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Simple Summary: Dairy cows are susceptible to a range of welfare factors, which lead to worsening
health problems and shorten their productive life span. The health and welfare status of dairy cows
could be improved if unwanted abnormalities and risk factors are detected in a timely manner,
i.e., before diseases start to occur. Therefore, in addition to veterinary monitoring, quantitative
parameters are necessary to predict the risks of early culling of cows. In the study of the age dynamics
of culling rate in dairy cow populations, it was found that the average productive life span can be
predicted by registration of the reciprocal relative disposal rate (culling for sum of reasons + death).
This indicator represents the viability index, which has a maximal value at the first lactation and
decreases in subsequent lactations with an inverse exponential trend. According to available scientific
information, the structural prerequisites for this index are laid down during prenatal development
and in the early periods of postnatal life; therefore, it is necessary to create a system of continuous
monitoring of the physiological status of mothers and young animals.

Abstract: Animal welfare includes health but also concerns the need for natural factors that contribute
to the increase in viability. Therefore, quantitative parameters are necessary to predict the risks of
early culling of cows. In the study of the age dynamics of the disposal rate (culling for sum of reasons
+ death) in dairy cow populations, it was found that the average productive life span can be predicted
by the value of the reciprocal culling/death rate (reciprocal value of Gompertz function) at the first
lactation. This means that this potential of viability is formed during the developmental periods
preceding the onset of lactation activity. Therefore, taking into account current data in the field of
developmental biology, it can be assumed that the structural prerequisites for viability potential
are laid down during prenatal development and in the early periods of postnatal life. To prevent
unfavorable deviations in these processes due to negative welfare effects, it is advisable to monitor
the physiological status of mothers and young animals using biosensors and Big Data systems.

Keywords: dairy cows; viability; welfare; productive life span; heterogenous populations; computa-
tional modeling

1. Introduction

Dairy cows are susceptible to a range of negative welfare factors, such as stall dis-
comfort, metabolic and physical stress, bad pasture condition, age, parity, etc., which in
general lead to worsening health problems and shorten their productive life span [1–3].
Animal welfare includes health but also concerns the need for natural factors (e.g., access
to pasture) that contribute to the increase in viability [4,5]. Risks associated with a higher
culling rate include increasing herd size, average milk yield and morbidity, respiratory
disease, and total mixed ration feeding [6,7]. An increase in milk production has been asso-
ciated with risks of altering behavioral, physiological, and immunological conditions [1],
leading to greater risks for health disorders, which are the primary reported reasons for
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culling. On the other hand, improvements in cow comfort, reproduction, and genetic merit
for productive life in recent decades have not markedly led to increases in the productive
lifespan of dairy cattle [5,8]. The most general quantitative indicator of welfare for dairy
cow populations seems to be the length of productive life.

An increase in involuntary culling in the herd indicates poor animal health and
inefficient use of animal resources, which oppose sustainable dairy production [9]. The
health, welfare status, and length of productive life (PLS) of dairy cows could be improved
if unwanted abnormalities and risk factors are detected in a timely manner, i.e., before
diseases start to occur. Therefore, in addition to veterinary monitoring, procedures of
prenosological diagnostics and quantitative parameters are necessary to predict the risks of
early culling of cows. If we are unable to identify risk factors and measure the parameters
necessary to predict viability, then we will not be able to control health and welfare status
in the system of physiological monitoring.

Among the many physiological parameters of this type can be attributed indicators of
the organism’s resistance to the effects of external and internal factors that reduce vitality,
including indicators of immunity and nonspecific (innate) resistance, which in humans are
determined according to data of a clinical blood test or analysis of tissue probes to confirm
a suspected disease. With regard to the task of monitoring the health and welfare of cows,
these indicators are unacceptable for mass examination; moreover, they are highly variable
and not suitable for predictive veterinary medicine and production management. As an
example of the possible options of prenosological diagnostics, periodic measurements of
body condition score (BCS), daily milk yield, and milk composition are currently used
with the aim to prevent metabolic stress, hypoglycemia, fatty hepatosis, and decreases in
immunity in cows in the transit period of lactation [2,5,10–12].

As for the problem of cow longevity, it should be borne in mind that analytical
apparatus has long been successfully used in studies of life span in human mortality [13]. It
was originally proposed 200 years ago in the form of a differential equation describing the
age dynamics of human mortality (Gompertz function). In gerontology, the main interest
represents periods of old age, i.e., maximal longevity of humans, but dairy cows leave the
herd at earlier age periods, and cow mortality, formally, is similar to the disposal rate of
culling for the sum of natural reasons and death. Historically, Gompertz [13] was the first
to suggest the concept of general constitutive resistance (CR), which he called resistance to
mortality, as the reciprocal of the relative mortality rate.

Methodological approaches based on the use of various modifications of the Gompertz
function are applicable in the analysis of the survival rate of laboratory animals and dairy
cows [14–24]. The assumption is substantiated that in order to reduce the loss of produc-
tive animals from numerous polyetiological diseases (including so-called “productivity
diseases”, i.e., diseases of the udder, reproductive organs, legs, etc.), it is necessary first of
all to track and control the age-dependent decline in the total background viability (i.e., CR)
of the organism. The novelty of this approach lies in the orientation toward the diagnosis
and correction not of specific diseases, but to the earlier detection of hidden factors that
predispose to a decrease in productive life span (PLS) as milk production increases [24,25].

The aim of this work was to solve two problems: (1) to develop a methodology for in
silico forecasting the productive life span (PLS) in dairy cow populations and to test it on
an empirical data basis; (2) to interpret the obtained new data in light of the hypothesis of
the developmental origin of PLS variability in highly productive herds.

2. Materials and Methods
2.1. Study I. Analysis of Age Dynamics of Disposal Rate and In Silico PLS Forecasting

As a material for this study, data on the number of cows in subsequent lactations
registered in 15 production units (breeding plants, individual districts) of Black-and-White
cows in Leningrad oblast in the period 1985–2000 were used. An example of input data is
presented in Table 1.
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Table 1. Age composition of the dairy herd (Tosnensky district of Leningrad oblast).

Years n
For Successive Lactations, %

1 2 3 4–5 6–7 8–9 10 and
More

1985 20,528 28.4 21.6 17.0 21.1 8.4 2.8 0.7
1986 20,747 27.4 21.8 17.5 20.7 9.3 2.7 0.6
1987 20,897 28.6 20.9 17.1 21.6 8.7 2.6 0.5
1988 20,596 28.2 20.8 17.2 22.3 8.4 2.6 0.5

Mean % 28.15 21.28 17.20 21.7 8.7 2.68 0.57
Mean n 20,692 5825 4402 3559 4483 1800 554 118

Paired data for 4–5 and subsequent lactations were reconstructed, and the corre-
sponding values for individual lactations were restored by selecting corrective coefficients
according to the criterion of the minimum sum of deviations from the general trend,
predicted by approximating the resulting series with the Gompertz function y(t).

y(t) =
dN(t)

dt × N(t)
= B × exp(c × t) (1)

where t is the time variable in the form of the number of lactations, N(t) is the current size
of the cohort, and B and c are constants. Parameter c is an indicator of aging rate, and B is
the initial level of the relative disposal rate (dN/N, i.e., the value of relative culling for sum
of involuntary reasons + death) at the first lactation.

The dynamics of the disposal rate of dairy cows can be assessed according to the
data of the disposal rate in the cohort (a group of individuals of the same year of birth,
i.e., a “longitudinal” method, or by data on the number of cows in a herd with sequential
numbers of lactations (“cross” method). Successive groups in a herd are the remnants of
preceding cohorts; therefore, these two methods give the same results under the preposition
of constant patterns of disposal rate for all lactations in successive years. The difference
from human studies of longevity is that for cows, there are relatively few age points
(lactation numbers); therefore, multiparameter models, used in human gerontology, are not
used here, and only two parameters can be used: (1) c, indicator of aging rate; and (2) B,
initial level of disposal rate, which for cows is measured at the first lactation.

To approximate a series of empirical (input) data by the Gompertz function and use
it for PLS forecasting, a novel methodology was developed, in which the differentials dN
and dt are replaced by unit intervals ∆N and ∆t under the condition ∆t = 1 (step along
the time axis = 1, one lactation). In this case, using tables in Microsoft Excel, in the first
column, the lactation numbers ti are set, the second column is ∆Ni (i.e., ∆N1 = N2 − N1 for
t1 = 1, and so on), and the third column is sequence ∆Ni/Ni (i.e., the sequential values of
the Gompertz function). The sequence ∆Ni/Ni is used to estimate the values of B and c
by specifying the form of the approximating function y(t) = B × exp (c × t) and building a
point diagram with an indication of the exponential trend, parameters of the regression
equation, and the value of R2 (Figure 1).
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Figure 1. Empirical trend of the age-related increase in the disposal rate of the cows (∆N/N) and the
approximating Gompertz function y(t); t is lactation number.

To solve Equation (1), i.e., to restore the sequences of Ni according to the given values
of B and c in the Gompertz function y(t), in the first column, the lactation numbers ti (i.e., x)
are set, and the sequential values of y = B × exp(c × x) are restored in the second column.
In the third column, the values of (1 − yi) are set. In the first cell of the fourth column,
the conditional value of the initial size of the cohort (N1 for first lactation, usually at least
1000–1500) is set. Insofar as y1 = ∆N1/N1 = (N1 − N2)/N1, and y1 × N1 = N1 − N2,
N2 = (1 − y1)N1, and so on. This operation is repeated for all subsequent ti values until a
negative Ni value appears at the i-th iteration (the predicted maximum life span of cows in
a given herd is determined by the N(i-1) value) (Table 2).

Table 2. Analysis of empirical data* for PLS forecasting using the Gompertz function.

Analysis of Empirical Data Numerical Integration of Gompertz Equation

ti Ni ∆Ni yi = ∆Ni/Ni ∆ni = ∆Ni/N1 ∆ni×i ti yi 1 − yi Ni

1 5825 1423 0.244 0.244 0.24 1 0.244 0.7558 1500
2 4402 843 0.192 0.145 0.29 2 0.192 0.8085 1213
3 3559 922 0.259 0.158 0.47 3 0.259 0.7410 899
4 2637 921 0.349 0.158 0.63 4 0.349 0.6506 585
5 1716 625 0.364 0.107 0.54 5 0.364 0.6359 372
6 1091 416 0.381 0.071 0.43 6 0.381 0.6188 230
7 675 320 0.474 0.055 0.38 7 0.474 0.5256 121
8 355 170 0.480 0.029 0.23 8 0.480 0.5200 63
9 185 97 0.526 0.017 0.15 9 0.526 0.4735 30

10 87 57 0.650 0.010 0.10 10 0.650 0.3500 10
11 31 Σ = 3.5

* Tosnensky district of Leningrad oblast, 1985–1988. Σ∆ni×i is the average value of PLS.

To forecast the productive life span of a population that is heterogeneous in terms
of parameters B, c, and initial cohort size, sequences Ni for successive lactations can be
built by setting different combinations of values B, c, and N1 and summing these series.
Thus, a model population is obtained that is heterogeneous in terms of parameters and
initial cohort size. For the constructed sequence of Nsum i, the parameters of the Gompertz
function are found, and a point diagram of ysum(t) for the mixed population is constructed.
The model diagram and empirical diagram can be compared with the aim of testing and
verifying the hypothesis about the possible causes of the heterogeneity of the studied
population (see Section 3).
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2.2. Study II. Age Dynamics of 305 d Milk Yield in Cows with Various Values of PLS

Data on milk production were registered as 305 d milk yields in one herd of Khol-
mogor cows for all successive lactations in groups with different lengths of productive
life, culled during several years (2002–2005, total number of cows n = 1500). The reasons
for disposal/culling were not taken into account. The distribution curves of the relative
frequency of first calving over the year for the 6 groups were similar (with some statistical
scattering), i.e., there was an overall tendency toward a uniform distribution with local
elevation during February–April. Additionally, the subsets of cows with a given number
of lactations were distributed uniformly over a relatively broad range of years. Therefore,
these data suggest that quantitative biases with year-seasonal effects were nonsignificant.

Material and methods. When analyzing the age-related dynamics of milk productivity,
data on milk yields for 305 days in groups of cows with different lengths of productive
life (with numbers of last lactation 4, 5, . . . , 10) were used. To assess the quantitative
parameters that determine the age dynamics of 305 d milk yield for successive lactations
(ym, kg; t is lactation number), a three-component regression function was used:

ym (t) = A × exp(−exp(−bt)) × Dt (2)

where A is a constant parameter that has a potential value of 305 d for this group of cows.
The product of A and the second component, exp(−exp(−bt)), describe the increase (with
access to the plateau level at the 5–6th lactation) in the potential ability to produce milk
due to an increase in body size and cytomorphological development of the udder. The
numerical value of parameter b, according to preliminary estimates, varies within relatively
small limits (0.4–0.5). Actual 305-day milk yields for successive lactations in each group
were determined by the product of A × exp(−exp(−bt)) and the degradation component
Dt (D < 1), which describes the rate of age-related decline (D < 1) in the functional capacity
of the milk production system, while the value of D is the “initial” value of this parameter
for the first lactation (D1 = D). The value of D is determined by extrapolating the linear
regression trend, built in the interval of 4–10 lactations, to the first lactation.

3. Results
3.1. Study I. Express Method of Using Gompertz Equation to Estimate Viability Indicators for
Dairy Cow

Based on published input data for five US breeds , a linear relationship between 1/y1
and average productive life span T was found (r = 0.94, p < 0.05).

A similar relationship was found using data on 15 production subdivisions of Leningrad
oblast (breeding plants, individual districts):

T = 0.26 (1/y1) + 1.2; R2 = 0.99, p < 0.001). (3)

The data obtained indicate that the length of productive life significantly depends on
the value 1/y1 = B−1×,72 = N1/∆N1 as a parameter characterizing the viability potential
(initial value of viability indicator), which was formed before the onset of lactation activity.

In a study performed in 15 production units on Black-and-White cows in Leningrad
oblast (breeding plants, individual districts), a correlation was found between the values
of parameters B and c (Figure 2). To explain the revealed correlation, the assumption was
investigated that if all 15 populations were homogeneous by parameter c, but some of them
(or most of them) were heterogeneous by parameter B, this would lead to a decrease in pa-
rameter c for all heterogeneous populations. The results of a series of calculations confirmed
the correctness of this assumption, since the regression line constructed from empirical
data coincided with the trend line constructed from model data for four heterogeneous
populations (the input data for this forecast are given in Table 1).
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Figure 2. Correlation between the values of parameters B and c, found in the analysis of cow culling
rate in 15 production units of Leningrad oblast (total size of whole population ≈ 35,000 dairy cows).
•—empirical data; #—model forecast for IV model populations with the same values of c = 0.15; I is
homogenous, II consists of two, III and IV consist of three subpopulations, with different values of B
and N1 (initial number of cows in cohort) (Table 3).

Table 3. Input data for four model populations (MP) *.

Nr
Parameters of MP Parameter B for Subpopulations

N1 (Initial Number of Cows in Cohort)B c

1 0.1 0.15 0.1
1000

2 0.15 0.13 0.15 0.09
600 400

3 0.19 0.11 0.22 0.15 0.1
300 300 400

4 0.23 0.087 0.26 0.20 0.11
300 300 400

*All IV model populations have the same value of c = 0.15; I is homogenous, II consists of two, III and IV consist
of three subpopulations, with different values of B and initial number of cows in cohort N1.

Thus, in the process of preliminary verification of the concept, carried out on the data
of the registration of the age dynamics of cows culling, it was found that the average PLS
in the dairy cow population can be predicted by the initial value of the reverse relative
culling of cows at the first lactation. In other words, as the predictor of PLS, the magnitude
of a trait that was formed during the development periods preceding the onset of lactation
activity can be used.

When considering the scatter plot shown in Figure 2, the location of the leftmost point,
indicating the homogeneity of this population, can be interpreted with sufficient reliability
in the sense that this population has no health and welfare problems, while on the right
side of the diagram, the short-lived subpopulations appear with reduced welfare status.

In this work, the ability to predict PLS was established on the basis of population
data, but a similar test, in principle, can be developed at the individual level [12]. For such
complex and highly variable traits, such as viability and longevity, conclusions based on
population data are of primary importance, although practical application will undoubt-
edly require more detailed studies, taking into account the specific conditions of dairy
farm conditions.



Animals 2022, 12, 684 7 of 14

3.2. Study II. Age Dynamics of 305 d Milk Yield in Cows with Various Productive Life Span

The initial value of the degradation component, D in Equation (2), can be interpreted
as the potential of protective forces (viability, general background resistance, etc.) formed
before the age of reproductive maturity. It can vary from 0.85–0.87 in cows with a short
productive life to 0.99 in long-lived cows (Figure 3). With this interpretation, the dynamics
of indicator Dt over long periods of time represent the dynamics of the general background
resistance (including innate immune resistance) to the action of factors associated with
lactation activity and age, while the overall actual resistance in certain short periods of time
can be made up of background constitutive and inducible components (including reactions
of humoral and cellular immunity for antigen intrusion).

Figure 3. Age dynamics of 305 d milk yield (a,b) and degradation component Dt (c).

In the analysis of the interrelationship between indicators D and tmax (number of last
lactation) for seven groups, a regression equation was obtained:

D = 0.88 + 0.008 t max, r = 0.94, p < 0.001, i.e.,
t max = 125 D − 110

(4)

In another study conducted on a smaller population of White-and-Black cows
(n = 195), a similar linear relationship was obtained: D = 0.88 + 0.012 t max, r = 0.84,
p < 0.001; i.e., t max = 83 D − 73.

When comparing Equations (2) and (4), an analogous relationship can be seen between
the PLS and the values of viability indicators obtained by analyzing the age dynamics
of culling rate and 305-day milk yield in the studied populations of cows. In addition,
comparing Figures 3c and 4b (see Section 4) reveals similar patterns in the position of
the initial viability level, 1/y(t) and indicator D, i.e., the higher the initial position of the
viability indicator, the longer the PLS of the dairy cows.
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Figure 4. Age dynamics of three indicators of herd turnover for 3 model cohorts. y(t) is Gompertz
function as relative culling (∆Ni/Ni); 1/y(t) is indicator of viability of cows; ∆ni = ∆Ni/N1, ti—
lactation number, ∆ni×ti—partial productive life span, i.e., relative number of cows in herd with
productive life span equal to given lactation number. The average productive life span T = Σ ∆ni×ti.
For all 3 variants: c = 0.2; • B = 0.1; NB = 0.2; �B = 0.3.

4. Discussion

Based on the analysis of the results obtained using different methodological ap-
proaches in Studies I and II, it can be concluded that the observed variations in PLS
in the studied dairy cow populations mainly depend on the parameters characterizing the
initial level of viability that was formed in the periods preceding the onset of lactation
activity (1/(y1) in Study I and D in Study II). At first glance, the value of this fact is that it
can be used to predict the PLS of cows, but this is not entirely true. Firstly, when analyzing
the data of Study II on the age-related dynamics of milk yield, the initial value of D is not
measured, and its relationship with the value of PLS is revealed by analysis of six subse-
quent lactations. Secondly, the high statistical significance of the relationship between the
mean PLS and the value of 1/(y1) in Study I has so far been established only for a specific
large population, and for the practical application of such a test, one study is insufficient.
In addition, for small populations, the performance of this test will be smaller. Finally,
the usefulness of predicting longevity is doubtful if the possible causes and mechanisms
underlying early culling of cows are not known.

One of the essential elements of novelty in the results of this work can be expressed
as a new look at an old problem. The novelty here is that a methodology for measuring
viability was proposed, accessible to a wide range of livestock specialists who do not have a
thorough mathematical background. This is important due to the fact that these biological
traits are extremely variable, so the study must be carried out on large populations with
the fixation of numerous production factors. Practice shows that hoping for success along
the path of establishing joint work with professional mathematicians in such situations
is nonperspective (“mathematicians do not know biology, and biologists are not strong
in higher mathematics”). The described sequence of simple arithmetic operations can be
called a computational experiment (in silico), which can be carried out to test the hypothesis
about the heterogeneity of the studied population in terms of parameters of survival. There
is no reason to consider this procedure as mathematical modeling, since no new models are
built, the Gompertz law is used, and sequences of arithmetic operations are made in order
to identify factors that modify the manifestation of this general law in specific conditions.

In the same way, when creating new aircraft, engineers carry out calculations using
previously established laws of aerodynamics. Law may be created once a century, but the
real effect is achieved by the work of numerous engineers who solve specific problems.
The Gompertz equation is not an empirical regression equation; it is a fundamental law,
and, like any law, it is carried out always and everywhere “in its pure form” under certain
conditions. For the Gompertz law, these are the conditions for the homogeneity of the
cohort and the stationarity of the renewal of the population (the constancy of the percentage
composition of the dairy herd for successive years). Therefore, only an armada of zoo
engineers is capable of solving the problems of viability and survival, taking into account
the vast variety of biological and production factors. A small number of points is not a
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big drawback when analyzing the survival rate of cows, having a short life span, since
first lactations are characterized by the highest rate of decline in viability, while intergroup
differences are more clearly manifested.

According to preliminary data, aging parameter c in homogeneous cohorts, probably,
is determined by hereditary factors; for example, it may be breed specific, and the initial
level of culling can be determined to a large extent by the epigenome, i.e., epigenetic mod-
ifications in the processes of prenatal development and in the early periods of postnatal
life. On the other hand, if the studied population is heterogeneous by survival parameters,
the empirical Gompertz function (for example, Figure 1) is, in essence, of little information.
Moreover, without taking into account the heterogeneity factor, the information content of
some physiological and breeding tests may be lost to some degree. Some effects of hetero-
geneity are illustrated in Figure 4, when comparing the age trends of parameters measured
by the proposed method (∆N/N, 1/y(t), ∆ni×ti) in a model herd that is heterogeneous by
parameter B in the Gompertz function. The shortest-lived group disappears at the fifth
lactation, and at the seventh lactation, only one long-lived subpopulation remains in the
herd, although in this situation, parameter c, determined by hereditary factors, has the
same value for these three groups. If physiological and biochemical studies are carried
out on cows of the third or fourth lactations, the studied samples will be represented by
individuals with different survival potential and, accordingly, with different functional and
metabolic parameters.

The second significant element of novelty in the results of this study can be considered
the establishment of the fact that the correlation between parameters B and c in the Gom-
pertz function can be due to the heterogeneity of the studied populations by parameter
B at the same value of c. This correlation, known since the middle of the last century as
the Strehler–Mildwan correlation, still does not have an unambiguous explanation in the
literary sources in the field of demography and gerontology. On the other hand, the estab-
lishment of this fact can be regarded as an additional argument in favor of the developed
concept of the role of the level of “initial” viability for PLS of cows.

A second new look at the old problem of the viability of high-yielding cows in this pa-
per is an attempt to shift the focus from disease control to the study of factors predisposing
to the occurrence of prediseases and risk factors, which, with a high degree of probability,
can be found at stages far removed from the onset of clinical symptoms of diseases.

Currently, there are many experimental and theoretical studies describing the func-
tioning of physiological homeostasis systems (operating in “fast” time), but the number of
works that consider the behavior of biological systems in “slow” time is much less. The
object of such studies is usually not homeostasis, but homeoresis—a continuous series of
homeostasis, the trajectory of changes in the state of the system over time. This corresponds
to that proposed in the 1960s of the last century by Waddington’s model of ontogenesis as a
creod. Unlike homeostasis as a return to one specific point of the initial state after a forced
deviation, in the creod, model this point does not remain stationary but drifts in time, and
the trajectories described by this phase point in the process of compensating for deviations
seem to be attracted to the central, canalized trajectory, which is the creod.

Visually, the creod model can be represented as an inclined trough, along which a
ball rolls, experiencing lateral shocks, tending to push it over the side (as in bobsleigh
track). The higher the height of the upper base of the trough, the longer the duration of
the descent (similar to life span). Within the framework of this model, the compensation
of all variations of the ball trajectory caused by lateral shocks should be attributed to the
effects of the adaptive (inducible) resistance component, and movement along the center
of the trough should be attributed to the background resistance. The second component
is difficult to assess in a short-term experiment, but, in all likelihood, it determines the
long-term effects of animal general background resistance and viability.

This is indicated by the relationships between the productive life span and the “initial”
level of parameters, which we revealed in the analysis of the age dynamics of 205 d milk
yield and disposal rate in dairy cows (Figures 3c and 4b). It is important to keep in mind



Animals 2022, 12, 684 10 of 14

that at each stage of ontogenesis, the systems of physiological homeostasis function, in
principle, in the same way and differ only in the efficiency of regulation, which gradually
decreases with age. In other words, the general background (constitutive) resistance is
“masked” by the uniformity of manifestations of inducible adaptive resistance at all stages
of ontogenesis.

All multicellular organisms, including insects, laboratory animals, mammals, and
humans, lose vitality with age; however, the general level of fundamental knowledge in
the biology of lifespan is still at the level of the 1960s of the last century. This position is
in sharp contrast to the study of heredity, including modern trends in molecular genetics,
although Mendel’s laws were formulated only 50 years after Gompertz’s law [13]. This is
due to a number of reasons, including the fact that the object of study, i.e., population data
on survival, mortality, and life span, arises after the disappearance of the material substrate.
Theoretically, it is possible to identify relationships between negative impacts at the early
stages of ontogenesis and their long-term effects on the level of reproductive ability and
survival indicators in individual individuals, but such work, due to the large expenditure
of time and the difficulty of marking objects, has become possible only at very recently.

The homeostatic ability, expressed in energy units (the ratio of total oxygen consump-
tion to the difference between atmospheric pressure and oxygen tension in mitochondria),
which determines reproductive ability, decreases exponentially with age in insects and
animals [21]. The same dynamics are revealed by resistance to mastitis in cows. In humans,
the wound healing index decreases exponentially, while the frequency of cerebral hemor-
rhages, aortic aneurysms, and atherosclerosis, on the contrary, increases at the same rate.
The decrease in basal metabolism in all animals occurs exponentially, i.e., the rate of decline
is higher at a young age.

These experimental data, in principle, are sufficient to clearly separate the concepts
of aging and old age; signs of old age are observed in the long term, but the rate of aging
(decrease in adaptive capacity, vitality, reserve of protective forces) is maximum at an earlier
age, approximately reaching the age of reproductive maturity.

The ontogenetic model explains why it is necessary to look for ways to prevent (and
treat) not each individual disease but to act on them as a single group. That is, it is necessary
first of all to treat not the final manifestations of diseases, but, as far as possible, to eliminate
permanent pathogenetic factors. If health is considered as a dynamic balance of pathogenic
and sanogenic factors, then primary health is a combination of innate predisposition
to diseases with an innate reserve of sanogenic processes. Health before birth should
be considered primary, i.e., obtained with the genome and implemented in antenatal
ontogenesis (in the embryonic, transitional, and fetal periods) [26–28]. In this regard, it
is worth mentioning the 2011 Nobel Prize awarded for work on the discovery of innate
immunity resistance. In order to effectively prevent the aging process in humans, clinicians
recommend including middle-aged and earlier age periods in the circle of patients. On
the same basis, it is recommended to test geroprotectors not on old, but on relatively
young individuals, because they have a higher aging rate, and it is advisable to develop
adaptogenic drugs for old individuals (at a low aging rate, it is more important to maintain
homeostatic ability).

The life span of modern high-yielding productive cows does not reach even half of the
period formed in the process of long-term evolution, and the reasons for early culling lie in
the discrepancy between the intensity of biosynthetic processes occurring in the udder at
the peak of lactation and the metabolic capabilities of internal organs (primarily the liver).
This discrepancy, which gives rise to negative shifts in the humoral and immunological
status in the mother’s body, inevitably has a negative impact on all stages of prenatal life,
including oocyte maturation, ejaculation, and subsequent stages of the embryonic and
fetal periods.

As a whole, according to modern views and observational data, the formation of this
potential critically depends on the conditions of embryonic development [29–38], which are
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formed in cows in the first months of lactation. Therefore, in order to increase the vitality
of cows, methods should be found to increase the level of this “primal” health [39–45].

The results of numerous embryological studies show that in the process of prenatal
development, “setting points” for physiological and metabolic processes in adults are
determined. Changes in nutritional status during pregnancy can cause adaptive changes
in developmental processes due to hormonal shifts in the embryo and fetus, which shift
the position of the set points. These adaptive shifts can create short-term positive effects
on the embryo and fetus so that the newborn is better prepared for adverse environmen-
tal conditions (e.g., undernutrition). However, attempts made in the postnatal period
to compensate for growth retardation through increased nutrition can cause metabolic
conflicts that predispose to physiological abnormalities in adulthood that increase the risk
of diseases [46,47].

Numerous data indicate that metabolic disorders in adulthood often arise as a result
of embryological programming of key endocrine systems due to deviations from normal
conditions in utero. Inadequate nutrition, ambient temperature, oxygen deficiency, and
excess nutrition during pregnancy significantly affect the processes of prenatal development.
This means that the optimization of the productive qualities, fertility, general health, welfare,
and length of productive life of dairy cows is possible only by taking into account the
influence of external environmental factors on the processes of prenatal development.

The first half of lactation in highly productive cows is characterized by the develop-
ment of energy deficiency, hypoglycemia, massive mobilization of fat depots, accumulation
of toxic products that “open the way” for a complex of multifactorial deviations in maternal
health, and negative epigenetic modifications in the processes of embryonic development.
To decipher the complex picture of metabolic changes occurring during this period, it will
be necessary to conduct long-term studies, although certain information can be obtained at
the present time by indirect signs according to the data of registration of lactation, indica-
tors of milk composition during automated milking, and the body condition score, which
is currently being identified using technical vision systems. At the same time, with the
help of such systems, it is possible to register other measurements, including the width
and height of the breast, for an indirect assessment of the size of the liver. According to
the authors’ hypothesis, the combination of a large increase in udder volume in crossbred
animals with a disproportionately smaller increase in liver size may be a causal factor in
the development of serious metabolic dysfunctions, including fat hepatosis, decrease in
immunity, and, as a consequence, increased culling of cows for a sum of reasons. The
adequacy of this hypothesis can be tested on a large amount of empirical data already at
the first stages of mastering this new technology.

The discovery of the phenomenon of early prenatal programming of health and
diseases, in relation to the problem of the viability of dairy cows, makes us turn to the
issues of continuous physiological monitoring of a dairy herd based on modern biosensor
systems and Big Data technologies [48–51]. In the future, as data accumulate, it will be
possible to move from health and welfare monitoring to accurate phenotyping and the
creation of dairy cattle populations with a balanced combination of productivity and
functional reserves of visceral systems [52–55].

In combination with the improved breeding systems, this scientific and technological
complex will provide the necessary basis to expand the list of physiologically justified
breeding indices, to reduce morbidity and obtain animals of a new type with indicators of
productivity and viability, balanced by a set of economic criteria and biological requirements
for milk yield and milk product quality.

5. Conclusions

The reason for the antagonism between potential milk yield and productive life span
in dairy cow populations is due to the lack of quantitative tests to assess and predict the
viability of animals. Multiparametric survival models used in demography and gerontology
are practically not applicable to dairy cows for a number of reasons, including an insufficient
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number of points (number of lactations), population heterogeneity, and others. In our
study, a novel methodology was developed to assess survival parameters using data on
the number of lactating cows for successive lactations (transverse method) and conduct
numerical experiments in silico to take into account the population’s heterogeneity effects
using numerical integration in Microsoft Excel.

The conducted research showed that the average productive life span in the studied
population of Black-and-White and Khalmogor cows depends mainly on the potential of
viability formed in the periods preceding the onset of lactation activity. Taking into account
the results of the contemporary research in the field of developmental biology, it can be
assumed that the structural prerequisites for this potential are laid down in the processes
of embryonic development and in the early periods of postnatal life.

To prevent unfavorable deviations in these processes, it is advisable to carry out con-
tinuous monitoring of the physiological status of mothers and young animals and conduct
periodic examinations with the registration of possible risk factors. For this, it is necessary to
introduce electronic systems of animal identification, devices for medical introscopy, and sets
of microdevices for computer analysis of visual and measurement information.
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