of information and bulk size for two random alleles and for

the average trend, whereas average values for all sample sizes are

presented in Table 1. In general, the results showed that from

bulks of 60 alleles or more, the noise term is close to zero, with

information reaching a near-maximum level, being almost equal

to the diversity term, i.e. the entropy of the binary marker

genotypes H(M) defined in equation (3). The average information

per allele for bulks based on 60 alleles, i.e. 30 plants, was 0.568 bits

with a diversity value of 0.577, with the noise term oscillating

between 0 and 0.048, and a mean of 0.006. The bulks of 100

alleles, i.e. 50 plants, gave the maximum information in the tested

range: 0.577 bits with an average noise of 0.002. However, as can

be observed in Fig. 1, this does not represent an appreciable

advantage over bulks composed of 60 alleles. Thus, at least for

maize germplasm sources, our results indicate that bulked DNA

from 30 plants can provide a close to optimum information per

SSR allele.

Information of Markers for Bulk Genotyping
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The drawback to this recommended sample size is that for large

bulks, e.g. with more than 20 alleles, the dilution problem must be

considered by the fact that alleles with a very low frequency within

the bulk may not be detected due to insufficient sensitivity of the

marker protocol.

Strategy for the problem of allele dilution
We have already found that 60 allele bulks sampled for SSR

markers in maize provide a near-optimum amount of information;

the question now is what would be an adequate number k of

independent bulks, such that nk = 60, to cope with the dilution

problem. Fig. 2 depicts results for different threshold dilutions and

population allele frequencies. For an allele frequency of 0.1 the

ability of detection with a threshold dilution of 0.05 performs well,

and almost perfectly for 60 alleles divided into three bulks or more.

For a threshold dilution of 0.1, division into three bulks still works

well, giving a probability of non-detection less than 0.1. However,

for an allele frequency of 0.1, threshold dilutions of 0.15 or more

make the bulk system unreliable, even dividing the 60 allele sample

into six bulks of 10 alleles. The oscillation observed for threshold

dilutions of 0.1 and more, although apparently illogical, has an

explanation based on the minimum number of copies being

present in a given bulk, which can be detected. For example, let us

compare three and five divisions for a threshold dilution of 0.1. In

the first case, the bulks are composed of random samples of 20

alleles; thus, two or more copies of the rare allele are required to

be detected, which has a probability of failure of 0.392 for a single

bulk and 0.06 for the three bulks. On the other hand, if we use five

bulks of 12 alleles, those samples also need at least two copies of

the rare allele, having a probability of failure of 0.66 for a single

bulk and 0.124 for the five bulks. In other words, the oscillation

obeys the discrete nature of the required minimum number of

copies of the rare allele to be detected.

For an allele frequency of 0.2, even under a threshold dilution of

0.2, 60-allele samples divided into three or more bulks perform

well, with probabilities of non-detection always lower than 0.1. For

allele frequencies of 0.3, even undivided samples of 60 alleles

perform well. Thus, in general, we can say that, for random

mating maize populations genotyped with SSRs, samples of 30

plants fractionated into three bulks of 10 plants are reliable for rare

allele detection with allele frequencies of 0.1 or higher, for

threshold dilutions of 0.1 or less. Such was the strategy used by [8]

in bulked analysis of maize populations. For threshold dilutions

above 0.1, failure of detection of rare alleles must be taken into

account, according to equation (5) and the tendencies depicted in

Fig. 2.

The results of the bulked and individual assays for three SSR

loci to evaluate dilution effects are summarized in Table 2. The

accessions are coded as PL077, PL092 and PL149. The accession

keys are followed by the bulk numbers. The rows with bold face

characters show the results of pooling the information of the three

bulks for each combination of marker and accession. The column

of alleles gives their numbers based on individual plant assays. The

dilution range was calculated in basis of allele frequencies from

individual assays within bulks. Detection percentages were

calculated from the fraction of alleles that were amplified in the

bulked analyses. The dilutions in undetected cases are the

frequencies of the alleles that the bulk-based analyses were unable

to detect in each assay. The minimum allele dilution was 0.05,

with a maximum of 0.70. In most cases the bulk-based approach

allowed detection of all the alleles present in the individual plants.

The only exception was the locus phi093, where alleles with

frequencies of 0.10, 0.11 and 0.15 were not amplified. However,

the combined information of the three bulks within the sample

allowed detection of the three present alleles, thus reaching a

100% rate of detection. The primers for loci phi064 and phi072

allowed detection of all alleles through bulk-based analyses, even

those with a dilution of 0.05. The presence of multiple allelism, e.g.

in bulks PL077—3 and PL149—1 for marker phi064 with nine

alleles, did not affect their amplification in the PCR experiments.

In all cases, alleles with dilutions of 0.2 or more were detected,

with most bulks having a successful threshold dilution of 0.05.

These results show the usefulness of dividing samples into bulks of

10 plants.

Figure 1. Plots of information parameters for several bulk
sizes, based on estimated allele frequencies in maize germ-
plasm sources.
doi:10.1371/journal.pone.0079936.g001

Table 1. Average values for information parameters in bulks of 10 to 100 SSR alleles in maize.

Parameter 10 20 30 40 50 60 70 80 90 100

Diversity 0.538 0.560 0.569 0.574 0.576 0.577 0.578 0.579 0.579 0.579

Noise 0.086 0.052 0.033 0.022 0.014 0.01 0.006 0.004 0.003 0.002

Information 0.452 0.509 0.536 0.552 0.562 0.568 0.572 0.574 0.576 0.577

doi:10.1371/journal.pone.0079936.t001
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Information of SSR loci
Results of the estimation of SSR information are shown in

Table 3. The average information per SSR locus was 3 bits, i.e. it

was equivalent to 3 binary, fully informative markers, and ranged

from 0.795 (phi213984) to 4.951 (phi064), with the highest

frequency being placed in the interval from 3 to 4 bits (Fig. 3A).

The number of alleles per locus ranged from 3 (phi121) to 11

(phi96100). Information was positively correlated with the number

of alleles (Fig. 3B), with a linear correlation r~0:80, p~1:85 x 107

for a two-tailed t test, and a 95% confidence interval of 0.616 to

0.900, thus indicating that allelic number may work at least as a

rough indicator of SSR informativeness.

The goal of calculating individual marker information is to have

a criterium for locus selection; such as in the case of the choice of

SNP markers in association studies [19,20]. However, the advent

of high-throughput technologies and informatics tools make

possible to analyze simultaneously a high number of markers

and select the subset related to a given trait [34]. This work

however is not aimed at association, but rather the optimization of

the necessary number of informative markers to enable rapid large

scale population monitoring.

Suggestions for bulk sampling optimization
For bulk sampling with binary scoring with SSRs in corn, we

recommend using 30 plants per accession, divided into three pools

of 10 plants. Comparing allele presence among the three bulks of

10 plants per accession, will give an idea of the robustness of allele

detection. The cases were results are consistent among the three

Figure 2. Probability of an allele being undetected for different numbers of fractions of a 60-allele sample, under several dilution
thresholds and population allele frequencies.
doi:10.1371/journal.pone.0079936.g002

Table 2. Analysis of three SSR loci for their amplification
under allele dilution.

Marker Bulk NP Alleles DR
Detection
(%) DU

PHI093 PL092—1 10 3 0.10—0.70 66 0.10

PL092—2 10 3 0.15—0.30 66 0.15

PL092—3 9 3 0.11—0.65 66 0.11

PL092 29 3 — 100 —

PHI072 PL077—1 10 6 0.05—0.52 100 —

PL077—2 10 5 0.05—0.55 100 —

PL077—3 10 6 0.05—0.43 100 —

PL077 30 9 — 100 —

PHI064 PL077—1 10 7 0.05—0.15 100 —

PL077—2 10 8 0.05—0.20 100 —

PL077—3 10 9 0.05—0.20 100 —

PL077 30 9 — 100 —

PL149—1 9 9 0.06-0.22 100 —

PL149—2 9 7 0.06-0.22 100 —

PL149—3 4 5 0.13—0.5 100 —

PL149 22 10 — 100 —

NP = number of plants, DR = dilution range, DU = dilution in undetected
cases.
The global result for each combined bulk is given in bold face characters.
doi:10.1371/journal.pone.0079936.t002
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bulks would be instances with low genotyping error. When only

one of the bulks allows detection of a given allele whereas the

others give a negative value, the detection of this allele may be

subject to a high sampling error or technical problems. Further-

more, validation of the method requires individual genotyping in a

fraction of the sampled accessions.

When working with a different species or marker system,

previous allele frequency data for a certain number of accessions

can be utilized to check the effect of sampling size on mutual

information and its components of diversity and noise for several

loci and alleles. This is done by calculating the result of equation

(3) minus the one of equation (4). To facilitate calculation, the

following R code [33] can be used:

#Basic functions for entropy

MyLog2p,-function(x){if(x = = 0) 0 else x*log(x,2)} entropy,-

function(x){-sum(sapply(x,MyLog2p))}

#Calculator of information, diversity and noise

InfoBulkBinary,-function(p,n)

{n,-2*n;v1,-(1-p)ˆn;v2,-1-v1;mymat,-cbind(v1,v2); div,-

entropy(c(mean(v1),mean(v2)));a,-NULL;

for (i in 1:length(p)){a[i],-entropy(mymat[i,])};

noise,-mean(a);c(div,noise,div-noise)}

#p is the vector of frequencies of a given allele across

populations

#n is the bulk size in number of diploid plants.

As an example, for a vector of allele frequencies in 10

accessions: 0.1,0,0.4,0.3,0,0.25,0.5,0.23,0.15,0, the information

for a bulk of 20 plants is calculated as follows:

InfoBulkBinary(c(0.1,0,0.4,0.3,0,0.25,0.5,0.23,0.15,0),20)

The result:

[1] 0.88327703 0.01279625 0.87048078,

is given in the following order: diversity, noise and information.

Conclusions

The information theory perspective provides a practical tool for

measuring and optimizing information for genetic markers and it

accounts for sampling variation. The concept of mutual informa-

tion allows consideration of two aspects of marker informativeness

in bulk DNA sampling of heterogeneous germplasm sources: the

ability to detect diversity among populations and the noise

resulting from random sampling within those populations. Data

obtained from SSR markers in maize allowed us to infer that DNA

bulks of 60 alleles, or 30 plants in a population under Hardy-

Weinberg equilibrium, attain a near-maximum information per

allele and have a sampling noise close to zero. Divided bulks can

help to overcome the problems of DNA amplification resulting

from allele dilution, and a practical approach would be to use

samples of 60 alleles per cultivar, fractionated into three bulks of

20 alleles, i.e. three pools of 10 plants in random mating maize

populations. The analysis of three SSR markers with bulks and

individual plants confirmed the usefulness of this approach. We

found a wide range of marker informativeness for 30 SSR loci,

which was correlated with the number of alleles. The approach

Figure 3. Informativeness of SSRs. Distribution of informativeness
in 30 SSR loci measured in bits (a). Association between SSR marker
informativeness and number of alleles per locus (b).
doi:10.1371/journal.pone.0079936.g003

Table 3. Informativeness of SSR loci for bulk DNA
genotyping.

SSR Alleles Information

phi127 6 3.429

phi051 6 2.677

phi115 3 1.490

phi015 6 3.143

phi033 6 2.848

phi053 8 3.693

phi072 7 3.044

phi093 5 3.609

phi024 7 3.820

phi085 8 2.693

phi034 8 3.904

phi121 3 0.667

phi056 8 3.758

phi064 10 4.951

phi050 3 1.627

phi96100 11 4.130

phi101249 8 4.128

phi109188 9 3.662

phi073 5 3.378

phi96342 5 2.390

phi109275 6 3.910

phi427913 9 3.409

phi265454 8 3.640

phi402893 9 3.288

phi346482 5 2.058

phi308090 5 2.544

phi330507 6 1.796

phi213984 3 0.795

phi339017 3 1.664

phi159819 5 3.578

doi:10.1371/journal.pone.0079936.t003
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herein described is useful for planning experiments using the bulk

DNA approach, in terms of sampling sizes, number of bulks and

locus selection. This would allow better management of local

landrace populations and the identification of germplasm for

conservation schemes. Although the proposed method was applied

to SSR markers in maize, the theory can be applied to any kind of

marker system and other species.
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