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Abstract

Background

DSC is used to determine thermally-induced conformational changes of biomolecules within

a blood plasma sample. Recent research has indicated that DSC curves (or thermograms)

may have different characteristics based on disease status and, thus, may be useful as a

monitoring and diagnostic tool for some diseases. Since thermograms are curves measured

over a range of temperature values, they are considered functional data. In this paper we

apply functional data analysis techniques to analyze differential scanning calorimetry (DSC)

data from individuals from the Lupus Family Registry and Repository (LFRR). The aim was

to assess the effect of lupus disease status as well as additional covariates on the thermo-

gram profiles, and use FD analysis methods to create models for classifying lupus vs. con-

trol patients on the basis of the thermogram curves.

Methods

Thermograms were collected for 300 lupus patients and 300 controls without lupus who

were matched with diseased individuals based on sex, race, and age. First, functional

regression with a functional response (DSC) and categorical predictor (disease status) was

used to determine how thermogram curve structure varied according to disease status and

other covariates including sex, race, and year of birth. Next, functional logistic regression

with disease status as the response and functional principal component analysis (FPCA)

scores as the predictors was used to model the effect of thermogram structure on disease

status prediction. The prediction accuracy for patients with Osteoarthritis and Rheumatoid

Arthritis but without Lupus was also calculated to determine the ability of the classifier to dif-

ferentiate between Lupus and other diseases. Data were divided 1000 times into separate

2/3 training and 1/3 test data for evaluation of predictions. Finally, derivatives of thermogram

curves were included in the models to determine whether they aided in prediction of disease

status.
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Results

Functional regression with thermogram as a functional response and disease status as pre-

dictor showed a clear separation in thermogram curve structure between cases and con-

trols. The logistic regression model with FPCA scores as the predictors gave the most

accurate results with a mean 79.22% correct classification rate with a mean sensitivity =

79.70%, and specificity = 81.48%. The model correctly classified OA and RA patients with-

out Lupus as controls at a rate of 75.92% on average with a mean sensitivity = 79.70% and

specificity = 77.6%. Regression models including FPCA scores for derivative curves did not

perform as well, nor did regression models including covariates.

Conclusion

Changes in thermograms observed in the disease state likely reflect covalent modifications

of plasma proteins or changes in large protein-protein interacting networks resulting in the

stabilization of plasma proteins towards thermal denaturation. By relating functional princi-

pal components from thermograms to disease status, our Functional Principal Component

Analysis model provides results that are more easily interpretable compared to prior studies.

Further, the model could also potentially be coupled with other biomarkers to improve diag-

nostic classification for lupus.

Introduction

Differential scanning calorimetry (DSC) is used to determine thermally-induced conforma-

tional changes of biomolecules within a blood plasma sample. The sample is heated over a con-

trolled temperature range and excess specific heat capacity between the sample and a reference

is measured at defined temperature increments. The excess specific heat capacity can be plot-

ted against temperature producing a curve referred to as a thermogram. Recent research has

indicated that these curves may have different characteristics based on disease status and, thus,

may be useful as a monitoring and diagnostic tool for some diseases [1,2]. One example where

DSC thermograms may be helpful in diagnosis and disease monitoring is with lupus patients.

Systematic lupus erythematosus, Lupus, is an auto-immune disease in which individuals’

immune systems produce antibodies to cells within the body leading to inflammation. Lupus

can affect a wide array of organs/systems within the body and often has symptoms that mimic

other diseases. This makes it very difficult to diagnose and monitor Lupus. The American Col-

lege of Rheumatology provides a list of 11 criteria for potential Lupus diagnosis. An individual

is classified as being positive for Lupus if they meet at least 4 of the 11 criteria. This methodol-

ogy often leads to over-diagnosis, under-diagnosis, and often misses early and mild cases.

Therefore, researchers and doctors are looking for new and improved Lupus diagnostic tools

[3–5].

Since thermograms are curves measured over a range of temperature values, they are con-

sidered functional data and methods developed for functional data analysis (FD analysis) can

be applied. In FD analysis, the entire curve or function is considered as one unit of observation

instead of multiple observations along a time continuum. Ramsay and Silverman (2005) give

an authoritative account of the FD analysis framework and accompanying analysis tools,

including how to specify basis systems for building up functions, how to build functional data

objects, how to smooth functional curves, how to perform functional principal component
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analysis, and how to implement linear regression within the functional framework [6]. Ramsay

and Silverman’s work focused on models for linear regression when the response variable is

either scalar (with functional predictors) or functional. However, other authors ([7,8]) have

developed models for functional generalized linear models (FGLM) that are capable of han-

dling categorical response variables with functional predictors.

The use of thermogram profiles as a diagnostic tool is a relatively new research idea that is

rapidly gaining interest [2,9–27]. Surprisingly, however, functional data analysis has never

been used to analyze thermograms. Fish et al. focused strictly on classification of individuals as

cases or controls using a non-parametric method to calculate a similarity metric for classifica-

tion [11]. However, the methodology of Fish et al. is limited since it does not allow the incor-

poration of covariates into the classification model. Vega et al. presented a novel method for

analyzing thermograms in which they first broke down the thermograms into six individual

peaks to represent the curves. They then used parameters corresponding to each peak in a mul-

tiparametric comparative method to develop classification criteria [26]. Similar to Fish’s paper,

Vega et al. only focused on classification and did not explore the effect of other covariates on

their methods. Finally, Garbett and Brock evaluated the use of multiple classification methods

designed for high-dimensional data including penalized logistic regression, support vector

machines (SVM), and modified linear discriminant analysis for classifying Lupus patients ver-

sus controls based on thermogram data [28]. While these approaches allow the incorporation

of additional covariates into the model, they treat the excess specific heat capacity at each tem-

perature as a separate covariate rather than analyzing the thermogram curve as a single unit of

observation. This leads to potential difficulty in interpreting the resulting solution vector, a

limitation that functional data analysis methods are designed to overcome.

In this paper we apply functional regression analysis to thermogram data collected on

Lupus and non-Lupus patients. Initially, we treat the thermogram data as a functional response

variable and analyze the effect that disease status, along with other covariates (sex, race and

year of birth), have on the thermogram profiles. For the second model, we treat disease status

as a categorical response variable and use the thermogram profiles as a functional predictor

variable. Due to the infinite-dimensional nature of the problem we use functional principal

component scores to both reduce the dimensionality and aid in model interpretation. Lastly,

we evaluate the derivatives of the thermogram functional data as potential predictors for lupus

disease status. Classification accuracy for disease status was evaluated by splitting the data into

separate training and test data sets.

The rest of this paper is organized as follows. In Section 2 we introduce the model for each

of the regression methods listed above. In Section 3 we apply these models to the Lupus data

and present the results. Finally, in Section 4 we will discuss the results, limitations, and future

work opportunities.

Functional regression

In this section we review linear regression models with a functional predictor and scalar/cate-

gorical covariate(s). We also explore the functional generalized linear model (FGLM) using the

logit link function for a dichotomous response and at least one functional covariate.

Linear models for functional responses

Linear models with a functional response variable and scalar/categorical covariates is used

when a researcher is interested in predicting a functional response based on the values of the

covariate(s). Let yi(t) be the thermogram value of the ith individual at temperature t and xi =

(xi1,. . .,xip) be a vector of p covariates associated with the ith individual. The functional linear
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model relating the thermogram values to the covariates is then

yiðtÞ ¼ b0ðtÞ þ
Xp

j¼1
xijbjðtÞ þ εiðtÞ; ð1Þ

where the βj(t) are functional regression coefficients associated with each covariate and

i = 1,. . .,n indicates the individual observations. The error term εi(t) is assumed to be a zero

mean stationary Gaussian process. For identifiability purposes it is necessary to approximate

the high-dimensional covariate functions βj(t) using a low-dimensional approximation. One

approach is to use a set of basis functions φ1,. . .,φK to characterize the functional data space. A

basis system provides a flexible way to model functional data while still using a parametric

framework that allows for inclusion of covariates. The most common basis system is the β-

spline basis system, though others are possible. The regression coefficients are then modeled as

bjðtÞ ¼
PK

k¼1
bj;kφk, so that model (1) now becomes

yiðtÞ ¼
XK

k¼1
b0;kφk þ

Xp

j¼1

XK

k¼1
xijbj;kφk þ εiðtÞ; ð2Þ

Here, the bj,k are unknown coefficients that relate the basis system and covariate values to the

thermogram profiles. The baseline regression coefficient function β0(t) can either represent

the overall mean thermogram profile or the thermogram profile of a baseline group, depend-

ing on the parameterization for the matrix of covariates [29].

Just as in non-functional regression, in functional regression we may be interested in

answering some common statistical questions like,

1. Are the thermograms for cases and controls statistically distinguishable?

2. Are there statistically significant relationships between thermogram profiles and disease sta-

tus, gender, race, and other covariates?

Functional equivalents of the standard t- and F-tests can be performed to answer such ques-

tions. Due to the fact that functional data are inherently high-dimensional, permutation tests

are used to determine the critical values for these tests (See Ramsay & Silverman 2009 for

details) [29].

Generalized linear models using functional principal component analysis

In this setting, we use thermogram data as a functional covariate to predict a categorical

response, for instance disease status. Here, we focus on the case where the response Yi is a Ber-

noulli variable and takes the values of 0 (normal) or 1 (diseased). Since we are now treating the

thermogram values as predictor variables, let xi(t) be the thermogram value of the ith individ-

ual at temperature t and denote πi = P(Yi = 1|xi(t)) as the probability of the ith individual hav-

ing disease (e.g., lupus) given that individual’s thermogram profile. The logistic regression

model is then,

ln
pi

1 � pi

� �

¼ b0 þ

Z

xiðtÞb1ðtÞdt: ð3Þ

Given the infinite-dimensional nature of β1(t), this problem is ill-specified in that there are an

infinite number of solutions to achieve the same predictions. There are three ways to address

this issue; the first two concern a basis coefficient expansion of β1(t) while the third projects

the covariate functions into a lower-dimensional space via principal components. Since the lat-

ter approach also aids in interpretability, we follow this path. The first step is to identify the

functional principal components in the data. This is accomplished by finding the orthogonal
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loadings or weight functions, ξ, that capture the greatest variation in the data. In other words,

we try to find ξ such that the component scores

rxðxiÞ ¼

Z

xðtÞxiðtÞdt; ð4Þ

have the largest variation (subject to the constraint that
R
ξ2(t)dt = 1). When the data are not

functional in nature (i.e., multivariate PCA), these loadings are the solutions to the following

eigenequation

Vxj ¼ mj xj; ð5Þ

where V is the covariance matrix of the data with ξj being the eigenvectors and μj the corre-

sponding eigenvalue solutions. The process is very similar in the functional setting. Here, the

eigenfunctions (or harmonics) are calculated as solutions to

Z

vðs; tÞxjðtÞdt ¼ mjxjðsÞ; ð6Þ

where v(s,t) is the bivariate covariance function of the functional values xi(s) and xi(t) (that is,

the covariance between two different thermogram measurements at temperature s and tem-

perature t) [29]. Subsequently, we can characterize each thermogram profile xi on the basis of

these FPCs, and define the principal component scores gij ¼
R

xjðtÞðxiðtÞ � �xðtÞÞdt as the coef-

ficients which provide the optimal fit to the xi on this basis.

The function pca.fd in the fda package in R can be used to perform FPCA on a functional

object. Therefore, to perform FPCA, the original data must first be converted to a functional

data object. This can be accomplished by setting up a saturated basis system (that is, a system

where the number of basis functions equals the total number of temperature values, T) to rep-

resent the data, xiðtÞ ¼
PT

k¼1
ci;kφkðtÞ. Once FPCA has been performed, the eigenvalues μj can

be plotted against their indices j to create a scree plot. This plot can be used to determine the

number of harmonics to use. Once this has been determined, we then regress the outcome var-

iable onto principal component scores γij using a generalized linear model with the logit link

function. The model now becomes

ln
pi

1 � pi

� �

¼ b0 þ
XJ

j¼1
gijbj ð7Þ

where J is the total number of harmonics selected.

Incorporating functional derivatives

In addition to the thermogram profiles themselves, the derivative curves of the thermogram

profiles might be predictive of disease status. We first calculate the first derivative of the curves,

then apply a saturated basis expansion just as we did with the original thermogram profiles.

Therefore, we define the following

x0ðtÞi ¼
XT

k¼1
di;kφkðtÞ; ð8Þ

where the di,k are the basis coefficients corresponding to the basis functions φk(t) for character-

izing the first derivative curves xi0(t) [7]. The models in Eqs (3) and (7) can be extended in a
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natural way to include derivative profiles as well. Specifically, for model (7) we have:

ln
pi

1 � pi

� �

¼ b0 þ
XJ

j¼1
gijb1j þ

XL

l¼1
tilb2l ð9Þ

where τil are the principal component scores corresponding to the thermogram first derivative

curves for i individuals and L harmonics. Since normally only the first few principal compo-

nents are needed to capture the majority of the variation within the data, FGLM using FPCA

allows for dimension reduction which decreases the degrees of freedom for error in the model.

This decrease can allow for a more stable estimate compared to models without this dimension

reduction [7,29].

Functional data analysis of Lupus thermogram data

Samples

Data was obtained from the Lupus Family Registry and Repository (LFRR) which was created

to gather large quantities of material and data regarding Lupus patients and controls into

one place. The hope of the LFRR is that these materials and data will be used to aid in fur-

thering SLE related genetics research. Users must request permission and gain approval to

access the data for research purposes. Rasmussen and colleagues recently described the

LFRR design and protocols, including protections of human subjects [30]. We used de-

identified plasma samples for 600 individuals received from the LFRR [30]. Plasma samples

for 300 patients classified as having Lupus using the ACR criteria were obtained. Another

300 plasma samples from controls without lupus who were matched with diseased individ-

uals based on sex, race, and age were also obtained. All samples received were stored at

-80˚C until analysis by DSC. Use of the LFRR samples and clinical data was reviewed and

approved by the University of Louisville Institutional Review Board (IRB# 177.07, 12.0543)

in compliance with the Helsinki Agreement.

Sample preparation for DSC studies

Plasma samples (100 μL) were dialyzed against a standard phosphate buffer (1.7 mM KH2PO4,

8.3 mM K2HPO4, 150 mM NaCl, 15 mM sodium citrate, pH 7.5) for 24 hours at 4˚C in order

to achieve normalization of buffer conditions for all samples. To effectively dialyze such small

volumes of plasma we used Slide-A-Lyzer MINI dialysis devices (MWCO 3,500, 0.1 mL;

Pierce, Rockford, IL) that were secured in 25-place floats, placed in a 2 L beaker and dialyzed

against 1 L of dialysis buffer. Dialysis units were loaded with 100 μL of dialysis buffer and

equilibrated overnight at 4˚C against 1 L of dialysis buffer. Frozen plasma samples were thawed

overnight at 4˚C on the evening before dialysis. The next morning, the dialysis units were

removed from the beaker, emptied of buffer and loaded with plasma samples. The dialysis

units were returned to the beaker containing dialysis buffer and gently stirred to allow motion

of the dialysis float and increase the diffusion rate during dialysis. After each dialysis period,

the float was removed and placed in a new beaker containing 1L of fresh dialysis buffer. In all,

samples were dialyzed against 4 x 1 L of phosphate buffer with buffer changes after three hours

of dialysis, four hours of dialysis, another four hours of dialysis and a final overnight dialysis

period. Based on cost and reliability we routinely re-assembled washed dialysis units replacing

the original dialysis membrane with cut-to-size Snakeskin Pleated Dialysis Tubing (Pierce,

Rockford, IL). After dialysis, samples were recovered from dialysis units and filtered to remove

particulates using Spin-X centrifuge tube filters (0.45 μm cellulose acetate; Corning Incorpo-

rated, Corning, NY). The final dialysis buffer was also filtered (0.2 μm polyethersulfone; Pall
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Corporation, Ann Arbor, MI) and used for all sample dilutions and as a reference solution for

DSC studies.

DSC analysis

DSC data were collected with a MicroCal VP-Capillary automated DSC instrument (MicroCal,

LLC, Northampton, MA, now part of Malvern) which was serviced and calibrated according

to the manufacturer’s procedures. Dialyzed plasma samples were diluted 25-fold to obtain a

suitable protein concentration for DSC analysis. Plasma samples and matched dialysate to load

the instrument sample and reference chambers, respectively, were transferred to 96-well plates

and loaded into the instrument autosampler, thermostated at 5˚C, until analysis. Sample vol-

umes of 400 μL were loaded into the 96-well plates to provide a sufficient volume for loading

of the instrument capillaries and ensure proper filling of the 135 μL thermal sensing area. DSC

scans were recorded from 20˚C to 110˚C at a scan rate of 1˚C/min with a pre-scan equilibra-

tion period of 15 minutes, mid feedback mode and a filtering period of 2 seconds. The instru-

ment was cycled overnight by running multiple water-water scans (during the overnight

dialysis period) followed the next morning by at least three buffer-buffer scans to condition

the instrument chambers before running the sample set. In designing our experimental

approach for the analysis of blood plasma samples we have carefully examined each aspect of

the process: blood sample collection and handling; sample preparation for DSC analysis;

instrument settings and analysis replicates; data analysis and interpretation. These studies have

recently been published [12]. Importantly, we demonstrated that plasma thermograms were

robust to all analytical and pre-analytical variables examined. These studies enabled us to

adopt a standard protocol for the analysis of clinical samples. Our standard protocol based on

the limited availability of sample aliquots and to provide reasonable analysis throughput

involved the collection of duplicate scans for each sample and batching of samples to ensure

that DSC analysis is completed within a seven day window after initial thawing of each sample

batch. For each sample set we examined buffer scans collected at the beginning and end of a

sample set and after single or consecutive samples scans and determined acceptable reproduc-

ibility and effective cleaning of the instrument chambers. We also compared sample scans col-

lected after a buffer or sample scan and found it is possible to collect consecutive sample scans

after extensive rinsing of the instrument chambers with little effect on thermogram profile.

DSC data were analyzed using Origin 7 (OriginLab Corporation, Northampton, MA). Raw

DSC data were corrected for the instrumental baseline by subtraction of a suitable buffer refer-

ence scan. Corrected scans were normalized for the total protein concentration to allow direct

comparison of samples. Total protein concentration was determined colorimetrically using

the bicinchoninic acid (BCA) protein assay kit and microplate procedure from Pierce (Pierce,

Rockford, IL), with minor modifications to the incubation time included in the manufacturer’s

protocol. Absorbance readings were taken using a Tecan Sunrise microplate absorbance reader

(Tecan U.S., Research Triangle Park, NC). Following normalization, plasma DSC scans were

corrected for non-zero baselines by application of a linear baseline fit using Origin 7. Choice

of an appropriate sample baseline correction is complicated by the presence of a limited region

of post-transition baseline followed by aggregation and precipitation events occurring after the

thermal denaturation envelope. In developing our analysis procedure for plasma samples we

have evaluated all available baseline correction options within the analysis software and found

the linear baseline option to give the most consistent results when tested on repeated measure-

ments, different samples and by independent user determinations. We accept that our

approach might have limitations but have selected the most consistent baseline correction

method that can be applied across all of our studies. The full DSC dataset has been included as
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supplementary information (S1 Data). This dataset includes a subject.ID variable (modified to

maintain patient anonymity), a status variable (case/control), a temperature variable and a

DSC variable for each individual. Approved users are able to request access to additional data–

i.e. the clinical data–from the LFRR to pursue research related to SLE.

There were a total of 8 samples that were flagged as having poor quality scans and removed

from the data set leaving data for 592 patients. Of the 592 individuals, 298 were cases and 294

were controls. The final thermograms were truncated to the temperature range of interest

from 45˚C to 90˚C and interpolated into regular 0.1˚C increments. This yields 451 total tem-

perature values.

Functional linear model with thermogram data as the response and

disease status as the predictor

In the Lupus thermogram framework, the response variable of interest is thermogram shape

and structure predicted by disease status (case or control). Therefore, in model 1, i = 1, 2,. . .,

592, j = 1, 2 for disease status indicator, t = temperature, K = 35 (determined using Generalized

Cross Validation (GCV)), and the values of xij are 0 or 1 indicating either control or case,

respectively. Our design matrix is then a 592 by 3 matrix with the first column being all 1’s, the

second column contains ones for cases, -1’s for controls, and the third column contains 1’s for

controls and -1’s for cases.

Since we used 35 B-spline bases, we have 35 terms for each of the three coefficients–intercept,

cases, and controls. These beta values can then be plotted against temperature (a sequence that

ranges from 45 to 90˚C). Since there are only a few values for each coefficient, the plots will look

very rough. Therefore, we implement some smoothing to yield more interpretable plots. These

plots give the mean thermogram (intercept), and the perturbations of the overall mean required

to fit a curve for cases and a curve for controls. We can also use the predicted response values,

returned to us from the regression, to get the predicted curves for both cases and controls (Fig 1).

The functional equivalent to the t-test is plotted in Fig 2, which essentially gives a t-test at

each temperature along the curve. From the plot we see that the most significant differences

between the curve for cases and the curve for controls lies in the ~[60, 69˚C and ~[72, 85˚C

ranges. Fig 2 also shows the maximum value of the test statistic (highest value of the red line),

the critical value for each individual t-test performed (dotted blue line), and the overall critical

value based on the maximum of the test statistic (dashed blue line, determined using 200 per-

mutations). Since the maximum value of the test statistic was 14.22, and the critical value from

the permutation test was 2.92, this indicates a significant overall difference between the curves

for cases and the curves for controls.

Inclusion of additional covariates. Now, we extend the above model to include additional

covariates. In our application we chose to include sex, race, and year of birth as covariates in the

model. With the addition of covariates, we use a slightly different parameterization than in the

reduced model. Now, disease status (case or control), will require one coefficient, sex (male or

female) will require one additional coefficient, race (Black or White) will require one additional

coefficient, and year of birth (1924–1944, 1945–1955, 1956–1971, or 1972–1993) will require

three additional coefficients, making p = 7 in model 2. For each covariate, one level is consid-

ered the baseline group and the coefficients for the other levels contrast the corresponding

group with the baseline. These contrasts are plotted in Fig 3 for each of the covariates.

With more than two groups in the model we can no longer perform the functional t-test

but can, instead, implement the functional F-test. Just as with the functional t-test, we can get a

plot for these values at each temperature (Fig 4) and calculate the F-statistic = max(F(t)). Also,

we again use a permutation test to determine the critical value to perform the hypothesis test.
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Fig 4 indicates that the strongest predictive relationship between the covariates and thermo-

gram structure lies within the [60, 85˚C range. The test yields a maximum observed statistic of

0.35 with a corresponding critical value = 0.06 indicating a strong predictive relationship

between the covariates and the response variable. A limitation of this model is that significance

of individual covariates cannot be tested.

The results of linear regression with functional response variable and scalar/categorical

covariate(s) shows a significant difference between curves for cases and curves for controls as

well as a strong predictive relationship between disease status and covariates on thermogram

structure. Both models indicate that the largest differences and strongest relationships occur

between 60˚C and 85˚C. Therefore, we chose to only include DSC data within the [60˚C,

85˚C] temperature range when running the rest of the regression models.

Generalized linear models using thermogram data as the predictor and

disease status as response

Now we shift the focus to the case where the response variable of interest is disease status (1 for

lupus, 0 for control) and the thermogram functional data is the predictor. We used the

Fig 1. Smoothed regression coefficients estimated for predicting thermograms from disease status.

The first panel is the intercept coefficient, corresponding to the overall mean thermogram. The second and

third panels show the estimated perturbation (regression coefficients) of the overall mean needed to fit a curve

for cases and controls respectively. The last panel shows the predicted mean thermograms for cases and

controls.

https://doi.org/10.1371/journal.pone.0186232.g001
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thermogram functional principal component scores as the predictor variable to reduce the

dimensionality of the problem and aid in interpretation, with the overall goal to investigate

how well thermogram shape and structure predict disease status. To evaluate the predictability

of the model we split the data into a 2/3 training set and 1/3 test set giving us 200 cases / 200

controls in the training set and 98 cases / 94 controls in the test set. We re-ran the regression

using only the training set and used the results to predict the response values for the test set.

An observation within the test set was classified as a case if their predicted value was greater

than 0.50; classified as a control if their predicted response value was less than 0.50. We

repeated this 1000 times using a different split each time and took the mean of percent correct

classification to get the final predicted classification accuracy. The confidence interval for pre-

diction accuracy was calculated using the sample of 1000 classification percentages and the

standard formula for a confidence interval CI ¼ �x � 1:96 � stdevffiffi
n
p

� �
. We also looked specifically

at the set of patients that had rheumatoid arthritis and/or osteoarthritis but did not have lupus

(17 total patients) to determine how well our classifier did at correctly classifying these patients

as controls.

We first performed FPCA on the thermogram data. Fig 5 shows the scree plot of the first 15

principal components (PC’s). From the scree plot, we concluded that only the first six PC’s

were needed since together they explained 99% of the variation in the data. Fig 6 plots the

Fig 2. A test for the difference in thermogram profiles between cases and controls. The red line is the

observed test statistic at a given temperature, while the dotted blue line is the pointwise critical value

determined using 200 permutations. A test for overall differences in the curves between cases and controls

can be done by comparing the maximum of the observed statistics (here, 14.22 at a temperature of 65.2˚C)

with the corresponding critical value for this maximum (dashed blue line).

https://doi.org/10.1371/journal.pone.0186232.g002
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overall mean thermogram curve as well as two additional curves for each PC. These two addi-

tional curves show what happens to the mean curve when one standard deviation of the armo-

nic is added (+) or subtracted (-). We see that the first harmonic captured 64.6% of the total

variation about the mean and shows the contrast between cases and controls. The second har-

monic, explaining an additional 14.3% of variation, indicated a vertical shift in the mean. The

third harmonic captured the vertical shifts about the two main peaks, and the remaining har-

monics captured much smaller noise and variation.

Now that we determined the number of PC’s to include, we used the function glm in the

stats package in R to fit the model in Section 2.2 on each of the 1000 different training and test

sets. Table 1 gives the estimates, standard errors, odds ratio (95% confidence interval), and p-

values for the coefficients from one run. Finally, for each split, individuals are classified as case

or control if their predicted response value is more than 0.50 or less than 0.50, respectively.

Comparing these predicted classifications to true disease status and taking the mean, we get

Fig 3. Smoothed regression coefficients estimated for predicting thermograms from disease status, sex,

race, and year of birth. From left to right, top to bottom, panel 1 is the intercept coefficient, corresponding to the

overall mean thermogram. The second panel shows the estimated perturbation (regression coefficients) of the

overall mean needed to fit a curve for cases. The third panel shows the estimated perturbation of the overall mean

needed to fit a curve for females. Panels 4–6 show the estimated perturbation of the overall mean thermogram

needed to fit a curve for individuals with a birth year in (1944, 1995], (1955, 1971], and (1971, 1993], respectively.

Finally, panel 7 shows the estimated perturbation of the overall mean thermogram needed to fit a curve for

individuals identifying as White.

https://doi.org/10.1371/journal.pone.0186232.g003
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79.22% correct classification from the model. When looking just at patients that had RA and/

or OA but did not have lupus, the model correctly classified these patients as non-Lupus

75.92% of the time. This is comparable to the overall prediction accuracy indicating that our

classifier is specific to Lupus.

Fig 7 shows the coefficient vectors (or loadings) for the first six principal components. The

first principal component curve models individuals starting with excess specific heat values

around average that then drop below average starting around 60˚C, and then increase to above

average values starting around 70˚C before eventually decreasing back to average. Individuals

with thermograms matching this pattern will have a large first PC score and individuals

experiencing the opposite of this will have small first PC score. This curve very closely resem-

bles the regression curve for cases in Fig 1 and Fig 3, therefore we can conclude that cases will

tend to have large first PC scores and controls will likely have small first PC scores. From

Table 1, we see that the first principal component is highly significant for disease status and

that individuals with curves described as above have an odds ratio of exp(1.269) = 3.56. This

indicates that the odds of being classified as a case is 3.56 times greater for each unit increase

in standard deviation. The second principal component was also found to be significant and

Fig 4. Permutation test for a predictive relationship between disease status, sex, race, and year of birth and

thermogram structure. The red line is the observed test statistic at a given temperature, while the dotted blue line

is the pointwise critical value determined using 200 permutations. A test for overall differences in the curves

between cases and controls can be done by comparing the maximum of the observed statistics (here, 0.35 at a

temperature of 64.9˚C) with the corresponding critical value for this maximum (dashed blue line).

https://doi.org/10.1371/journal.pone.0186232.g004
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represents individuals that have above average excess specific heat values between 55˚C and

85˚C. Individuals experiencing this type of vertical shift from the average curve have an odds

ratio of exp(-0.40) = 0.67 of being a case relative to an individual with a thermogram structure

more similar to the overall mean thermogram in this data set.

The third principal component was not significant for disease status and the remaining

three principal components explain only a small portion of the total variance (6.7%). However,

principal components 5 and 6 were found to be highly significant. Using just the statistically

significant principal components 1, 2, 5, and 6 we can produce curves representative of cases

and controls by either adding (PCs 1 and 5 for cases, PCs 2 and 6 for controls) or subtracting

(PCs 2 and 6 for cases, PCs 1 and 5 for controls) one standard deviation of the significant har-

monics to the mean thermogram (Fig 8). Fig 8 indicates that an individual with a curve similar

to the curve represented by (+) has a 92% probability (conditional on being from the given

data set) of being classified as Lupus, while an individual with a curve similar to that repre-

sented by (-) has an 8% probability (conditional on being from the given data set) of being clas-

sified as Lupus.

Finally, we include the FPCA scores for derivative curves into the model to explore their

effect on regression and prediction accuracy. The mean first derivative curve, along with the

Fig 5. Scree plot of the first 15 PC’s resulting from FPCA on the thermogram data of 298 lupus cases and

294 controls.

https://doi.org/10.1371/journal.pone.0186232.g005
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first six harmonics of the first derivative curve (stratified by disease status) are shown in Fig 9

and Fig 10, respectively. Just as before, the data was split into 1000 training and test sets using

a 2/3 vs. 1/3 split. We report results on three different results comparing the original thermo-

gram curves, the first derivative curves, and the model including both sets of curves (Table 2).

From the results, it is evident that incorporation of the derivative curves into the model is not

beneficial.

Fig 6. The first 6 functional PC’s and the percent variation they capture. The solid line in each curve

represents the mean thermogram curve, while the curves labeled with a ‘+’ or a ‘-‘ indicate what happens when one

standard deviation of the harmonic is added (+) or subtracted (-) from the mean.

https://doi.org/10.1371/journal.pone.0186232.g006

Table 1. Estimated regression coefficients for the first 6 principal components in the FGLM model using FPC scores.

Coefficient Estimate Std. Error OR (95% CI) p-value

Intercept 0.07 0.10 1.07 (0.88, 1.31) 0.50

PC 1 1.27 0.12 3.56 (2.82, 4.49) <0.001

PC 2 -0.40 0.10 0.67 (0.55, 0.82) <0.001

PC 3 -0.09 0.11 0.91 (0.74, 1.12) 0.387

PC 4 0.04 0.10 1.04 (0.85, 1.28) 0.678

PC 5 0.57 0.11 1.77 (1.43, 2.17) <0.001

PC 6 -0.35 0.10 0.70 (0.57, 0.86) 0.001

https://doi.org/10.1371/journal.pone.0186232.t001
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Discussion

Linear regression with a functional response variable showed that there is a clear separation

between the predicted curve for cases and the predicted curve for controls. The curve for con-

trols is clearly bimodal whereas the curve for cases is more unimodal. Also, the curve for con-

trols is shifted slightly left with respect to the curve for cases, having an overlap only in the tails

and around 70˚C. While these differences can be seen through median profile plots and other

exploratory data analysis, functional linear regression allows us to test the effect of these differ-

ences. The functional t-test indicated that the overall difference between the plots for cases and

controls is significant, with the most significant differences occurring between 60˚C and 85˚C.

Functional linear regression with thermogram profiles as the response variable also allows

exploration of the effect of additional covariates on the thermogram profiles. The maximum

absolute value of the regression coefficient for the sex covariate is� 0.004 which is very small.

This indicates that any effect sex may have on the thermogram profile is very minimal. We see

similar results for the race coefficient. Since individuals were matched based on sex and race,

these results make sense. The maximum absolute value for the beta values representing the

year of birth coefficient is slightly larger,� 0.02 which occurs for all year of birth categories

around 75˚C. However, this still does not appear to have a noticeable effect. With the addition

of covariates, we ran a functional F-test instead of the functional t-test, but the results were

Fig 7. The first 6 principal component curves for thermogram profiles.

https://doi.org/10.1371/journal.pone.0186232.g007
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very similar. In other words, the effect on the thermogram curves due to disease status was

roughly 3 times greater than the year of birth cohort and over an order of magnitude greater

than sex and race. Again we saw the most significant differences between 60˚C and 85˚C. Due

to this fact, we chose to restrict our temperature values to only those falling in this range when

moving forward with the rest of the analyses.

Fitting a functional generalized linear model to this data revealed that thermogram shape

can help predict disease status. Note that the covariates sex, race, and year of birth were not

included in this model because the case/control samples were matched on these covariates.

The FGLM that regressed disease status onto the functional principal component scores for

the original thermogram data gave the highest correct classification percentage of all the mod-

els. This is likely due to the dimension reduction allowed by first performing FPCA on the

thermogram data. The FGLM that regressed disease status onto the functional principal com-

ponent scores for the velocity curves (1st derivative of the thermogram profiles) and the FGLM

that regressed disease status onto the functional principal component scores for the velocity

Fig 8. Curves representative of cases and controls determined by adding (+) or subtracting (-) one

standard deviation of the significant harmonics determined by FGLM using FPCA regression.

https://doi.org/10.1371/journal.pone.0186232.g008
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curve combined with the scores for the original thermogram both performed worse than the

model including functional principal component scores for the original thermogram alone.

The classification accuracy achieved by the GLM model using the functional PCAs was

comparable to that achieved previously by Fish et al. [11], but less than that achieved by Gar-

bett and Brock [28]. However, the models fitted by Garbett and Brock produced difficult to

interpret solution vectors, with many oscillations (c.f. Fig 7 in that paper). In contrast, the

functional principal component curves (Fig 7) are easier to interpret and can be coupled

together to form a ‘composite’ curve with a corresponding odds ratio for disease (Fig 8). This

gain in interpretability can point to target areas of the thermogram curves which can be

explored further for biochemical constituents which drive the compositional changes in the

curves. Lastly, the predictions obtained from this case / control data set cannot be directly

extended to the general population. However, the sensitivity / specificity of the model (using a

pre-determined cut-point for disease determination) could be paired with disease prevalence

for a given demographic strata to calculate positive and negative predictive values using Bayes’

theorem. Further, the disease odds based on thermogram data could potentially be coupled

Fig 9. Mean velocity (first derivative) curves for cases and controls.

https://doi.org/10.1371/journal.pone.0186232.g009
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with other, independent information on disease status (e.g., based on clinical or immunologi-

cal markers) to obtain posterior odds of disease [12]. Though, independence of the thermo-

grams from existing diagnostic criteria would have to be tested and perhaps cannot be fully

verified.

In this paper, we explored logistic regression as a method to formulate predictions. Future

work includes investigating other methods for classification within the functional data

Fig 10. First six harmonics of the velocity curves for cases and controls.

https://doi.org/10.1371/journal.pone.0186232.g010

Table 2. Prediction accuracy for models including FPCA scores of derivative curves as predictor variable(s). Numbers are mean values from 1000

test data sets along with 95% CIs for the mean.

Variable(s) Included in the Model Prediction Accuracy Sensitivity Specificity

Thermogram

RA and OA Controls (N = 17)

79.22% (78.38, 80.06%)

75.92% (74.71, 77.13)

79.70% (79.18, 80.22)

79.70% (79.18, 80.22)

81.48% (80.42, 82.53)

77.67% (76.55, 78.78)

Velocity

RA and OA Controls (N = 17)

76.28% (76.12, 76.44)%

76.60% (75.80, 77.40)%

72.58% (72.32, 72.84)

72.58% (72.32, 72.84)

80.06% (79.80, 80.32)

76.69% (75.91, 77.46)

Thermogram and Velocity

RA and OA Controls (N = 17)

75.78% (75.62, 75.95)%

78.58% (77.87, 79.28)%

74.04% (73.78, 74.31)

74.04% (73.78, 74.31)

77.51% (77.24, 77.77)

78.34% (77.68, 79.01)

https://doi.org/10.1371/journal.pone.0186232.t002
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framework, such as linear discriminant analysis [31] and support vector machines [32]. There

is also potential for developing new methodology for classification within the FD analysis

framework that may perform better than existing methods–for instance functional decision

trees. In addition, uture work investigates extension of longitudinal/repeated measures regres-

sion into the FD analysis framework.

Although the focus of this paper was to apply new analysis techniques for the diagnostic

classification of thermograms, it is important to address the nature of the thermogram changes

and how these might relate to the disease state. Although the mechanism is currently unknown

we believe that the overall stabilization in thermogram profile observed in the disease state

reflects biomarker modifications within the plasma proteome resulting in the stabilization of

plasma proteins towards thermal denaturation. The nature of these modifications has not been

determined but the large changes in plasma thermograms argues against the involvement of

weak, non-covalent interactions of small molecule biomarkers with plasma proteins and is

more likely to reflect covalent modifications of plasma proteins or changes in large protein-

protein interacting networks. While it is important, and of great interest, to understand the

origin of disease thermogram changes it is not essential for the practical use of thermograms,

as long as there are consistent and reproducible signatures that can be used as a diagnostic

indicator for a particular disease.

In conclusion, the logistic regression model with FPCA scores performed best. Although

the prediction accuracy from this model was not as high as the prediction accuracy from mod-

els in other papers, our model yields results that are more easily interpretable. These methods

give more insight into the power of thermograms as a diagnostic tool and could be used to in

conjunction with the already existing diagnostic method for Lupus to increase sensitivity and

specificity.
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