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Abstract: New approaches are required to successfully intervene therapeutically in neurodegen-
erative diseases. Addressing the earliest phases of disease, blood brain barrier (BBB) leak before
the accumulation of misfolded proteins has significant potential for success. To do so, however, a
reliable, noninvasive and economical test is required. There are two potential methods of identifying
the BBB fluid leak that results in the accumulation of normally excluded substances which alter
neuropil metabolism, protein synthesis and degradation with buildup of misfolded toxic proteins.
The pros and cons of dynamic contrast imaging (DCI or DCE) and 3D TGSE PASL are discussed as
potential early identifying methods. The results of prior publications of the 3D ASL technique and
an overview of the associated physiologic challenges are discussed. Either method may serve well
as reliable physiologic markers as novel therapeutic interventions directed at the vasculopathy of
early neurodegenerative disease are developed. They may serve well in addressing other neurologic
diseases associated with either vascular leak and/or reduced glymphatic flow.

Keywords: glymphatic flow; blood brain barrier; Alzheimer disease; neurodegenerative diseases; 3D
ASL MRI; dynamic contrast Imaging

1. Introduction

In the wake of disappointing treatment trials of Alzheimer modifying drugs, a fresh
therapeutic approach to this and other neurodegenerative diseases is necessary. Approach-
ing the initial disease phase, the pathological leak of the blood brain barrier and consequent
obstruction of glymphatic flow is worthy of therapeutic investigation. To do so requires
identification of these very early pathophysiologic changes developing before the accumu-
lation of misfolded proteins and significant cognitive decline has developed. [1,2]. Looking
at sporadic AD in stages, the initial insult is the blood brain barrier (BBB) leak, triggered
by endothelial and pericyte damage resulting from circulating low level upregulated
pro-inflammatory factors via several potential sources [1,3]. Senescence, morbid obesity,
chronic infection, autoimmune disease, diabetes mellitus, hypertension and head injury
are the most common factors [3–5]. Similar to a computer hacker, the attacks are relentless
over one’s lifetime and once the defenses are overwhelmed, either because of sheer volume
of pro-inflammatory factors or reduced effectiveness of the CNS immune response (e.g.,
microglia and astrocyte responses), the BBB is breached [6,7]. The circulating inflammatory
factors cause endothelial cell up regulation of Matrix Metallo Protease Enzyme-9 (MMPE-
9), expressed on the cell surface triggering release of reactive oxygen species ROS from
circulating and inherent macrophages and immune cells. Damage to the tight junctions,
endothelium and pericytes results [8,9]. The consequence is a leak into the interstitium of
normally excluded substances, so called damage associated molecular patterns (DAMPS)
and pathogen associated molecular patterns (PAMPS) which alter the normal metabolic
machinery resulting in distorted protein synthesis and degradation [10–12]. Addition-
ally, both misfolded proteins and toxins overwhelm the innate immune cells (microglia
and macrophages) normally clearing them, either by degradation or by outflow from the
venous or glymphatic systems (Figure 1a,b) [13–16]. As a consequence of the pericyte
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damage that normally anchors the aquaporin 4 water channels to astrocyte end feet via
expressed laminin and dystroglycan proteins, the glymphatic drainage system effectively
shuts down as the untethered AQ 4 channels return to the astrocyte soma. The glym-
phatic system is a major pathway of metabolite clearance from the brain parenchyma
(Figures 1 and 2) [17,18].
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Figure 1. Novel MRI techniques identifying vascular leak and paravascular flow reduction in
early Alzheimer disease. (a) Demonstrates normal anatomy and physiology. (b) Demonstrates
the pathological progression to late-state AD including the development of a BBB leak through
tight junctions, the retraction of aquqporin-4 channels with reduction in paravascular outflow, and
accumulation of Aβ and Hp tau.
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Figure 2. (a) Depicts normal aquaporin attachments in the astrocyte end feet before BBB leak and 
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the basement membranes of the astrocytes (blue) and pericytes (green), both surrounding capillary 
and small venous and arterial vessels (not shown). (b) Depicts damaged pericytes from vascular 
inflammation and BBB leak with loss of the tethering proteins and retraction of the AQ4 water chan-
nels back into the astrocyte soma with resultant loss of glymphatic flow. (Black lines represent teth-
ering proteins and black dots represent leaked restricted proteins). This sequence of disrupted BBB 
illustrates the initial pathophysiologic damage leading to the leak and sequestration of DAMPS and 
PAMPS triggering altered proteomic synthesis and degradation and, ultimately, cognitive dysfunc-
tion. 
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(hpTau) [19–21]. The accumulation of the latter substance is the 3rd and terminal phase of 
the disease process development [22–24]. Because of the deadly nature of hpTau and its 
propensity to spread transsynaptically as well as by exostosis in a Prion-like fashion, its 
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tine lake filled with fish and wildlife fed by a clear stream with waste products draining 
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time the lake does as well and the fish begin to die, thus adding to the pollution as well as 
plugging up the outflow. If one were to simply remove the dead fish but not stop the 
polluted water inflow, the effect on lake pollution would be minimal, if any, and more 
wildlife would perish. So, too, removing beta amyloid and hpTau is similar to removing 
the dead fish and thus, not surprisingly, has little effect on altering disease progression or 
recovery. It is in the early phase of the disease that repairing the BBB leak must be ad-
dressed before the overwhelming effect of toxin induced metabolic disarray and accumu-
lating misfolded proteins develop [25,26]. To do so requires a reliable method of identify-
ing the altered BBB/glymphatic flow physiology. Testing must identify evidence of fluid 
leak into the parenchyma and/or reduced outflow via the glymphatic system. 

An orderly approach to identifying early sporadic AD includes surveillance of high-
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tory/infectious processes or identified high risk self-limited infections [27–29]. A reliable 
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Figure 2. (a) Depicts normal aquaporin attachments in the astrocyte end feet before BBB leak and
resulting retraction afterwards. Glymphatic channels and anchoring of the aquaporin 4 channels
via pericyte protein attachments. The glymphatic space (white and wavy yellow) which exists
between the basement membranes of the astrocytes (blue) and pericytes (green), both surrounding
capillary and small venous and arterial vessels (not shown). (b) Depicts damaged pericytes from
vascular inflammation and BBB leak with loss of the tethering proteins and retraction of the AQ4
water channels back into the astrocyte soma with resultant loss of glymphatic flow. (Black lines
represent tethering proteins and black dots represent leaked restricted proteins). This sequence of
disrupted BBB illustrates the initial pathophysiologic damage leading to the leak and sequestration
of DAMPS and PAMPS triggering altered proteomic synthesis and degradation and, ultimately,
cognitive dysfunction.

The entrance of normally restricted substances into the brain leads to the second stage
of disease, the miscleavage of APP probably through intermediate steps and subsequent
misfolding of beta amyloid fragments 1–42 followed by crosslinking and extracellular
precipitation. Its presence, in time, facilitates production of hyperphosphorylated Tau
(hpTau) [19–21]. The accumulation of the latter substance is the 3rd and terminal phase of
the disease process development [22–24]. Because of the deadly nature of hpTau and its
propensity to spread transsynaptically as well as by exostosis in a Prion-like fashion, its
appearance is the irretrievable end of the road [24]. An apt analogy is considering a pristine
lake filled with fish and wildlife fed by a clear stream with waste products draining via an
outflow stream. If the water source from the clear stream becomes polluted, over time the
lake does as well and the fish begin to die, thus adding to the pollution as well as plugging
up the outflow. If one were to simply remove the dead fish but not stop the polluted water
inflow, the effect on lake pollution would be minimal, if any, and more wildlife would
perish. So, too, removing beta amyloid and hpTau is similar to removing the dead fish
and thus, not surprisingly, has little effect on altering disease progression or recovery. It
is in the early phase of the disease that repairing the BBB leak must be addressed before
the overwhelming effect of toxin induced metabolic disarray and accumulating misfolded
proteins develop [25,26]. To do so requires a reliable method of identifying the altered
BBB/glymphatic flow physiology. Testing must identify evidence of fluid leak into the
parenchyma and/or reduced outflow via the glymphatic system.

An orderly approach to identifying early sporadic AD includes surveillance of high-
risk groups such as those with poorly controlled Diabetes mellitus, hypertension, head
injury, morbid obesity, glioblastoma, advanced age and those with chronic inflamma-
tory/infectious processes or identified high risk self-limited infections [27–29]. A reliable
noninvasive, simple, economic and reliable screening test is desirable to that end.
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At this point, it is useful to consider far less common familial AD (accounting for
about 5% of all AD), the most common being APOE4 [30–32]. If we view these pathways
of disease development as being from the inside out as opposed to the outside in (sporadic
disease), one must modify the lake analogy to the pollution source being within the lake
itself. This may have profound implications as to treatment strategies since stopping the
BBB leak would theoretically be less efficacious in the familial group due to the continuous
and inherent production of beta amyloid and its negative impact on vascular integrity and
the BBB [33,34]. Having a reliable noninvasive screening test for identifying a BBB leak
and glymphatic dysfunction is still necessary even though treatment strategy may differ
from sporadic disease. That said, in either case, following the progress of treatment trials’
success requires demonstrating both improvement in glymphatic flow and reduced BBB
leak coupled with stable or improved cognitive testing.

Investigating differences in perfusion in neurodegenerative diseases is one approach,
either by DCE or ASL (Table 1).

Table 1. Comparison of dynamic contrast imaging and #D TGSE PASL.

MRI
Sequence

Type

Contrast
Agent

Information
Sought

Duration of
Sequence

Acquisition

Duration of
Study Artifact Type Reproducibility Cost/Scan

Dynamic
Contrast
Imaging

(DCI)

Exogenous
Gadolinium

Presence of
BBB leaked

contrast
Ktransfer

coefficient

16 min per
sequence

30+ min for
two

sequences

Motion artifact,
intercompartment

contrast
equilibrium

determination

Yes

High due to
need for
contrast

agent

3D Arterial
Spin

Labeling
(3D ASL)

Endogenous
Proton

labeling

Delay of
labeled
proton

clearance

2 min per
sequence

15 min for
seven

sequences

Low S/N,
susceptibility

artifact
Yes Low

Chart above highlights the pros and cons of the two major techniques for identifying the BBB leak and reduced glymphatic flow rates in
preclinical and early AD.

The direct method, high resolution dynamic contrast enhancement/imaging (DCI or
DCE), is to image the presence of fluid leaking past the BBB into the interstitium, either
by direct or indirect means. DCE is a post gadolinium contrast infusion technique [35–41].
It utilizes fast image acquisition to sequentially measure the entrance of contrast into the
field of view and it can determine a variety of physiologic parameters related to blood flow
and perfusion [42]. Barnes et al. utilized high resolution DCE to image BBB leak of contrast
into the hippocampus parenchyma [43]. They compared normal subjects of varying ages
with mildly cognitive impaired subjects (MCI) and those with AD. The study utilized high
resolution T2-weighted images through the hippocampi and baseline coronal T1-weighted
maps acquired using a T1-weighted 3D spoiled gradient echo (SPGR) pulse sequence [2,43].
In addition, coronal DCE-MRI scans were obtained using a T1-weighted 3D SPGR pulse
sequence repeated for 16 min with 15.4 s temporal resolution per image. Voxel size was
0.625 × 0.625 × 5 mm. The results demonstrated BBB leak in older age normal subjects
in MCI compared with controls and in the AD subjects also compared to controls. Via
the technique, the Ktransfer of contrast into the parenchyma was calculated [44]. This is a
landmark study demonstrating via imaging clear evidence of the BBB disruption in the
preclinical and clinical phases of the disease process [2,43]. The technique itself may require
long scan times too difficult to adopt in clinical practice. Long sequence duration also
invites movement artifact. This method requires infusion of gadolinium contrast, which is
both costly and not without risk.

2. Perfusion ASL

One ASL approach measures perfusion inflow at peak, which has been shown to be
reduced in AD. Measurements are hampered by differences in perfusion between white
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and gray matter and thus sampling errors. This makes for difficulties in intersubject
comparison related to the relative ratio of gray and white matter within the area of interest
sampled. Further, only one time to inversion is obtained at the theoretic peak of perfusion.
Correction algorithms are available but require further validation [44]. Our alternative 3D
TGSE PASL technique measuring signal at post perfusion intervals is discussed below. The
two current methods for identifying BBB leak are summarized in Table 1.

3. 3D-ASL Method

Another method is to consider the effect of the BBB breach and its early consequence
of reduced glymphatic flow. Arterial spin labeling allows for noninvasive identification
of perfusion in and venous flow out of the brain [45,46]. Utilizing arterial spin labeling
and timing the data collection to the post arterial inflow and capillary phases, theoretically,
would allow imaging of retained labeled protons primarily within the interstitium and,
to a lesser extent, within the venous and glymphatic channels requiring progressively
longer inversion intervals from labeling than is used in inflow perfusion. From this,
a rate of residual clearance can be determined [46]. A reduction in the outflow rate,
if present, can be accounted for by both leak in and sequestration of labeled protons
within the interstitium and diminished glymphatic outflow [26,46,47]. There are two main
obstacles to this approach. The first is knowing the T1 of the environments in which labeled
protons will migrate post bolus and the differential flow velocities of arterial, venous
and glymphatics [46,47]. As to the latter concern, choosing time to inversion late in the
blood transit cycle reduces contamination from labeled arterial and the majority of venous
flow (<2 s/bolus), leaving signal primarily from residual interstitial and glymphatic fluid
labeled protons [48,49]. The T1 at 3T of free fluid is considerably longer (3800 ms) than
gray matter (1100–1700 ms), white matter (800–850 ms) or blood (1650 ms), a fact to one’s
advantage [49,50]. The flip side, however, is avoiding the ventricular and subarachnoid
spaces in the region of interest (ROI) analysis as this can introduce considerable error. The
other major problem with long inversion times is reduced signal to noise (S/N) [51].

The transit time of the labeled bolus is about 1.8 s, with contributions to the remaining
signal at longer post labeling intervals from mainly labeled fluid in extra-capillary proton
environments, which has been measured by other techniques [45,48]. By intentionally
choosing longer post labeling delay times (PLD or TI), signal from retained leaked protons
within interstitial fluid and the slower glymphatic flow is maximized. By measuring
clearance of fluid outflow, a glymphatic flow rate reduction compared with normal controls
is indirect evidence of both a labeled proton leak into the interstitial spaces and their
reduced outflow via damaged glymphatics [46]. By choosing longer inversion times (in our
study, TI’s of 2800–4000 ms at 200 ms intervals past the T1 of blood), the signal contribution
of gray and white matter and intravascular elements is minimized and residual labeled
brain water signal with the longest T1 is maximized [50,52]. Because the S/N in these longer
inversion times is low, a single determination at any specified time point would result in
too much variability for quantitative interpretation [45]. By measuring several sequential
inversion times, the results can be graphed with the slope of the line indicating the rate of
signal loss or clearance from natural signal decay or glymphatic outflow. Linear analysis
is possible if the delay times correspond to more linear aspects of the signal decay curve,
which can be determined by solving the Block equation for each tissue and fluid component
environment within the neuropil [46]. Doing so demonstrated that linear analysis in these
late delayed signal acquisitions showed high correlation (95%) with the signal decay curve
in all relevant tissues and liquid proton environments [46]. Thus, residual signal is emitted
largely from labeled free fluid protons trapped within the interstitium due to impaired
glymphatic outflow [26].

For wide adoption of ASL MRI into clinical use, several basic requirements must
be met. The first is hardware with access to a high field strength magnet 3T or higher
and adequate gradients to allow for fast signal acquisition (EPI) sequences [53]. The
sequence protocol has to be both time and cost efficient. Rapid filling of K-space, allowing
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for side-by-side analysis of homologous and different brain regions near simultaneously,
avoids signal transit time disparities within the field of view. Using 3D acquisition with
near instantaneous signal acquisition of the whole brain permits sampling and direct
comparison of signal within individual lobes. Additionally, this noninvasive technology
eliminates the cost and risk of contrast agents when multiple studies are required over time.
Finally, reproducibility is the final concern and, in the pilot study, did not pose a problem.
Siemens 3D TGSE PASL (turbo gradient spin echo pulsed arterial spin labeling) sequence
fulfills the above criterion but at the cost of reduced S/N. The latter issue precludes simple
qualitative analysis and requires a quantitative approach. First, to compensate for low
S/N, sampling encompassed a large region of interest (ROI) in the chosen anatomic site
with careful exclusion/minimization of ventricular or subarachnoid spaces, since residual
signal within the parenchyma is of interest only. Second, acquiring multiple sequential
data points (seven in the pilot study) to generate the linear analysis reduces error [46].

The sequence availability is dependent on the manufacturer and installed gradients.
The protocol available to us on the Siemens 3T Skyra magnet was 3D TGSE PASL. To
maximize signal, a 20 channel receiver head coil was used [45]. Addressing the multiple
requirements listed above were several features of this standard available sequence, which
we will discuss. 3D ASL has been extensively reviewed elsewhere, with the primary recom-
mendation for implementation being dictated by the process of labeling [53]. Considered
the two most efficient are pseudo-continuous arterial spin labeling (pCASL), with the
longest duration of the labeling pulse, followed by pulsed arterial spin labeling (PASL) [53].
A critical feature is determining the precise time to inversion for which pCASL has ad-
vantage but is compensated for in PASL by adding flow-sensitive alternating inversion
recovery (FAIR) [54,55].

Beginning with the labeling portion of the sequence, FAIR allows for acceptable
perfusion contrast by effectively reducing the travel distance of tagged protons [54,55].
Likewise, quantitative imaging of perfusion using a single subtraction (Q2TIPS) minimizes
the effect of varying arrival times of the labeled bolus to the parenchyma, reducing another
variable [56]. The number of label-control pairs is also a consideration as the more averaged
the better the resolution but with added time of acquisition penalty and thus artifact. The
sequences designed by the vendor have optimized the number of pairs required. Four
pairs were averaged in the Siemens 3D sequence used in the pilot study [46].

3D ASL for this purpose has several advantages over 2D ASL imaging, including more
signal acquired [57]. For example, the ability to acquire the whole head, filling K-space in a
single acquisition and allowing for comparison of various parts of the brain simultaneously
with reliability for the time of data acquisition. That would not be the case with a 2D
acquisition sequence where each slice would be acquired at different acquisition times [57].
In addition, the combination of an EPI factor of 21 with 12 segments (multi-shot EPI) and
turbo factor of 18 greatly reduces acquisition time (350 ms total) for each sequence [58].
This fulfills another requirement for comparing the rate of clearance among multiple brain
regions near simultaneously. The advantage of a high turbo and EPI factor translates into
reduced exam time. Our protocol takes about 15 min including 7 sequential ASL sequences
with inversion times starting at 2800 ms increasing by 200 ms to 4000 ms along with a
reference fluid attenuated inversion recovery (FLAIR) axial sequence [46]. No exogenous
contrast agent is required.

4. Results

In our initial pilot study, this approach demonstrated statistically significant slowing
of the glymphatic fluid clearance rate per second in a small sample of Alzheimer disease
subjects compared with age matched controls (Figure 3) [46]. The sampled area included
bilateral temporal, parietal and frontal lobes. All but the dominant temporal lobe showed
difference and showed significance to the level p < 0.001 when comparing the AD subjects
with age matched controls. The dominant temporal lobe in the comparison showed
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p = 0.068 [46]. The latter may be by chance or another unrecognized mechanism which
may be sorted out with a larger study (in progress).
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5. Discussion

Utilizing 3D ASL MRI as an indirect measure of vascular leak and reduced glymphatic
flow or DCE as a direct measure of vascular leak in neurodegenerative diseases will
address these early issues. Treatments that arrest the slow vascular leak may prevent the
disease cascade from developing, especially in the sporadic forms where accumulating
misfolded proteins is a downstream effect, and a component of familial AD [25,26,35,59].
To assess outcomes of directed therapeutic trials, identification of disease in the pre or
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early clinical state becomes paramount. We are currently conducting a larger study to
further validate the 3D ASL technique. Included in the latest study are patients with
mild cognitive impairment. Should the latter group demonstrate focal regional changes
consistently, this approach could become a sentinel pathophysiologic marker identifying
preclinical or early changes of AD before the accumulation of beta amyloid or hpTau.
It would also provide a simple, inexpensive and noninvasive means to follow patient
progress. The obstacles facing fast imaging of this sort includes a susceptibility artifact
created by the paramagnetic effect of macromolecules, calcium, etc., within the voxel [57].
This can be compensated in part by incorporating a larger region of interest (ROI) in the
analysis. Even so, choice of precise location of data gathering over all seven sequences
must be considered with care to reduce excessive sequence to sequence artifacts. Although
pulse volume varies intersubject, it is negated by determining the slope of average signal
clearance over the seven acquisition times (Figure 3). The rate of clearance is directly
comparable across subjects, eliminating qualitative comparisons. Likewise, correcting for
cardiac pulse rate is not necessary. Given the rapidity of data collection in a sequence,
motion artifact is negligible. Post processing using the elliptical ROI tool is cumbersome
with our PACS system, mainly due to the inability to store the generated ROI region for use
on sequential sequences. Thus, the ROI had to be carefully redrawn each time [46]. There
can be significant variability in signal average within an anatomic site and so avoiding
the susceptibility artifact and subarachnoid/ventricular spaces can be challenging as well.
Choosing a large ROI dependent on the brain region studied compensates for some of
the intravoxel signal variability encountered. The ROI dimensions must be held constant
in each brain region for all subjects (Figure 3). That said, with wider adoption of this
methodology, simple computer programing fixes would reduce the post processing labor
time substantially.

3D ASL MRI provides a novel noninvasive, and inexpensive method to study the
earliest pathophysiologic changes in AD. Its full potential will require further development
and validation, however. The major limitations, managing the susceptibility artifact and
low signal availability. As new therapeutic efforts to reverse the BBB leak arise, the need
to screen at risk (preclinical) or AD patients with early disease (be it familial or sporadic)
and then follow the results of intervention with simple, safe, economical and reliable
testing will be necessary. Cognitive testing alone lacks sufficient sensitivity in preclinical
dementia to fulfill that role [60]. Combining it with a sensitive imaging test reflecting
physiologic changes would be quite powerful. Further, the utility of identifying vascular
leak and altered glymphatic flow opens new avenues into the investigation of other CNS
disease processes.
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