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Abstract

Motivation: Graphical representations of contrasts in GC usage among codon frame positions

(frame analysis) provide evidence of genes missing from the annotations of prokaryotic genomes

of high GC content but the qualitative approach of visual frame analysis prevents its applicability

on a genomic scale.

Results: We developed two quantitative methods for the identification and statistical characterization

in sequence regions of three-base periodicity (hits) associated with open reading frame structures.

The methods were implemented in the N-Profile Analysis Computational Tool (NPACT), which high-

lights in graphical representations inconsistencies between newly identified ORFs and pre-existing

annotations of coding-regions. We applied the NPACT procedures to two recently annotated strains

of the deltaproteobacterium Anaeromyxobacter dehalogenans, identifying in both genomes numer-

ous conserved ORFs not included in the published annotation of coding regions.

Availability and implementation: NPACT is available as a web-based service and for download at

http://genome.ufl.edu/npact.

Contact: lucianob@ufl.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Accurate genome annotations are fundamental to a great variety of

sequence analyses. Annotations of prokaryotic genomes are based

on computational gene prediction methods that, using information

from sequence composition (Delcher et al., 2007; Hyatt et al., 2010;

Lukashin and Borodovsky, 1998; Salzberg et al., 1998) and from se-

quence signals (e.g. ribosome binding site) (Hyatt et al., 2010;

Larsen and Krogh, 2003), have achieved remarkable levels of sensi-

tivity (>99%). The availability of large databases of gene sequences

also facilitates identification of coding regions using information

from sequence similarity. Nevertheless, a multitude of ORFs con-

served across distantly related genomes and not reported in pub-

lished genome annotations have been recently identified (Warren

et al., 2010). Despite the high sensitivity of gene prediction methods,

certain genes may still be difficult to predict, for example, genes of

very short length or genes encoded by heterologous DNA. True

genes may also be excluded from the annotation by over-conserva-

tive criteria of robustness of prediction across methods or of evolu-

tionary conservation. For example, although Glimmer3.0 (Delcher

et al., 2007) is often considered to have lower specificity than other

predictors (e.g. GeneMark HMM or Prodigal), many genes pre-

dicted by Glimmer3.0 and not included in genome annotations have

been confirmed in a recent analysis, based on evolutionary conserva-

tion and functional characterization (Wood et al., 2012).

Bioinformatics tools (Aziz et al., 2008; Kumar et al., 2011; Lee

et al., 2013; Lewis et al., 2002; Stewart et al., 2009; Vallenet et al.,

2013; Yu et al., 2008) and procedural standards (Angiuoli et al.,

2008; Madupu et al., 2010) have been developed to facilitate and
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standardize the annotation process integrating resources for se-

quence annotation.

Coding regions of high GC content (GC>55–60%) in most

cases can be identified by their three-base periodicity in GC con-

tent, using the method of frame-analysis (Bibb et al., 1984). In

frame analysis, the GC content of three subsequences composed

of every third nucleotide starting from position 1, 2 or 3 of the

original sequence is computed within a moving window and repre-

sented as three ‘S-profiles’ (Brocchieri et al., 2005). Coding re-

gions can then be visually recognized by the typical contrasts that

they induce among profiles (Supplementary Fig. S1). Frame ana-

lysis has been implemented in the FramePlot software (Ishikawa

and Hotta, 1999), a web-based tool for visualization of S-profiles,

positions of stop codons, and potential start of translation codons,

which has often been utilized for the characterization of specific

gene families (e.g. Goranovic et al., 2012; Huang et al., 2011;

Sherwood et al., 2013).

Anecdotal observations in genomes of high GC content (about

one-third of all sequenced genomes) indicate that many genes not

listed in annotations can be identified by visual frame analysis.

Genome-wide frame analysis has been made accessible with the re-

lease of recent versions of FramePlot and through the Artemis gen-

ome browser and annotation tool (Rutherford et al., 2000).

However, its applicability on a genomic scale is still impractical, due

to its qualitative nature. To address these limitations, we developed

procedures for the quantitative assessment and statistical character-

ization of sequence segments with three-base-periodicity (‘quantita-

tive frame analysis’) and for their convenient genome-wide

representation. We implemented these procedures in the newly de-

veloped N-Profile Analysis Computational Tool (NPACT), by which

ORFs with significant periodicities are identified and compared with

pre-existing annotations in graphical representations showing the

positional relations of newly identified ORFs with three-base peri-

odic sequence segments, compositional profiles, and pre-annotated

coding regions. We evaluated the potential of quantitative frame

analysis to identify genes missed from annotations, and analyzed

with NPACT the genome sequences and annotations of two strains

of Anaeromyxobacter dehalogenans, a deltaproteobacterium of

interest for a variety of bio-remediation applications (He and

Sanford, 2003; Marshall et al., 2009; Sanford et al., 2007). We iden-

tified in the two genomes several ORFs with compositional period-

icity that were excluded from the published annotations. Upon

further analysis, we found in most cases that their coding capacity

was corroborated by evolutionary conservation, functional charac-

terization and computational gene predictions.

2 Quantitative frame analysis
We implemented quantitative frame analysis in the NPACT applica-

tion. NPACT first identifies sequence segments with statistically sig-

nificant compositional three-base periodicity that are associated

with ‘reading frames’, i.e. with sequences of trinucleotides uninter-

rupted by ‘stop codons’. To extend applicability of frame analysis to

sequences of any composition, we extended the analysis of compos-

itional three-periodicities from GC content to individual nucleo-

tides. Periodicities are identified using two newly developed tests:

the first test identifies three-base periodicities that are expected in

coding sequences (Besemer and Borodovsky, 1999) of a given local

composition; the second test identifies sequence regions with three-

base periodicities of any type. ORFs of minimum length associated

with segments of compositional periodicity are then identified when

present, searching for the start-of-translation codon closest to the 50-

end of the region of periodicity. All ORFs identified by three-base

periodicity are compared by NPACT to a set of predicted genes or

to gene annotations provided by the user, distinguishing three-base

periodicities that support the annotated genes from those that iden-

tify discrepancies and potential genes not included in the provided

set of predictions. NPACT produces graphical representations that

allow genome-wide uninterrupted visual comparison of compos-

itional profiles, pre-annotated genes and sequence segments of

three-base periodicity with ‘Newly Identified ORFs’, enabling frame

analysis on a genomic scale.

2.1 The H-test: high-scoring segments of coding-like

composition
To identify three-base periodicities associated with coding regions,

we considered all ‘reading frames’ of the input sequence, i.e. con-

tinuous sequences of trinucleotides not interrupted by in-frame stop

codons (TAA, TGA or TAG) that may contain coding regions. Each

reading-frame was also used to identify the local composition of the

sequence, based on which the nucleotide composition of the three

codon positions can be predicted. Specifically, the expected fre-

quency EðpXi
Þ of nucleotide type X (¼ A, C, G, T) at codon position

i (¼ 0, 1, 2) can be estimated by linear regression over its overall nu-

cleotide frequency pX from collections of known genes (Fig. 1A). To

identify within a reading frame sequence segments of any length

with the three-base periodicities expected in coding regions, we

derived an implementation of the ‘high-scoring segment’ approach

(Karlin and Altschul, 1990) based on cumulating, along the se-

quence, scores appropriate for identifying segments with expected

phase-specific nucleotide frequencies, such as log-odds-ratio scores

SðXiÞ ¼ ln ½EðpXi
Þ=pX�, assigned to each nucleotide and codon pos-

ition (Fig. 1B).

However, the absence of stop codons from reading frames gener-

ates dependencies between nucleotides in different codon positions

(Supplementary Tables S3 and S4) and affects the probability with

which nucleotides associate to form ‘codons’. To account for these

dependencies, we built instead log-odds-ratio scores for codons,

based on their expected frequencies in ‘pseudo-coding’ and ‘random’

sequences, generated, respectively, drawing nucleotides with ap-

propriate phase-specific probabilities fpXi
g, or overall probabilities

fpXg and removing stop codons. Given a specific reading frame,

these probabilities can be calculated so that after removing stop

codons, the expected nucleotide frequencies of the randomly gener-

ated sequences are the same as the overall frequencies observed in

the reading frame, and in the pseudo-coding model, as the phase-

specific frequencies expected in a corresponding coding region

(Supplementary Methods). If p
ð0Þ
stop and p

ð1Þ
stop are the probabilities

with which stop codons are generated in the random and pseudo-

coding models, respectively, based on the ratio of expected frequen-

cies, the log-odds-ratio score for codon XYZ is (Fig. 1C):

ScoreðXYZjpÞ ¼ ln
pX1

pY2
pZ3
ð1� p

ð0Þ
stopÞ

pXpYpZð1� p
ð1Þ
stopÞ

(1)

By summing codon scores along a reading-frame sequence, seg-

ments of any length with statistically significant cumulative score

and expected phase-specific nucleotide composition can be identi-

fied, as described in Supplementary Figure S2. We evaluated cumu-

lative-score values at different levels of statistical significance for

23 426 different compositional states, covering nucleotide frequen-

cies from 0.0 to 1.0 at intervals DpX ¼ 0:02, and sequence lengths

doubled from 150 to 9600 nt, each from samples of 10 000
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randomly generated sequences (Supplementary Methods). We found

that threshold-score values were linearly related to the log-log of the

length of the sequence (Supplementary Fig. S3). Based on this rela-

tion, threshold scores for any length L and compositional state k,

can be obtained from pre-calculated linear-regression coefficients

(ak,bk) specific to each state k as S � ðLjkÞ ¼ akln ln Lþ bk We refer

to the sequence regions identified by this approach as ‘H-type hits’

or ‘H-hits’, and to the corresponding test as the ‘H-test’.

Because high-scoring segments could be induced by genes

encoded in alternative frames, we also scored each significant H-hit

against all alternative frames substituting in log-odds-ratio scores

the frequencies expected in a random model with those expected in

alternative coding frames. If the frame of a high-scoring segment is

the identity permutation I , and alternative frames are identified by

alternative permutations P of codon frame positions, scores relative

to P are obtained as:

ScoreðXYZjp;PÞ ¼ ln
pX1

pY2
pZ3
ð1� p

ðPÞ
stopÞ

pXPð1ÞpYPð2ÞpZPð3Þ ð1� p
ðIÞ
stopÞ

; (2)

where p
ðIÞ
stop and p

ðPÞ
stop are the probabilities of stop codons under the

pseudo-coding model for the corresponding permutations.

Cumulating these scores along a H-hit sequence can result in a new,

potentially shorter high-scoring segment. This is in turn re-scored

relative to other permutations (Supplementary Fig. S2) until all five

alternative permutations are tested. The final highest-scoring seg-

ment is retained only if it is still significant relative to the random

sequence.

2.2 The G-test: significant nucleotide association with

codon positions
To identify within a reading-frame three-base periodicities of any

type, we propose a procedure based on the G statistics (Sokal and

Rohlf, 1994), which is often used as an alternative to the v2 for test-

ing associations. In our implementation, we used values of the G

statistics (G-values) to score association of nucleotides with codon

positions, as illustrated in Figure 2 and detailed in Supplementary

Methods. Briefly, in a reading frame of L codons, a G-value is calcu-

lated over the interval [i,L] (1� i�L) and is assigned to codon

position i as its ‘G-score’. The codon position i¼m of maximum

G-score identifies a sequence interval [m,L]. Within this interval,

G-values are calculated over intervals [m,j] and assigned to codon

positions j (m� j�L). Position j¼M (M�m) of maximum G-score

G�M identifies with position m the sequence segment [m,M], which is

characterized as ‘high-scoring’ if GM exceeds a threshold score G�M
of significant probability. We identified thresholds of significance

for the GM statistics for a large number of compositions and differ-

ent sequence lengths based on large samples of randomly generated

sequences, as described for the H-test. As for the H statistics, we

found that threshold values of GM depend on sequence composition

and are linearly related to the log-log-length of the sequence

(Supplementary Fig. S4) and can similarly be inferred for any se-

quence length and composition. We refer to this test of association

as the ‘G-test’, and to the high-scoring segments identified by the

G-test as ‘G-type hits’ or ‘G-hits’.

Because three-base periodicities identified as G-hits do not pro-

vide information on the reading frame and coding strand of a poten-

tial gene, G-hits were re-scored, as for the H-hits, by H-scores

against coding in alternative frames (see earlier), and retained only if

the G-value of the final high-scoring segment scored significantly by

the G-test.

2.3 Three-base periodicities, low-complexity

and newly identified ORFs
Using the newly developed tests, sequence segments with three-base

periodicity can be identified within all reading frames of the direct

and complementary strand of an input sequence. In our implementa-

tion, we first applied the H-test, and then applied the G-test to re-

gions not covered by H-hits. We then evaluated if three-periodicities

could be associated with regions of low complexity, which could

generate significant cumulative scores if composed of trinucleotides

with positive score. We calculated Shannon entropy H (Shannon,

1948) for each hit, based on its codon frequencies, and normalized it

to the interval [0,1] by expressing it in log(61) units (61 being the

A

B

Fig. 1. Associations of nucleotide-type usages with codon position. (A) Base

usages at the three codon positions of genes in relation to the overall usage

of the same base. Each point represents the average usage in the correspond-

ing codon position from the collection of all coding sequences annotated in

one genome. (B) Log-odds-ratio scores associated to each base at the three

codon base positions as a function of GC content. (C) Corresponding log-

odds-ratio scores for the 61 codons with the highest- and lowest-scoring

codon types indicated for low, intermediate and high GC content (W¼AT,

S¼CG, R¼AG, Y¼CT)

Fig. 2. An example of the procedure used to identify ‘G-type’ significant

hits of any length within a reading frame of 240 trinucleotides containing a

coding region starting at position m. Ia and Ib are G-scores assigned to

codon positions i, with 1� i�240, corresponding to G-values calculated

over the intervals [i,240], with maximum G-score Gm at position m. II are

G-scores assigned to codon positions j calculated over the intervals

[m,j], with m� j� 240 and maximum G-score GM at position M. III is the

G-type hit identified by the two positions of maximum G-score. Threshold

values of GM corresponding to two significance levels a are indicated by

dashed lines
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size of the ‘codon alphabet’). We defined repetitive elements as se-

quence segments with H<0.4, based on the distribution of H among

genes of a large set of characterized coding regions (data not shown).

The association of hits with ORF structures was determined

looking for a potential start of translation codon upstream of the

50-end of a hit. If no canonical start codon (AUG or GUG) was pre-

sent, alternative (rare) start codons were searched for in the order of

preference UUG, CUG and AUU. ORFs were ranked by the score of

the associated hit, and each hit was also characterized by an E-value,

accounting for multiple testing (Supplementary Methods).

2.4 NPACT and the identification of genes missed from

annotations
We implemented the described procedures in the web-based bio-

informatics tool NPACT. NPACT compares ORFs identified by

three-base periodicity with annotated or predicted coding regions

provided by the user, identifying all ORFs not included in the set of

pre-annotated genes, and characterizing pre-annotated genes as con-

firmed by significant periodicities, non-supported (if no significant

hits are identified in frame within the annotated gene), contradicted

(if hits superimposed to the gene are associated with an ORF in an

alternative frame) or modified (if periodicities suggest a different

start of translation for the gene). Furthermore, NPACT provides a

convenient graphical representation, in which all ORFs identified in

annotated inter-genic regions (INTER) or superimposed to anno-

tated genes (SUPER) not supported by periodicities, are highlighted

in a separate track, and can be visually evaluated in comparison to

profiles of frame-specific nucleotide-usage (frame-analysis), to re-

gions of significant three-base periodicity (‘Hits’) and to the position

of pre-annotated genes. NPACT also generates nucleotide and trans-

lated amino acid sequences for newly identified ORFs, for subse-

quent analyses.

Several features distinguish NPACT representations from other

frame-analysis viewers and from a classical ‘genome-browser’ repre-

sentation: (i) NPACT generates a continuous representation of the

genome sequence and its features in a multi-line format enabling

canvas interactivity under the KonvaJS HTML5 Canvas JavaScript

framework. Compared with a traditional ‘genome-browser’ repre-

sentation, canvas interactivity allows users to seamlessly navigate

through an entire prokaryotic genome in a few seconds, facilitating

discovery and analysis of inconsistencies between annotated genes

and newly identified ORFs. (ii) Besides plotting by default phase-

specific profiles of GC content (S-profiles) as in frame analysis,

NPACT allows users to explore profiles of any alternative nucleo-

tide combination (‘N-profiles’). This feature can be useful for the

analysis of sequences of any GC content. (iii) Visualization of all H-

type and G-type hits provides information on the statistical signifi-

cance, coding-frame support, and boundaries of the contrasts visual-

ized by the compositional profiles, as well as on the presence of

underlying reading-frame structures. (iv) By plotting pre-annotated

genes with hits and profiles, inconsistencies between annotated

genes and sequence periodicities can be visually identified and eval-

uated. (v) Highlighting newly identified ORFs in a separate track

directs focus on three-base periodicities not explained by previously

identified genes and facilitates their visual evaluation in comparison

with hits, compositional profiles, and position relative to predicted

neighboring genes.

Measured on a MacPro Quad 2.4 GHz personal desktop com-

puter, genome sequences and annotations are processed and visual-

ized by NPACT at a rate of �0.2 Mbp/s, practically constant over

sequence lengths up to at least 90 Mbp.

3 Results

3.1 Power of the tests
We assessed the potential of coding regions of different length and

composition to generate significant periodicities over sets of func-

tionally characterized coding sequences (CDS) annotated in 1083

prokaryotic genomes from the NCBI Genome database. A subset of

2 452 743 CDS (here referred to as the ‘Characterized’ set) was cre-

ated excluding all sequences described as hypothetical (from NCBI

*.ffn files), which formed a second set of 1 094 230 ‘Hypothetical’

sequences (Table 1; Supplementary Table S5 for compositional de-

tails). Three-base periodicities were identified at two significance

levels (a¼10�2 and a¼10�3) in both sets (Table 1). Overall, hits of

the H-type or G-type were identified in �85% of the sequences in

the Characterized set, whereas hits of either type were found

in>90% of the sequences (84.5% at a¼10�3). In comparison, a sig-

nificantly lower fraction of hits were identified in the Hypothetical

set (72.0% at significant level a¼10�2, and 61.3% at a¼10�3).

Partitioning the Characterized and Hypothetical datasets into

classes of different length and GC-content (Supplementary Table

S5), we found as expected that the frequency of genes with signifi-

cant three-base periodicities increased with sequence length

(Fig. 3A). Compositional periodicities were identified in the vast ma-

jority (>99%) of Characterized genes with length �600 codons,

and in>90% of the sequences of length �250 codons at the signifi-

cance level a¼10�2. Significant periodicities were still observed in

the majority (60.6%) of the sequences in the length range 50–99

codons and in almost one-third (31.9%) of sequences shorter than

50 codons. Mirroring the overall result, we found a lower frequency

of hits among Hypothetical sequences than among those

Characterized (Fig. 3A), demonstrating that the lower frequency of

periodic ORFs in the Hypothetical set did not depend on the average

shorter length of hypothetical genes (Table 1).

The power of the tests was also significantly affected by the GC

content of the sequences (Fig. 3B). Significant hits (a¼10�2) were

identified in >98% of all characterized sequences of high GC con-

tent (GC�0.60). Among sequences with a GC content in the range

[0.40–0.45), corresponding to the least intense contrasts in frame-

specific GC content (Supplementary Fig. S1), significant hits were

found in �79% of the sequences. Consistently with the overall re-

sults, fewer significant hits were identified among hypothetical genes

within each GC-class, particularly among genes of low GC content.

Similar trends were identified for individual tests (Supplementary

Table S6) and using a higher threshold of significance

(Supplementary Table S7). The joint effect of length and GC content

on the power of the combined tests is represented in Figure 3C

Table 1. Three-base periodicities in sets of characterized and hypo-

thetical coding sequences

Sets Size Mean

GC%

Mean

Len/nt

%H %G %H[G %H\G

Ch 2 452 743 53.3 1 067 84.71 85.45 90.61 79.55

77.95 77.96 84.50 71.41

Hy 1 094 230 50.9 683 62.37 64.55 71.96 54.96

52.22 54.12 61.28 45.06

Tot 3 546 973 52.5 948 77.80 79.00 84.84 71.95

70.00 70.59 77.32 63.27

Sets: Characterized (Ch) and Hypothetical (Hy). Size: number of coding se-

quences in the set. %H: Percent of coding sequences with H-type hits. %G:

Percent of coding sequences with G-type hits. %H[G: Percent of coding se-

quences with hits of either type. %H\G: Percent of coding regions with both

types of hits.
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(a¼10�2, Characterized set), showing very high power for sequences

of all compositions of sufficient length (>0.90 for all classes of

length >400–450 codons). Among sequences of high (�60%) GC

content, power reached 1.00 and remained consistently above 0.90

even among sequences as short as 50–100 codons. Significant perio-

dicities were also observed in >60% of the sequences shorter than

50 codons and with GC content �70% (Supplementary Table S6

for similar relations for individual tests). A higher stringency in sig-

nificance level (a¼10�3) affected power mostly among short se-

quences (<100 codons) (Supplementary Fig. S5 and Supplementary

Table S7). These results reflected the high power of frame analysis

in its application to GC-rich sequences, for which the sensitivity of

our methods compared to, or even exceeded, that of probabilistic

approaches based on high-order Markov models (Supplementary

Table S8). It also showed that three-base periodicities can provide

useful information on the presence of coding regions also in se-

quences of lower GC content.

3.2 Newly identified ORFs with significant periodicity
We analyzed with NPACT the set of more than 1000 genomes used

for the sets of Characterized and Hypothetical annotated genes. We

identified in INTER regions 167 611 ORFs of significant periodicity,

corresponding to an average of 44.6 ORFs/Mbp (Supplementary

Table S9). Despite differences in power of the tests, inter-genic ORFs

with three-base periodicity were identified in sequences of all GC con-

tents, with frequencies ranging from 33 ORFs/Mbp in replicons of

40–45% GC content, to 60 ORFs/Mbp in those of 55–60% GC con-

tent (Supplementary Table S9). To seek further support to the coding

potential of these ORFs, we evaluated their evolutionary conservation

in sequence and in length (Supplementary Material), and we

compared the newly identified ORFs to collections of predicted genes

automatically generated by the four popular gene-prediction methods

Prodigal (Hyatt et al., 2010), Glimmer3.0 (Delcher et al., 2007),

GeneMarkHMM (Lukashin and Borodovsky, 1998) and

GeneMark2.5 (Borodovsky and McIninch, 1993), available at the

NCBI bacterial-genome website. About one-quarter of all newly iden-

tified ORFs were conserved across genera or phyla (Table 2), with no

clear trend across classes of GC content (Supplementary Table S9).

Surprisingly, we also found that almost half of all ‘inter-genic’ ORFs

were predicted by one or more of the gene predictors we tested,

among which were �90% of the conserved ORFs (Table 2 and

Supplementary Table S9). A significant finding was that the majority

of the ORFs predicted by at least one method were in fact predicted

by all, and more than two-thirds by at least three methods

(Supplementary Table S10), indicating that the exclusion of these

ORFs from the annotations did not depend on limitations in the ear-

lier gene predictors GeneMark2.5 and GeneMarkHMM.

Furthermore, conserved and predicted ORFs were relatively long

(693 nt on average, Supplementary Table S11), indicating that size

was not a factor in their exclusion.

We also identified, across replicons of any GC content, 157 182

ORFs (41.8 ORFs/Mbp) in SUPER regions (Supplementary Table

S12). In contrast to inter-genic ORFs, the coding potential of >90%

of these ORFs was neither supported by conservation nor by any

gene predictor (Supplementary Table S12). In combination with

their shorter length (160 nt on average, Supplementary Table S13),

lack of conservation and lack of support from gene predictors sug-

gest that the ‘gene-like’ periodicity of these ORFs was more likely

induced by compositional fluctuations in the superimposed gene.

Nevertheless, also among superimposed ORFs we identified 7424

longer ORFs (398 nt long on average) that were evolutionarily con-

served in sequence and in length. Of these conserved ORFs, �25%

were also identified by some or by all prediction methods

(Supplementary Tables S12 and S14).

3.3 The coding potential of Anaeromyxobacter

dehalogenans
We analyzed the GC-rich (�74.8% GC content) genomes of strains

2CP-1 (Accession Number NC_011891) and 2CP-C (NC_007760)

of the deltaproteobacterium Anaeromyxobacter dehalogenans using

the NPACT tool as part of an annotation pipeline, by comparing

collections of genes resulting from previous annotation efforts to

ORFs with significant three-base periodicity. Selected examples of

Fig. 3. Frequency of genes with H-type or G-type hits (p�10�2) in sets of

genes annotated in about 1000 published prokaryotic genome sequences.

(A) Frequency within the sets of functionally described genes

(‘Characterized’) and of ‘Hypothetical’ genes for different classes of sequence

length. (B) Frequency by GC content within the Characterized and

Hypothetical sets of genes. (C) Frequency within the Characterized set of

genes, partitioned by sequence length and GC content

Table 2. Conservation and prediction of ORFs newly identified in

1 000 genomes

Number of predictors Total

Pred
0 1 2 3 4

INTER N 84 165 11 016 6 052 5 190 6 364 28 622

F 2 492 1 115 1 418 2 082 8 791 13 406

C 3 778 1 902 2 307 4 435 26 504 35 148

Tot 90 435 14 033 9 777 11 707 41 659 77 176

SUPER N 140 243 3 664 835 522 527 5 548

F 3 506 182 84 95 100 461

C 5 448 369 238 249 1 120 1 976

Tot 149 197 4 215 1 157 866 1 747 7 985

Number of ORFs identified in INTER or SUPER regions that are not con-

served across genera (N), conserved fragments (F), or conserved (C), and are

predicted by 0 to 4 computational gene predictors. ‘Total Pred’ is the total

number of genes predicted by one or more predictors.
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newly identified ORFs as visualized by NPACT are shown for strain

2CP-C in Supplementary Figure S6. Complete graphical results (sig-

nificance level 0.01) for both strains are available as Supplementary

Figures S7 and S8, respectively. The NPACT graphical comparison

of S-profiles and annotated coding regions of the two A. dehalo-

genans genomes showed in the vast majority of cases a strong corres-

pondence of sharp contrasts in S-profiles with annotated genes. The

statistical significance of these contrasts and their association with

annotated genes were in most cases confirmed by the identification

of corresponding hits. However, NPACT also identified several

ORFs with significant compositional periodicity not corresponding

to any of the annotated coding regions (Table 3). Most of these

ORFs occupied ‘inter-genic’ regions separating annotated genes

(Supplementary Fig. S6A for examples).

In a few cases, NPACT identified compositional periodicities

consistent with coding regions superimposed in a different frame to

annotated genes (Supplementary Fig. S6B). Overall, considerably

more missed or mis-annotated genes could be identified in A.d. 2CP-

C than in A.d. 2CP-1. Among newly identified ORFs, the majority

(55%) were conserved between the two strains (Supplementary

Table S15), as determined by>30% similarity between the corres-

ponding proteins. In the majority of cases, we found homologs of

these newly identified ORFs among coding regions annotated in the

other strain (92.4% of newly identify ORFs from 2CP-C and 83.9%

of those from 2CP-1) whereas only 19 homologous-pairs were newly

identified in both genomes. Inclusion of the newly identified ORFs

resulted in similar number of genes encoded by the two genomes.

As in the analyses of 1000 genomes, we characterized each newly

identified ORF for conservation, among Anaeromyxobacter species/

strains, across species belonging to different genera of deltaproteobac-

teria, or across different phyla, and recorded if it was among genes

(identified by same stop-codon position) predicted by Prodigal,

Glimmer3.0, GeneMarkHMM, and GeneMark2.5. We also assigned

to each ORF a ‘Quality’ score based on visual examination of S-pro-

files (do S-profiles have the expected relations along the ORF?), good

correspondence between ORF and hit (does the hit cover most of the

ORF?), and positional relation with neighboring genes (does the ORF

fit within or between operons?). Results for all ORFs are reported

with available functional characterizations in Supplementary Tables

S16–S23, listed by strain and class of conservation.

Summary statistics on conservation of newly identified ORF

are reported in Table 4 in comparison to pre-annotated genes.

Most pre-annotated genes were conserved across genera (88.5%)

or phyla (83.1%), and virtually all were conserved among

Anaeromyxobacter species or strains. Among newly identified ORFs,

35.9% of those identified in 2CP-1 and 27.6% of those from 2CP-C

were conserved at least across genera and mostly across phyla (Table

4). Many of the conserved ORFs newly identified in one strain were

homologs of genes annotated in the second strain (48 ORFs newly

identified in 2CP-C and 25 in 2CP-1) and most were functionally

characterized (Supplementary Tables S16 and S17). Some were identi-

fied as encoding widely conserved protein families, such as, in 2CP-C,

the ribosomal protein L28 and the molecular chaperone DnaJ, and in

2CP-1 chemotaxis protein CheY. Furthermore, virtually all the newly

predicted ORFs conserved across genera found in 2CP-C, and the ma-

jority of those found in 2CP-1, were predicted by most or all gene-pre-

dictors. Eighty-three ORFs from 2CP-C (Supplementary Table S18)

and nine ORFs from 2CP-1 (Supplementary Table S19) were con-

served only in Anaeromyxobacter species/strains. In contrast to the

ORFs conserved across genera and phyla, the vast majority of these

poorly conserved ORFs matched non-characterized hypothetical

genes. However, in most cases these functionally uncharacterized

ORFs were also supported by most gene prediction methods. We did

not identify any conserved homologs in the NCBI nr database for 166

ORFs (Supplementary Tables S20 and S21), most of which were not

or poorly supported by gene-prediction methods. Finally, 11 newly

identified ORFs appeared to be gene fragments (Supplementary

Tables S22 and S23).

Virtually all ORFs conserved across genera and phyla, as well as

those conserved between Anaeromyxobacter species or strains,

showed best (***) or good (**) visual quality, and among these

most were confirmed by the majority of gene predictors (Fig. 4).

Table 3. Annotated genes and significant compositional periodici-

ties in two strains of Anaeromyxobacter dehalogenans

Features 2CP-1 2CP-C

Genome size 5 029 329 5 013 479

Annotated genes (CDS) 4 473 4 346

Total hits 6 235 6 114

Confirmed CDS 4 318 4 128

Contradicted CDS 10 37

New intergenic ORFs 125 209

New superimposed ORFs 6 34

CDS is coding regions annotated with RefSeq genome. ORFs are identified

by regions of three-base periodicity. Confirmed and Contradicted is in refer-

ence to identified regions of three-base periodicity. Inter-genic or

Superimposed is in reference to annotated CDS.

Table 4. ORF conservation across taxonomic units

Strain 2CP-1 2CP-C

Conservation # CDS (%) # ORF (%) # CDS (%) # ORF (%)

Phyla 3 667 (82.0) 39 (29.8) 3 631 (83.5) 45 (18.5)

Genera 243 (5.4) 3 (2.3) 224 (5.2) 17 (7.0)

Anaeromyxo. 560 (12.5) 9 (6.9) 491 (11.3) 83 (34.2)

Total cons. 4 470 (99.9) 51 (38.9) 4 346 (100.0) 145 (59.7)

Non-cons. 3 (0.1) 80 (61.1) 0 (0.0) 98 (40.3)

Total 4 473 131 4 346 243

CDS is coding regions annotated in the genome. ORF includes potential

coding regions identified by three-base periodicity and not included in pub-

lished genome annotations. Numbers (percentages) refer to queries conserved

only up to the indicated taxonomic level. For example, ‘Genera’ corresponds

to the number (percentage) of queries with homologs identified across differ-

ent genera of deltaproteobacteria (phylum) but not in other phyla (E-

value< 1.0E-6).
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Fig. 4. Conservation of newly identified ORFs of four levels of ‘quality’ deter-

mined based on visual analysis of S-profiles, hits, and of ORF positional rela-

tion with neighboring genes (best: ***; good: **; possible: *; dubious: -).

ORFs are characterized by the ‘Number of predictors’ (0 to 4) supporting their

coding potential
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These results suggested that visual assessments of quality based on

compositional contrast and position are reliable indicators of the

coding capacity of an ORF, as supported by conservation and/or

computational prediction, and thus of the level of confidence in the

prediction. Furthermore, positional and compositional quality as

well as gene-prediction, mutually supported many potential genes

that could otherwise be excluded based on their lack of or limited

conservation (Fig. 4 and Supplementary Tables S18–S21).

4 Conclusions

Accuracy in genome annotation depends on successful integration of

the information provided by computational gene-prediction meth-

ods, by pre-existing annotations of closely related genomes, by gene

conservation, and by evidence of functionality and expression

(Koonin and Galperin, 2003; Madupu et al., 2010; Pati et al.,

2010). Given the inherent uncertainty in computational gene predic-

tion and in identification of homology, as well as the complexity of

whole-genome annotation, it is perhaps not surprising that studies

on conservation and functional characterization of genomic ORFs

(Warren et al., 2010), or of sets of genes automatically predicted by

Glimmer3.0 (Wood et al., 2012) showed evidence of several con-

served genes missing from genome annotations. We showed how

genes missed in prokaryotic genome annotations can be detected by

quantitative and visual frame analysis using intrinsic information

from three-base periodicity. Extending frame analysis from phase-

specificity in GC content to phase-specificity in any nucleotide type,

our procedures are applicable to sequences of variable composition.

Although NPACT is most effective on sequences of high GC content

(55% or higher), we showed that three-base periodicities are useful

to identify conserved coding regions missed by the annotations also

in genomes of lower GC content. Furthermore, because our method

only requires a few base pairs to determine the local composition of

the sequence, it can be used to identify potential coding regions in

sequences too short or compositionally too heterogeneous to derive

detailed sequence-specific gene models. These features make

NPACT a useful tool for the analysis of collections of DNA or

mRNA sequence fragments, such as those that can be obtained from

metagenomic sequencing projects.

We were surprised to discover that many three-periodic ORFs

not included in annotations were also predicted by most or all popu-

lar gene prediction methods, indicating that the slightly lower sensi-

tivity of the methods available and commonly used by the earliest

annotators—GeneMark2.5, published in 1993—does not explain

the exclusion of these ORFs from genome annotations. Lack of con-

servation or small size of an ORF could be criteria for excluding pre-

dicted genes as likely false positives. However, among the excluded

genes predicted by most methods, many were also relatively long,

were conserved in sequence and in length across distantly related

genomes, and were functionally characterized. These findings sug-

gest that the sensitivity and specificity of gene predictors is not the

only factor, and maybe not the dominant factor, limiting accuracy

of prokaryotic gene annotation. Bioinformatics tools that facilitate

comparison and visualization of information for the evaluation of

predicted genes across genome sequences, may have a greater impact

on the quality of gene annotations than could be achieved from im-

provements in computational gene-prediction algorithms. Along

these lines, we believe the representation of sequence features pro-

vided by NPACT can significantly contribute to the amelioration of

the annotations of high GC content (and other) genomes facilitating

the identification of true novel or predicted genes.
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