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To overcome the shortcomings of inaccurate textural direction representation and high-computational complexity of Local Binary
Patterns (LBPs), we propose a novel feature descriptor named as Local Dominant Directional Symmetrical Coding Patterns
(LDDSCPs). Inspired by the directional sensitivity of human visual system, we partition eight convolution masks into two
symmetrical groups according to their directions and adopt these two groups to compute the convolution values of each pixel.
(en, we encode the dominant direction information of facial expression texture by comparing each pixel’s convolution values
with the average strength of its belonging group and obtain LDDSCP-1 and LDDSCP-2 codes, respectively. At last, in view of the
symmetry of two groups of direction masks, we stack these corresponding histograms of LDDSCP-1 and LDDSCP-2 codes into
the ultimate LDDSCP feature vector which has effects on the more precise facial feature description and the lower computational
complexity. Experimental results on the JAFFE and Cohn-Kanade databases demonstrate that the proposed LDDSCP feature
descriptor compared with LBP, Gabor, and other traditional operators achieves superior performance in recognition rate and
computational complexity. Furthermore, it is also no less inferior to some state-of-the-art local descriptors like as LDP, LDNP, es-
LBP, and GDP.

1. Introduction

Facial expressions are one of the most important human body
language constituents, which can accurately express personal
emotions and mental and psychological conditions. In recent
years, computer analysis has been used to better understand
human facial expressions and has presented an important
prospect of application in human-machine interaction, which
has drawn a lot of attention [1–4]. For example, video cameras
have become an integral part of many consumer devices and
can be used for capturing facial images for recognizing people
and their emotions. Generally, facial expression feature ex-
traction and classification are the two most critical steps for
accurate facial expression recognition (FER) system. Con-
sidering that the description precision of different expression
features will directly affect the performance of classification,
in this paper, we focus on finding a fast and efficient facial
expression feature descriptor.

In many facial feature extraction methods, local feature
descriptors have strong robustness to the influence of illu-
mination, noise, and other interference. Local Binary Pat-
terns (LBPs) [5] and Gabor transformation [6–8] are two
most representative methods. Gabor transformation could
extract multiscale, multidirectional texture information of
images, but its feature size is prohibitively large which results
in higher computational complexity. (erefore, it would be
desirable to adopt a suitable feature selection method (or
dimensionality reduction method) to reduce feature size but
still maintain superior recognition performance. Compared
with Gabor transformation, LBP descriptor has the ad-
vantages of simple theory and easy implementation which
has been extensively used in face classification, image re-
trieval, and object tracking [9–12]. However, the traditional
LBP algorithm only encodes the gray-value differences be-
tween each central pixel and its eight neighbourhood pixels
and could not precisely represent the structural and
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directional information of neighbourhood pixels which is
extremely significant for facial feature description. Re-
searchers have proposed some improved LBP-based algo-
rithm which achieved good performance, but they are
inevitably at the cost of expensively computational com-
plexity [13–16].

In view of this, we propose a novel local feature de-
scriptor named as Local Dominant Directional Symmetrical
Coding Patterns (LDDSCPs) which not only possesses su-
perior performance but also has lower computational cost at
the same time. (1) Inspired by human visual characteristics,
namely, beingmore sensitive to directional information than
contrast information and colour information of objects,
LDDSCP encodes the dominant direction information of
facial expression textures based on two groups of sym-
metrical direction masks as shown in Figure 1. (e coding
procedure of LDDSCP descriptor is illustrated in Figure 2. In
detail, we firstly adopt each direction mask to convolve facial
expression images. (en, the obtained convolution value
based on direction mask is compared to the average strength
of its belonging group for getting two groups of binary codes
denoted as LDDSCP-1 code and LDDSCP-2 code, re-
spectively. Since the weight distribution in each direction
mask successively shows different direction information, the
strength difference between four convolution values in each
group can characterize the intensity variations of eight
neighbourhood pixels in the corresponding directions.
(erefore, LDDSCP encoder canmore precisely characterize
the prominent direction and structure of facial expression
textures hidden in the deformation of eyes, mouth, and other
facial areas. (2) Due to the symmetry of two groups of di-
rection masks, the obtained codes of LDDSCP-1, and
LDDSCP-2 present the complementary information each
other. (e final LDDSCP feature vector is formed by
stacking the histograms of LDDSCP-1 codes and LDDSCP-2
codes, which not only compensates for the loss of direction
information in the LDDSCP-1 codes or LDDSCP-2 codes,
but also reduces the feature dimension and computational
complexity. Experimental results on the JAFFE and CK
databases show that the proposed LDDSCP descriptor
consistently achieves superior performance compared with
some traditional descriptors like as LBP [17], CS-LBP [18],
Gabor [19], and HOG [20] and outperforms four state-of-
the-art descriptors, e.g., LDP [13], LDNP [14], es-LBP [15],
and GDP [21], from two aspects of recognition accuracy and
running time.

(e remainder of this paper is organized as follows. In
Section 2, we introduce the coding scheme of LDDSCP and
analyse its robustness. In Section 3, we present the imple-
mentation steps of LDDSCP feature descriptor. Section 4
provides and discusses the experimental results on the
JAFFE database and CK database, and Section 5 is the
conclusion of our paper.

2. Local Dominant Directional Symmetrical
Coding Patterns

2.1. Difference with PreviousWorks. Ojala et al. [5, 22] firstly
proposed Local Binary Pattern and its uniform pattern

which have been widely used in local feature extraction for
face image analysis in recent years. After researching and
analysing, we found that it has two crucial shortcomings.
One is that LBP descriptor only encodes the gray-value
differences between each central pixel and its neighbour-
hood pixels into an 8-bit binary code, which neglects most
intensity variations among neighbourhood pixels and is
sensitive to the influence of environmental illumination,
random noise, and other inference. Another is that the
feature size of LBP is in proportion to bit numbers of binary
code and block numbers of image division, which causes the
expensive computational cost. In view of this, many im-
provements based on LBP feature descriptors were put
forward by researchers. Huang et al. [23, 24] proposed
extended LBP to encode the gray-value differences between
the central pixel and its neighbors into a 4-bit binary code, of
which the first bit presented the sign of gray-value difference
and the rest three bits encoded the absolute value of gray-
value difference. Local Ternary Pattern (LTP) [25] was
proposed by encoding the relationships between gray-value
differences and their threshold value, which improves the
robustness of noise and illumination. Expression-specific
LBP (es-LBP) [15] was presented by emphasizing the partial
information of human faces on particular fiducial points.

Even though these feature descriptors make some im-
provements aiming at the shortcomings of LBP algorithm,
their basic coding schemes are monotonous, namely, only
encoding the gray-value differences between each central
pixel and its neighbors without considering the intensity
variations among neighbourhood pixels. In fact, the in-
tensity variations imply more abundant directional in-
formation of textural structure that is more benefit to the
representation of facial expression features. Hence, some
notable feature descriptors [13, 14, 16, 26–32] were proposed
subsequently. Jabid et al. [13, 14, 29] proposed LDP, LDPv,
and LDNP descriptors, respectively, for facial expression
recognition by encoding the directional information of facial
textures. Lou et al. [30] provided Local Line Directional
Patterns (LLDPs) in which the modified finite radon
transform (MFRAT) and the real part of Gabor filters are
exploited simultaneously. Yuan [31] presented a high-order
Derivation Local Binary Pattern (DLBP) by encoding the
sequential binary values of high-order directional de-
rivatives. Furthermore, for improving the discriminative
capability, circular shift subuniform patterns and scale space
theory are applied in DLBP for obtaining scale and rotation
invariance. Mu et al. [32] proposed a shift and gray scale
invariant feature descriptor by using shiftable complex di-
rectional filter bank (CDFB) transform and uniform LBP
encoder. More recently, Patterns of Oriented Edge Mag-
nitudes (POEMs) [26], Dual-Cross Patterns (DCPs) [16],
three-patch LBP [27], and four-patch LBP [28] have also
been presented for enhancing the precision of feature
representation.

In summary, these above descriptors make improve-
ments on the traditional coding scheme of LBP and have
superior performance on facial expression recognition, face
recognition, texture classification, and palmprint identifi-
cation. However, compared with our proposed method,
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there are still some differences. We make the following
observations:

(1) Although LDP [13], LDPv [29], and LDNP [14] are
somewhat similar to our proposed method, com-
pared with them, the proposed LDDSCP descriptor
has two different contributions. One is that LDDSCP
encoder has the characteristics of symmetry and
direction which are in accordance with human visual
characteristics. Another is that LDDSCP descriptor
stacks the LDDSCP-1 histogram and the LDDSCP-2
histogram which not only increases the performance
but also reduces the computational cost.

(2) As depicted in References [30, 31], LLDP [30] en-
codes the structure of a local neighborhood by
calculating the sum of gray values of pixels in a line
direction, and DLBP [31] encodes the high-order
derivative in different directions. Compared with our
proposed LDDSCP encoder, they only consider the
gray-value differences between two pixels or the
intensity sum of a series of pixels and ignore the
overall gray-value distribution among neighbour-
hood pixels. Hence, compared to our proposed

LDDSCP descriptor, LLDP and DLBP are more
sensitive to the influence of environmental illumi-
nation and noise inference.

(3) Analysing the procedures of LLDP [30], DLBP [31],
and the method [32] presented by Mu et al., we find
that thesemethods all exploit assistant ways to further
improve the discriminative performance. For ex-
ample, LLDP [30] adopted the modified finite radon
transform (MFRAT) and the real part of Gabor filters
simultaneously for getting the precise line-geometry
features. DLBP [31] introduced circular shift sub-
uniform patterns and scale space theory for obtaining
scale and rotation invariance. Mu et al. used shiftable
complex directional filter bank (CDFB) transform to
capture the energy shiftable information. (us, it can
be seen that the additional computational expense of
these descriptors is exchanged for high performance.
(is strategy has not been adopted in our proposed
method.

(4) Although POEM [26], DCP [16], three-patch LBP
[27], and four-patch LBP [28] still have superior
performance without adopting specific filters to
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Figure 1: Two groups of direction masks. (a) (e first group. (b) (e second group.
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Figure 2: (e coding sketch of LDDSCP encoder. Two groups of symmetrical direction masks are convoluted with the original expression
image, and the corresponding convolution values of each group are presented in the middle of sketch. (en, we encode the dominant
direction information by comparing each convolution value with the average strength of its belonging group and obtain the LDDSCP-1 code
and LDDSCP-2 code subsequently (shown in the right).

Computational Intelligence and Neuroscience 3



process images, their coding schemes are tedious
and complicated, which inevitably results in higher
computational complexity and restricts the prac-
tical applications. In comparison with them,
LDDSCP descriptor has concise theory and easy
implementation.

2.2. Implementation Ideas of LDDSCP Feature Descriptor.
To avoid this problem, in this paper, we present LDDSCP
feature descriptor which not only precisely capture facial
expression features but also greatly reduces computa-
tional costs. (e pivotal implementation ideas are as
follows:

(1) In view of the sensitive directions of human eyes only
ranging between 0° and 180∘ [33, 34], we divide eight
convolution masks into two symmetrical groups
according to their directions. Each group includes
four masks as shown in Figure 1, and the direction of
each mask is defined in the light of its weight dis-
tributions. It is obvious that the weight distributions
of each mask in the first group successively appears
in the directions of 0∘, 45∘, 90∘, and 135∘ and the
second group’s weight distributions are manifested
in the directions of 180∘, 225∘, 270∘, and 315∘ in
sequence which are symmetrical with the directions
of the corresponding masks in the first group. Due to
the range of the directions in each group being not
more than 180∘, the proposed grouping idea is a
feasible mechanism which conforms to human visual
characteristics.

(2) Considering that human visual system is more
sensitive to directional information than contrast
information or tinctorial information, we calculate
the different convolution values of each pixel based
on two groups of symmetrical direction masks and
compare each convolution value with the average
strength of its belonging group to encode the
dominant direction information of facial expression
textures. (e elaborate analysis process is illustrated
in Figure 3. (ere are two different kinds of texture
examples which could concisely depict the mouth
deformation in anger images and happiness images,
and the neighbor’s gray-values of the sampled pixel
(marked by orange box in two expression textures)
are also presented (the neighbors of anger texture are
located in the left-top, and the neighbors of happi-
ness texture are in the left-bottom). It is observed
that the structures of eight neighbors in two kinds of
expression textures are all composed of black part
(lower gray-values) and hoar part (higher gray-
values), but the dominant directions revealed by
texture structures are entirely different. In details, the
structure of anger texture is appeared in the di-
rections of 45∘, 180∘, 225∘, and 270∘, while the
structure of happiness texture is manifested in the
directions of 90∘, 135∘, 180∘, and 315∘, which are not
completely differentiated by LBP encoder (these two

texture examples are all coded as “11111111”) but
can be precisely represented by the LDDSCP en-
coder. (at is the binary codes of LDDSCP-1 and
LDDSCP-2 in the anger texture are “0010” and
“0111”, respectively, while the binary codes of
LDDSCP-1 and LDDSCP-2 in the happiness texture
are “1100” and “1001”, of which “1” (red colour) of
LDDSCP-1 code presents the dominant directions of
textures at the range of 0∘ to 180∘, and similarly, “1”
(blue colour) of LDDSCP-2 code denotes the
dominant directions of textures at the range of 180∘
to 360∘. Apparently as shown in Figure 3, the red “1”
of LDDSCP-1 code is consistent with the directions
of red arrows, and the blue “1” of LDDSCP-2 code is
also in line with the directions of blue arrows.
(erefore, LDDSCP encoder can more accurately
characterize the difference of dominant direction
distributions between two different expression tex-
tures even though composed of the same structure
composition, which is in accordance with human
visual characteristics.

(3) Due to the symmetry of direction masks of two
groups, the resulting convolution images of two
direction masks with a 180∘ difference show the same
textural structures but are depicted by two opposite
gray-values as shown in Figure 4. Hence, the ex-
pression information implied in the first group of
convolution images is similar to the second group,
and so the statistical histograms of LDDSCP-1 codes
and LDDSCP-2 codes can be stacked into the final
LDDSCP feature vector, which not only contains
abundant facial expression information but also
reduces the computational complexity.

In summary, even though the implementation ideas of
LDDSCP descriptor are brief and uncomplicated,
LDDSCP descriptor is provided with three outstanding
advantages: (1) LDDSCP descriptor adopts the in-
formation of entire neighbourhood pixels, instead of the
difference values between the central pixel and its
neighbors for coding; (2) the coding scheme is on the basis
of the dominant direction information of each group,
instead of the intensity values of each pixel, which has
more robustness on the intensity change of facial ex-
pression images; and (3) the strategy using stacking his-
tograms is an efficient fusion method of feature vector
which not only retains a lower feature dimension but also
possesses higher discriminative power.

2.3. Coding Scheme. Considering that Kirsch masks can
more accurately detect different directional texture in-
formation than other convolution masks, we apply Kirsch
masks into LDDSCP coding scheme. As depicted in previous
sections, we encode the dominant direction information of
facial expression texture in each group and obtain two
groups of 4-bit binary codes named as LDDSCP-1 code and
LDDSCP-2 code, respectively. (ese two binary codes in
each pixel are represented as
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Figure 3: Comparison of LDDSCP-1 code and LDDSCP-2 code in two different expression textures.
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Figure 4: Convolution images of an example image based on two groups of symmetrical direction masks. (a)(e convolution images of the
first group and (b) the convolution images of the second group.
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where S(x) �
1, x≥ 0,

0, x< 0,
􏼨 andMji is the convolution value of

four directional masks (i � 1, 2, 3, 4) of two groups
(j � 1, 2), and averagej is the mean value of four convo-
lution values of the corresponding group. We encode the
difference between Mji and averagej to obtain a 4-bit binary
code by LDDSCP-1 encoder or LDDSCP-2 encoder, where
“1” indicates the prominent texture deformation of facial
expression in some directions and conversely “0” represents
the indistinctive texture deformation in the remaining di-
rections. (erefore, each of the 4-bit binary code defines one
kind of local texture pattern except “0000” and “1111”,
which can be more insensitive to illumination, noise, and
other inference. Because “0000” and “1111” all have no
actual meaning on describing the dominant direction in-
formation of texture structures, the total number of
LDDSCP-1 codes or LDDSCP-2 codes is ultimately equal to
24− 2�14. Hence, the number of histogram bins per block
of LDDSCP is only 14 by stacking strategy which is reduced
by 94.53% than the LBP descriptor.

2.4. Robustness of LDDSCP Encoder. As introduced in
Section 2.2, we have demonstrated that LDDSCP encoder
can precisely characterize the textural direction information
even if represented by the same structure composition. In
this section, we further analyse the robustness of LDDSCP
encoder compared with LBP encoder.

Since LBP only encodes the difference value between the
central pixel and neighbourhood pixels in the light of its
theory, any change of logic relationship between these pixels
results in a different LBP code. For instance, as shown in
Figure 5, the binary code of LBP in the original image patch
is “00011100” (as shown in Figure 5(a)); however, it is
changed to “00010100” on account of noise inference (as
shown in Figure 5(b)). In detail, the 4th bit of LBP code is
only changed from “1” to “0” due to the reversed logic
relationship between the central pixel and the fourth
neighbourhood pixel circled by red round in Figure 5, while
the remaining bits of LBP code are all still unchanged.
Nevertheless, LDDSCP encoder provides the same coding
patterns even if there is some presence of noise inference.
(us, it can be seen that the noise tolerance of LDDSCP
encoder is greater than that of LBP encoder under the
condition that the added noise is not enough to affect the
expression textures.

3. LDDSCP Feature Descriptor

After encoding the input image by the LDDSCP encoder,
two coded images are produced. In the case of classify, the
coded image cannot be directly used as a feature vector. (is
is owing to that the code value of each pixel is closely relevant
to its position in the image, and then the classification results
based on the difference of code values will lead to greater
errors on account of the inaccurate position offset. Fur-
thermore, the feature vector composed by the coded images
has a prohibitively large size which may unnecessarily in-
crease the complexity of training and classification tasks.
Hence, in this section, we still adopt the statistical histogram
of LDDSCP descriptor as a feature vector to present the
facial expression image. Implementation steps are detailed as
follows:

(1) (e original input image is partitioned into N∗N

nonoverlapping blocks, and the size of each block is
m × n pixels.

(2) We, respectively, compute the decimal value of
LDDSCP-1 code and LDDSCP-2 code by (1) and (2)
in each pixel of each block.

(3) Two histograms of LDDSCP-1 code and LDDSCP-2
code are statistically obtained for each block:

H1(i) � 􏽘
m

r�1
􏽘

n

c�1
f(LDDSCP− 1(r, c), i),

H2(i) � 􏽘
m

r�1
􏽘

n

c�1
f(LDDSCP− 2(r, c), i),

(3)

where f(x, y) �
1, x � y,

0, x≠y,
􏼨 and LDDSCP− 1(r, c)

or LDDSCP− 2(r, c) are the decimal values of pixel
(r, c), and (i(i � 1, 2, . . . , 2k − 2)) is the traversed
decimal values produced by LDDSCP-1 encoder or
LDDSCP-2 encoder which has been detailed in the
Section 2.3.

(4) Owing to that each block has two histograms,
namely, H1 and H2, we, respectively, concatenate all
H1 histograms of blocks and all H2 histograms of
blocks in sequence to yield two histograms of image,
namely, HLDDSCP−1 and HLDDSCP−2, which are rep-
resented as

HLDDSCP−1 � 􏽙
N∗N

k�1
H

k
1,

HLDDSCP−2 � 􏽙
N∗N

k�1
H

k
2,

(4)

where 􏽑 is the concatenation operation and N × N

is the number of blocks of the divided images. At last
we stack the HLDDSCP−1 histogram and HLDDSCP−2
histogram to obtain the resultant LDDSCP histo-
gram of image as the final feature vector. (e
schematic diagram of the proposed LDDSCP feature
descriptor is shown in Figure 6.
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4. Experiments

In the section, the proposed LDDSCP descriptor is evaluated
and experiments are conducted on twowell-known databases:
JAFFE and Cohn-Kanade databases. (e JAFFE database is
provided by the ATR Media Information Science Laboratory
in Japan, which contains 213 facial expression images of 10
Japanese females. (ese images are divided into 6 classes in
the light of expression, namely, anger, disgust, fear, happiness,
sadness, and surprise, and each subject per expression has
three or more facial expression images. We chose 3 images of
each expression per subject for getting a new subset totally
including 180 expression images.

(e Cohn-Kanade database is established by the Robotics
Institute of Carnegie Mellon University, which consists of
nearly 593 expression image sequences of 123 university
students aged from 18 to 30 years old. Each image sequence of
each subject is changed from the neutral expression to one of
six target prototypic expressions. (e size of images is
640× 480 pixels or 640× 690 pixels. We chose the five most
representative image frames taken from 333 sequences, which
resulted in 1665 expression images.

In our experiments, we firstly adopt a cropping template
which is shown in Figure 7 to obtain the salient expression
region which is resized to 128×128 pixels. (e example
images of each prototypic expression on two databases are
shown in Figure 8. (en, we exploit KNN classifier and the
“leave-one-sample-out” strategy (hereafter denoted as “L-O-
Sam-O”) [7] to identify 6 classes of facial expression. (e
L-O-Sam-O strategy is an effective sample selection method.
In each cross validation, one image is selected as the test
sample, and the residual N− 1 images are selected as the
training samples (N is the number of total samples, N� 180

for JAFFE database, and N� 1665 for CK database). N cross
validations are carried out by traversing each sample to
guarantee the precision of expression classification.

Four experiments are conducted. Firstly, we analyse the
selection of optimal parameters aiming to the proposed
LDDSCP descriptor. Secondly, two strategies of building
histograms of LDDSCP descriptor are evaluated on both the
computational complexity and the quality of the classifi-
cation results. (irdly, the performance of LDDSCP de-
scriptor is compared with four traditional feature descriptors
and three state-of-the-art feature descriptors. Finally, the
robustness of LDDSCP is presented for recognizing two
kinds of added noisy databases.

4.1. Optimal Parameters Selection of the LDDSCP Descriptor.
Since the number of blocks into which the image is divided is
the most important parameter that profoundly affects the
accuracy of classification, we conduct four different cases:
2× 2, 4× 4, 8× 8, and 16×16 blocks on the JAFFE database.
(e corresponding experimental results are shown in Ta-
ble 1. It can be seen that the case of 8× 8 blocks presents the
optimum performance. At the case of 2× 2 blocks, the
LDDSCP descriptor could not extract abundant expression
features resulting in lower recognition rate (73.89%). (e
recognition rate is increased with the number of blocks till
the case of 8× 8 blocks. (at is because the greater the
number of blocks is, the more valuable information the
feature vector incorporates. However, after a certain point,
too many blocks ought to result in producing unnecessarily
redundant local information which can degrade the per-
formance. Consequently, in the following experiments, we
will consistently employ the optimal block parameter (8× 8
blocks) on the performance evaluation.
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Figure 6: Schematic diagram of the proposed LDDSCP feature descriptor.
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4.2. Evaluation of Two Strategies of Building Histogram of
theLDDSCPDescriptor. As introduced before, we achieved
two statistical histograms of LDDSCP-1 and LDDSCP-2,
respectively, and employed two strategies to get the final
histogram of the LDDSCP descriptor. One is that con-
catenating the LDDSCP-1 histogram and the LDDSCP-2
histogram; another is that stacking the above two histo-
grams. (e experimental results of two strategies of
building histogram of the LDDSCP descriptor are re-
ported in Table 2. From it, we can see that the strategy of

stacking histograms causes two advantages. (1) (e
strategy of stacking histograms can reduce the feature
dimensions per block, and the computational cost
is nearly half than the strategy of concatenating histo-
grams, and (2) the strategy of stacking histograms com-
pensates for the missed information of LDDSCP-1
histogram or LDDSCP-2 histogram in each other, and
then the final histogram of LDDSCP descriptor contains

Anger Disgust Fear Happiness Sadness Surprise

(a)

Anger Disgust Fear Happiness Sadness Surprise

(b)

Figure 8: Example images of each prototypic expression from (a) JAFFE database and (b) CK database.

D 0.5D

1.5D

DD

Figure 7: Cropping template of facial expression image.

Table 1: Recognition performance for different number of blocks
(%).

Block numbers 2× 2 4× 4 8× 8 16×16
Recognition rate 73.89 87.78 94.44 89.44

Table 2: Evaluation of two strategies of building histogram of the
LDDSCP descriptor.

Strategy of building
histogram

Feature dimensions
per block

Recognition
rate (%)

Concatenating
histograms 28 92.78

Stacking histograms 14 94.44
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abundant expression information which results in a
higher recognition rate (94.44%) with a margin of 1.66%
by comparing with the result of concatenating strategy.
(us, we adopt the strategy of stacking histograms in the
following experiments on account of its aforementioned
merits.

4.3. Performance Evaluation of the LDDSCP Descriptor.
To better illustrate the advantages of LDDSCP, we compare
it with four traditional descriptors, i.e., LBP [17], CS-LBP
[18], Gabor [19], and HOG [20], as well as four state-of-the-
art descriptors, i.e., LDP [13], LDNP [14], es-LBP [15], and
GDP [21]. (e default parameters of these above de-
scriptors are set up by referring to their corresponding
references and the optimum parameters of LDDSCP de-
scriptor are selected according to the discussion in Section
4.1. (erefore, we list the essential parameters of each
descriptor in Table 3.

In light of the above parameter settings, we conduct
experiments on the JAFFE database and CK database, and
the corresponding experimental results are shown in
Tables 4–6, respectively. We make the following
observations:

(1) As depicted in Table 4, the feature size of LDDSCP is
smaller than other descriptors, but its feature ex-
traction time ranks third which is slightly longer than
that of HOG and CS-LBP. (is is because that the
process of computing convolution values is more
complicated than that of computing gradient values
or difference values, it makes the increment of
computational cost of LDDSCP feature extraction.
However, in the step of classification, LDDSCP de-
scriptor needs the least running time by reason of its
smallest feature size. Consequently, LDDSCP de-
scriptor possesses the least computation cost by
combining feature extraction time with classification
time.

where di is the distance between one sample and the center
sample of each expression, and s is the number of
expressions.

(2) Since the merit of LDDSCP descriptor is benefitted
from its coding scheme, in this section, we only
compare the performance of these feature de-
scriptors which adopt the coding strategy (or fre-
quency transformation) to obtain the final feature
vectors without conjunction with additional
methods for improving performance, such as fil-
tering images, reducing dimensions, dividing fiducial
regions, etc. (e experimental results are more
comparable and more persuasive as shown in Ta-
ble 5. As it can be seen, excepted for Gabor descriptor
which is based on frequency transformation, the
remaining descriptors all lose to LDDSCP. In detail,
LDDSP outperforms HOG by 3.88% on the JAFFE
database and surpasses LDP by 0.36% on the CK
database, respectively. Although the recognition rate
of Gabor is slightly higher than that of LDDSCP on

the JAFFE database, the computational cost of Gabor
is far more than that of LDDSCP as shown in Table 4.
(ereby, LDDSCP has the most superior perfor-
mance by comprehensively considering recognition
accuracy and computation time.

(3) For demonstrating the effectiveness of our coding
scheme in this paper, we employ any group of
direction masks to encode the dominant direction
information of expression texture, and the obtained
LDDSCP-1 feature vector and LDDSCP-2 feature
vector are used for facial expression recognition,
respectively. (e experimental results are shown in
Table 6. From it, we can see that LDDSCP-1 ranks
second on the JAFFE database and LDDSCP-2
ranks second on the CK database. Furthermore,
LDDSCP-1 and LDDSCP-2 are all superior to other
feature descriptors, such as LBP, CS-LBP, LDP, etc.
(us, it proves that the scheme of encoding the
dominant direction of facial textures is more
conductive to capturing the rich and precise

Table 3: Essential parameter settings for each descriptor.

Descriptor Parameters Value

LBP [17] Block size 16∗ 16 pixels
Bit numbers 8

CS-LBP [18] Block size 16∗ 16 pixels
Bit numbers 4

Gabor [19]
Direction numbers 8
Scale numbers 5
Sample interval 4

HOG [20] Cell size 8∗ 8 pixels
Block size 2∗ 2 cells

LDP [13]
Block size 16∗ 16 pixels
Bit numbers 8

Prominent direction numbers 3

LDNP [14] Block size 16∗ 16 pixels
Bit numbers 6

es-LBP [15] Histogram categories 3
Bin numbers per histogram 708/354/472

GDP [21] Block size 16∗ 16 pixels
Bit numbers 8

LDDSCP Block size 16∗ 16 pixels
Bit numbers 4

Table 4: (e feature size and feature extraction time of different
descriptors on the JAFFE database.

Descriptor Feature size Feature extraction time (s)
LBP [17] 16384 92.56
CS-LBP [18] 1024 6.18
Gabor [19] 40960 1332.15
HOG [20] 2304 2.35
LDP [13] 16384 86.33
LDNP [14] 4096 46.75
es-LBP [15] 1534 206.88
GDP [21] 16384 234.21
LDDSCP 896 7.84
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expression information compared with other fea-
ture descriptors.

(4) As shown in Table 5, the recognition rates of feature
descriptors on JAFFE database are all relatively
lower than those on CK database. In order to ex-
plain this phenomenon, we randomly select one

fear image from the JAFFE database and CK da-
tabase, respectively, and calculate the expression
components:

Ra �
1/ di( 􏼁

2

􏽐
s
i�11/ di( 􏼁

2. (5)

Table 5: Facial expression recognition rates of different descriptors on two databases.

LBP CS-LBP Gabor HOG LDP LDNP es-LBP GDP LDDSCP
JAFFE 86.67 88.89 95.56 90.56 89.44 88.33 87.22 83.89 94.44
CK 96.82 97.42 96.78 96.04 97.60 97.30 96.94 96.10 97.96

Table 6: Facial expression recognition rates of LDDSCP-1, LDDSCP-2, and LDDSCP on two databases.

LDDSCP-1 LDDSCP-2 LDDSCP
JAFFE 93.33 92.22 94.44
CK 97.78 97.84 97.96

Anger Disgust Fear Happiness Sadness Surprise
0
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Figure 9: Expression components of the examples on different databases. (a) JAFFE database and (b) CK database.
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(e expression component values of two images are
illustrated in Figure 9, respectively. In detail, six expression
component values of one fear image on the JAFFE database
are separately 14.51%, 17.58%, 22.95%, 13%, 17.44%, and
14.52%, while the corresponding values of one fear image on
the CK database are 10.38%, 13.37%, 40.51%, 11.04%, 12.15%
and 12.55%, respectively. As it can be seen, these six
component values on the JAFFE database are approximate
in which the fear component value is only slightly higher
than other expression component values. Conversely, the
component values on the CK database are discrepant where
the fear component value is significantly higher than others

especially. (us, we draw a conclusion that the false iden-
tification possibilities of images labelled as the same ex-
pression are affected by the distribution of expression
components, which has been verified in Table 5.

4.4. Robustness Evaluation of the LDDSCP Descriptor.
Finally, we evaluate the noise-robustness of the LDDSCP
descriptor by, respectively, adding two categories of noise on
JAFFE database and using the KNN classifier. (e SNR of
additive white Gaussian noise (AWGN) is adjusted from
12 dB to 40 dB, and the variance of salt and pepper noise is

(a)

(b)

Figure 10: Some noise samples in which the intensity of noises is gradually increased. (a) Salt and pepper noise and (b) additive white
Gaussian noise.
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Figure 11: Recognition rates of different descriptors with different intensity of noises. (a) Salt and pepper noise and (b) additive white
Gaussian noise.
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modulated from 0 to 0.2. It should be noted that the noise
image which is added AWGNwith 40 dB SNR is equal to the
original image, and the noise image which is added salt and
pepper noise with 0 variance is also the original image. Some
noise samples are depicted in Figure 10 where the intensity
of noises is gradually increased, and the corresponding
experimental results are shown in Figure 11. With the in-
crement of noise intensity, the recognition rates of all de-
scriptors are gradually decreasing, but the recognition rate of
LDDSCP is higher than those of other descriptors under the
overwhelming majority of noise conditions. Particularly in
the analysis of average precision, LDDSCP outperforms LDP
and LBP by 4.84% and 14.91% on the condition of salt and
pepper noise and transcends LDP and LBP by 12.42% and
25.85% on the condition of AWGN.(us, it can be seen that
LDDSCP has a stronger noise-robustness. Additionally, the
results of LDDSCP-1 or LDDSCP-2 as depicted in Figure 11
also further demonstrate that the combination of LDDSCP-1
and LDDSCP-2 is more beneficial to overcome the noise
effectively.

5. Conclusions

Facial expression recognition is a challenging and cutting-
edge technology. Due to the nonrigid character of human
face, the facial expression is influenced by age, sex, hair,
ethnicity, illumination, etc. (erefore, how to extract the
precise expression features is the most critical step of
facial expression recognition. For this goal, the work
presented in this paper proposed the following
contributions:

(1) We introduced a novel coding scheme, LDDSCP,
which encodes the dominant directions of facial
textures effectively. Experimental results demon-
strated that LDDSCP utilizes the dominant di-
rectional information which is more suitable to
describe the expression feature of human face
accurately.

(2) Due to that human visual system is sensitive to di-
rectional information which is between 0 degree and
180 degree, we adopted the strategy of stacking
histograms to obtain a compact feature. Experi-
mental results proved that this strategy not only
compensates for the missed information of
LDDSCP-1 histogram or LDDSCP-2 histogram but
also significantly reduces the computational cost.

(3) At last, we also evaluated the performance of LDDSCP
against some traditional descriptors and some state-
of-the-art descriptors in noisy conditions. Detailed
experiments showed that LDDSCP is also more stable
against noise than intensity compared with other
descriptors. Hence, LDDSCP has a stronger practi-
cability on the basis of the above conclusions.
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