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Abstract

Background: Selection bias affects Mendelian randomization investigations when selection

into the study sample depends on a collider between the genetic variant and

confounders of the risk factor–outcome association. However, the relative importance of se-

lection bias for Mendelian randomization compared with other potential biases is unclear.

Methods: We performed an extensive simulation study to assess the impact of selection

bias on a typical Mendelian randomization investigation. We considered inverse probability

weighting as a potential method for reducing selection bias. Finally, we investigated whether

selection bias may explain a recently reported finding that lipoprotein(a) is not a causal risk

factor for cardiovascular mortality in individuals with previous coronary heart disease.

Results: Selection bias had a severe impact on bias and Type 1 error rates in our simula-

tion study, but only when selection effects were large. For moderate effects of the risk

factor on selection, bias was generally small and Type 1 error rate inflation was not con-

siderable. Inverse probability weighting ameliorated bias when the selection model was

correctly specified, but increased bias when selection bias was moderate and the model

was misspecified. In the example of lipoprotein(a), strong genetic associations and

strong confounder effects on selection mean the reported null effect on cardiovascular

mortality could plausibly be explained by selection bias.

Conclusions: Selection bias can adversely affect Mendelian randomization investiga-

tions, but its impact is likely to be less than other biases. Selection bias is substantial

when the effects of the risk factor and confounders on selection are particularly large.
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Introduction

Mendelian randomization is the use of genetic information

to assess the existence of a causal relationship between a

risk factor and an outcome of interest.1,2 It is the applica-

tion of instrumental variable analysis in the context of

genetic epidemiology, where genetic variants are used as
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instruments. To be a valid instrumental variable, a genetic

variant must be associated with the risk factor in a specific

way—it cannot influence the outcome except via its associ-

ation with the risk factor, and it cannot be associated with

any confounder of the risk factor–outcome association.

An association between a valid instrumental variable and

outcome is indicative of a causal effect of the risk factor on

the outcome.3,4

This paper discusses selection bias in Mendelian

randomization. In general, selection bias arises when indi-

viduals included in the study population are not a represen-

tative sample of the target population.5 Selection bias is

likely to be present in all epidemiological analyses to some

extent. Bias due to non-representative selection usually

occurs as an example of collider bias.6–9 A collider is a var-

iable that is a common effect of two variables (it is causally

downstream of both variables). Collider bias occurs when

conditioning on such a variable: even if the two initial vari-

ables were unrelated (marginally independent), they will

typically become related when conditioning on a collider

(conditionally dependent). An example of this is the

so-called Berkson’s bias7: two diseases A and B that often

cause hospitalization may be independent across the popu-

lation, but they will typically be dependent among hospi-

talized individuals, since being hospitalized and not having

disease A means one is more likely to have disease B.

Throughout this paper, we assume that risk factor–outcome

confounding is represented by a single variable, referred to

as the confounder. Collider bias in Mendelian randomiza-

tion studies often results in a violation of the instrumental

variable assumptions. By assumption, an instrumental vari-

able and the confounder are marginally independent.

Conditioning on a collider of the instrumental variable and

the confounder would induce an association between the

two10 and would lead to the instrumental variable becoming

invalid. Hence, selection bias can lead to an association be-

tween the instrumental variable and the outcome in the ab-

sence of a causal effect of the risk factor on the outcome.11

Collider bias in Mendelian randomization can be visual-

ized through causal diagrams. Directed acyclic graphs indi-

cating the relationships between the genetic variant, risk

factor, confounder and outcome are shown in Figure 1.

We can see that the risk factor and outcome are both col-

liders between the genetic variant and the confounder. This

means that, if selection into the sample population is a

function of the risk factor, then selection bias will occur

(Figure 1, left). The same will occur if selection is a func-

tion of the outcome (Figure 1, right), but not if it is a func-

tion of the confounder alone, as the confounder is not a

collider.12

The possibility that selection bias may undermine in-

strumental variable analyses, and Mendelian randomiza-

tion in particular, has long been noted in the literature.13

However, simply saying that selection bias may undermine

a Mendelian randomization study is a platitude—it is a

true statement, but not a helpful one. Such unhelpful state-

ments are pervasive in epidemiology papers—it is common

in the discussion of papers analysing observational data to

read bald statements highlighting the possibility that find-

ings could have been adversely affected by selection bias,

or similar phenomena such as unmeasured confounding

and measurement error. It would be more helpful to evalu-

ate to what extent selection bias is likely to influence find-

ings in terms of bias or Type 1 error rate inflation, or to

suggest the magnitude of selection bias that would be re-

quired for a positive finding to be explained through bias

alone.14

In this paper, we aim to contextualize to what extent se-

lection bias affects a typical Mendelian randomization in-

vestigation. Our hope is that this paper will help

investigators make an informed judgement about the rela-

tive importance of selection bias in their work compared

with other potential sources of bias. We first list some typi-

cal scenarios for Mendelian randomization investigations

in which selection bias may occur. We then consider

simulated datasets that are similar to applied Mendelian

Key Messages

• In Mendelian randomization experiments, selection bias may arise as a result of collider bias when selection depends

on the risk factor and/or the outcome.

• Selection bias is usually small compared with other types of bias if the effects of the risk factor and/or outcome on

selection are weak or moderate. However, it can be a real concern if the selection effects are strong.

• Selection bias is increased in the presence of strong confounding. It is also influenced by direct confounder or instru-

ment effects on the selection procedure. It is not affected by instrument strength.

• Inverse probability weighting can be used to adjust for the bias when selection effects are strong and the underlying

probability model is correctly specified. However, if selection bias is weak and the probability model is misspecified,

inverse probability weighting may even increase the bias.
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randomization investigations, demonstrating the extent of

bias and Type 1 error rate inflation that occurs due to

selecting based on a collider. We show how inverse proba-

bility weighting can often help reduce bias and re-establish

nominal Type 1 error rates, but this sometimes comes at

the cost of increased standard errors for the causal effect

estimate. The use of weight trimming to avoid this infla-

tion of standard errors is also discussed. The application of

inverse probability weighting is illustrated in an example

concerning the effect of lipoprotein(a) on coronary heart

disease (CHD) risk. We also discuss consequences of in-

verse probability weighting in terms of the population to

which the estimate relates.

Selection bias in practice

In this section, we provide some examples of Mendelian

randomization studies in which selection bias is likely to

arise. These are in addition to generic scenarios in which

selection bias would occur in any epidemiological analysis,

such as the sample population being unrepresentative due

to low recruitment rate (e.g. the initial recruitment rate for

UK Biobank was 10%15) or due to the design of the study

(e.g. the Million Veteran Program specifically targets US

military veterans16).

Assessing the causal effect of a risk factor on

secondary disease or disease progression

Selection bias could occur when considering a secondary

disease outcome, such as disease progression. For example,

a recent Mendelian randomization investigation consid-

ered the effect of body mass index (BMI) on breast-cancer

progression.17 In order to be included in an analysis of dis-

ease progression, a participant must have had an initial dis-

ease event. If BMI is a risk factor for breast-cancer risk,

then selection into the sample population would be a func-

tion of a collider (namely BMI) and hence bias would oc-

cur. Bias would also occur for analysis of a recurrent

disease event if the risk factor was a cause of the first dis-

ease event. For example, lipoprotein(a) [Lp(a)] levels are

known to be associated with the risk of CHD. However, a

recent study18 conducted on individuals with already

established CHD reported that Lp(a) was not associated

with future cardiovascular mortality; in addition, the two

genetic variants in the LPA gene region that were used in

the study were found not to be associated with cardiovas-

cular mortality. We return to this example later in the

paper to assess whether this result could be explained by

selection bias.

Assessing the causal effect of a risk factor on a

disease outcome in an elderly population

Another form of selection bias is survivor bias, which may

occur when considering a disease outcome in an elderly

population.19 For example, a recent Mendelian randomiza-

tion investigation considered the effect of BMI on

Parkinson’s disease risk.20 Genetic associations with dis-

ease risk were estimated in a consortium of studies with

mean age varying from 48.9 to 76.2 years. Whereas selec-

tion due to mortality may be negligible in a study of young

adults, it would be more concerning in an elderly sample

population. As above, since BMI is a risk factor for in-

creased mortality, selection bias could occur.

Assessing a causal effect in a subpopulation

Selection bias could also occur when considering causal

effects in a subset of the population. This could result in

selection being a function of the risk factor. For example,

genetic associations of alcohol-related variants with

oesophageal cancer have been considered separately in

non-drinkers, moderate drinkers and heavy drinkers21—

stronger associations would be expected in heavier

drinkers. Selection bias would have occurred here, as strata

were defined based on the exposure. In contrast, sex-

stratified analyses of alcohol-related variants22 should

not be affected by selection bias, as sex is determined at

conception and cannot be an effect (collider) of any other

variable.21,23 Alternatively, assessing a causal effect in a

subpopulation may result in selection being a function of

Figure 1. Directed acyclic graphs (DAG) indicating the relationships between an instrumental variable (G), exposure (X), confounder (U) and outcome

(Y). Selection (S) leads to bias if it is a function of the exposure (left panel) or the outcome (right panel), as both exposure and outcome are causally

downstream of the genetic variant and confounder, and hence conditioning on selection induces an association between the genetic variant and con-

founder in both cases.
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the outcome. This would be the case if participants were

recruited in a hospital setting, and so those with a high risk

of the disease are more likely to be selected.

Simulation study

To investigate the magnitude of bias and Type 1 error in-

flation in a typical Mendelian randomization investigation,

we perform a simulation study. We start with a base sce-

nario, and then vary different parameters of the data-

generating model in turn.

Data-generating model and choice of parameters

Our simulation model is as follows (individuals are

indexed by i):

Xi ¼ aG Gi þ aU Ui þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

G � a2
U

q
�Xi

Yi ¼ bX Xi þ bU Ui þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

X � b2
U

q
�Yi

Si � BernoulliðpiÞ

logitðpiÞ ¼ c0 þ cXXi þ cUUi

Gi;Ui; �Xi; �Yi � Nð0; 1Þ independently

The risk factor (X) is a linear combination of the genetic

variant (G), confounder (U) and an independent error term

(�X). The outcome (Y) is a linear combination of the risk

factor, confounder and an independent error term (�Y).

Selection (S) is modelled as a Bernoulli trial with probabil-

ity of selection p, which is assumed to be a logistic-linear

function of the risk factor and confounder. The parameter

bX denotes the causal effect to be estimated.

We have specified the model so that the risk factor and

the outcome both have standard normal distributions.

Consequently, the parameters a2
G; a2

U can be interpreted as

the proportion of variance in the risk factor that can be

explained by the genetic instrument and confounder, re-

spectively, whereas b2
X and b2

U have a similar interpretation

for the outcome. Finally, the constant term c0 determines

the prevalence of the selection event (S¼1).

We consider six different simulation scenarios. In the

baseline Scenario 1, the parameters are specified as fol-

lows. We set aG ¼
ffiffiffiffiffiffiffiffiffiffi
0:02
p

; aU ¼
ffiffiffiffiffiffiffi
0:5
p

; bU ¼
ffiffiffiffiffiffiffi
0:5
p

, mean-

ing that the genetic variant explains 2% of the variance

in the risk factor and the confounder explains 50% of

the variance in both the risk factor and the outcome.

We assume a null causal effect of the risk factor on the out-

come (bX ¼ 0). We also set c0 ¼ 0 and cU ¼ 0, which cor-

responds to setting the median probability of selection to

0.5 and assuming that the confounder does not influence

selection. The risk factor effect on selection cX is allowed

to take values –2, –1, –0.5, –0.2, 0, 0.2, 0.5, 1 and 2. The

odds of selection per 1 standard deviation increase in the

risk factor is expðcXÞ; for cX ¼ 2, there is a expð2Þ ¼ 7:39-

fold increase in the odds of selection per standard deviation

increase in the risk factor.

We then vary in turn: the proportion of variance in the

risk factor explained by the genetic variant aG ¼ffiffiffiffiffiffiffiffiffiffi
0:01
p

;
ffiffiffiffiffiffiffiffiffiffi
0:05
p

;
ffiffiffiffiffiffiffi
0:1
p

(Scenario 2); the proportion of vari-

ance in the risk factor explained by the confounder aU ¼ffiffiffiffiffiffiffi
0:2
p

;
ffiffiffiffiffiffiffi
0:8
p

(Scenario 3); the proportion of variance in the

outcome explained by the confounder bU ¼
ffiffiffiffiffiffiffi
0:2
p

;
ffiffiffiffiffiffiffi
0:8
p

(Scenario 4); the effect of the confounder on selection cU ¼
�1; 1 (Scenario 5); and the probability of selection c0 ¼
�1;�2;�2:4 (Scenario 6).

We simulate data on a population of 100 000 individu-

als and then randomly select 10 000 individuals with S¼ 1

as the sample. In Scenario 6, for c0 ¼ �2, the analysis is

based on a sample size of 1500 instead, as the median

probability of selection is 2.3%. For c0 ¼ �2:4, the analy-

sis is based on a sample size of 500, as the median proba-

bility is 0.8%. Ten thousand simulated datasets are

generated for each set of parameters. In each simulation,

we estimate the causal effect of the risk factor on the out-

come using linear regression for the instrument–risk factor

and instrument–outcome associations and computing the

ratio estimate b̂X ¼
b̂YjG

b̂XjG
.

Results

Results are provided in Table 1 (Scenario 1) and Table 2

(other scenarios). In Table 1, we report the mean, median

and standard deviation for the estimated effect of the risk

factor on the outcome, the median standard error of these

effect estimates and the empirical Type 1 error rate for the

risk factor–outcome association at a 5% level of signifi-

cance level (defined as the proportion of datasets for which

j b̂X

seðb̂XÞ
j > 1:96). In Table 2, we consider a slightly narrower

range of values for the selection effect and only provide the

median causal effect estimates and empirical Type 1 error

rates.

In Scenario 1, when the effect cX of the risk factor on se-

lection is weak, the mean causal effect estimates are nearly

unbiased. However, as the strength of the selection effect cX

increases, so does the magnitude of bias. In the rather extreme

case where cX ¼ 62, bias is so large that the null causal hy-

pothesis is rejected in almost 80% of the simulations.
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The direction of selection bias in Table 1 is negative,

regardless of the direction or magnitude of the risk factor–

selection parameter. The direction of selection bias

depends on the confounder effects aU;bU on the risk factor

and the outcome. If aU and bU have the same sign, the

causal effect estimate is biased downwards; if not, it is

biased upwards (Supplementary Table 1, available as

Supplementary data at IJE online).

In the five scenarios of Table 2, we investigated the im-

pact of varying different parameters on the magnitude of

selection bias. In Scenario 2, we varied instrument

strength. This did not affect the magnitude of selection

bias (see also 12). However, stronger instruments led to

larger standard errors and hence increased Type 1 error

rates. Weak instrument bias is unlikely to have affected

our simulations, since we used a single genetic instrument

and weak instrument bias is usually small in this case.24

Also, even with aG ¼
ffiffiffiffiffiffiffiffiffiffi
0:01
p

, the average F statistic for

regression of the risk factor on the instrument was

around 100.

In Scenarios 3 and 4, we varied the parameters aU and

bU, representing the confounder effects on the risk factor

and the outcome, respectively. In both cases, we observed

a moderate increase in the magnitude of selection bias as

the strength of the confounder effect increased.

In Scenario 5, we considered a selection procedure influ-

enced by both the risk factor and the confounder. Selection

bias is present in this scenario, but the direction of bias

also depends on the confounder–selection parameter cU in

a non-linear and non-monotonic way. In the simulations of

Table 2, the causal effect is underestimated if the con-

founder and risk factor effects on selection have the same

direction. It is mildly over-estimated if the risk factor and

confounder affect the probability of selection in opposite

directions, except when the effect of the risk factor is sig-

nificantly stronger than that of the confounder, in which

case the causal effect is again underestimated. These results

also depend on the directions of effects of the confounder

on the risk factor and the outcome (Supplementary

Table 2, available as Supplementary data at IJE online).

Finally, in Scenario 6, there was a weak effect of the

probability of selection on selection bias. In particular, bias

was slightly reduced when selection was less common.

Type 1 error rates also reduced, since simulations for less

common selection were based on a smaller sample size,

resulting in larger standard errors.

The scenarios that we have considered are by no means

exhaustive. Additional scenarios are reported in the

Supplementary Material, available as Supplementary data

at IJE online. When selection depends only on the risk fac-

tor, we observed that the magnitude of selection bias is in-

dependent of the true value of the risk factor–outcome

causal effect (Supplementary Table 3, available as

Supplementary data at IJE online). When selection is influ-

enced by the outcome only, or by the outcome and con-

founder, estimates are unbiased when the true causal effect

is null (under the causal null, selection is not downstream

of the genetic variant and so not a collider; Supplementary

Table 4, available as Supplementary data at IJE online).

However, selection bias is still present when there is a

(non-zero) causal effect of the risk factor on the outcome.

Finally, when selection depends on the risk factor, selection

bias acts similarly in simulations with a binary outcome as

with a continuous outcome (Supplementary Table 5, avail-

able as Supplementary data at IJE online).

In each of the scenarios presented, bias and Type 1 error

rate inflation were minimal when cX ¼ 60:2 (i.e. each ad-

ditional standard deviation increase/decrease in the risk

factor led to around a 20% greater/lower chance of selec-

tion). Bias and Type 1 error rate inflation were minimal,

with cX ¼ 60:5 (65% greater/40% lower chance per stan-

dard deviation increase/decrease in risk factor) in all sce-

narios except Scenario 2 with aG ¼
ffiffiffiffiffiffiffi
0:1
p

and Scenario 5,

in which the confounder also affected selection. Whereas

these simulation findings are not universally applicable, in

particular the extent of Type 1 error inflation (which

would be more severe if the sample size was much bigger

or the instrument was much stronger), they suggest that

moderate selection bias is unlikely to have a serious impact

on moderately sized Mendelian randomization investiga-

tions. In comparison, moderate levels of pleiotropy have

been shown to lead to more severe bias and Type 1 error

inflation.25,26

Table 1. Mean, median, standard deviation (SD), median

standard error (Med SE) of estimates and empirical Type 1 er-

ror rate (%) at a 5% level of significance for associations of

the risk factor with the outcome in Scenario 1, for different

values of the selection effect (cX, also expressed as the odds

ratio per 1 standard deviation increase in the risk factor)

cX Odds

ratio

Mean Median SD Med SE Type 1 error

rate (%)

–2 0.14 –0.296 –0.289 0.123 0.106 77.7%

–1 0.37 –0.107 –0.103 0.089 0.083 24.3%

–0.5 0.61 –0.032 –0.029 0.077 0.074 6.6%

–0.2 0.82 –0.007 –0.004 0.072 0.071 5.0%

0 1.00 –0.002 0.000 0.071 0.071 5.1%

0.2 1.22 –0.007 –0.004 0.072 0.071 4.8%

0.5 1.65 –0.032 –0.030 0.076 0.074 6.6%

1 2.72 –0.107 –0.103 0.089 0.083 23.6%

2 7.39 –0.296 –0.289 0.123 0.106 77.9%
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Inverse probability weighting

One common solution to the problem of selection bias is to

inversely weight the sample population by the probability

of selection into the sample.27,28 The intuition is that

individuals with low probability of selection are likely to

be underrepresented in the sample. Inverse probability

weighting upweights these individuals to account for other

individuals with similar characteristics in the population

who were not included in the sample. For example, if an

individual included in the sample population would have

been sampled with 100% probability, then that individual

does not need to be upweighted whereas, if a selected

Table 2. Median association of the risk factor with the outcome and empirical Type 1 error rate (%) in Scenario 2 (varying instru-

ment strength), Scenario 3 (varying confounder effect on risk factor), Scenario 4 (varying confounder effect on outcome),

Scenario 5 (varying confounder effect on selection probability) and Scenario 6 (varying prevalence of selection) for different val-

ues of the selection effect (cX)

cX Median Type 1 error Median Type 1 error Median Type 1 error

Scenario 2: aG ¼
ffiffiffiffiffiffiffiffiffiffi
0:01
p

aG ¼
ffiffiffiffiffiffiffiffiffiffi
0:05
p

aG ¼
ffiffiffiffiffiffiffi
0:1
p

–1 –0.101 13.9% –0.104 50.4% –0.103 79.3%

–0.5 –0.030 5.9% –0.030 9.8% –0.029 14.1%

–0.2 –0.004 5.2% –0.005 5.0% –0.005 5.3%

0 –0.001 5.0% –0.001 5.1% 0.000 4.9%

0.2 –0.006 5.3% –0.005 5.2% –0.005 5.4%

0.5 –0.027 5.6% –0.029 9.8% –0.029 13.8%

1 –0.104 14.0% –0.103 49.9% –0.102 79.7%

Scenario 3: aU ¼
ffiffiffiffiffiffiffi
0:2
p

aU ¼
ffiffiffiffiffiffiffi
0:5
p

aU ¼
ffiffiffiffiffiffiffi
0:8
p

–1 –0.064 12.1% –0.105 24.3% –0.130 35.1%

–0.5 –0.018 5.7% –0.030 6.6% –0.039 8.0%

–0.2 –0.003 4.6% –0.005 5.4% –0.006 5.1%

0 0.002 4.9% 0.000 4.8% 0.000 5.2%

0.2 –0.004 4.8% –0.005 5.4% –0.007 5.1%

0.5 –0.021 5.6% –0.029 6.6% –0.038 7.9%

1 –0.067 12.2% –0.103 24.4% –0.131 35.8%

Scenario 4: bU ¼
ffiffiffiffiffiffiffi
0:2
p

bU ¼
ffiffiffiffiffiffiffi
0:5
p

bU ¼
ffiffiffiffiffiffiffi
0:8
p

–1 –0.065 11.8% –0.104 24.2% –0.131 35.5%

–0.5 –0.019 5.7% –0.029 6.4% –0.038 7.9%

–0.2 –0.002 5.0% –0.005 5.1% –0.007 4.6%

0 0.000 5.3% –0.001 4.9% 0.000 4.9%

0.2 –0.002 5.1% –0.003 4.9% –0.005 5.2%

0.5 –0.018 5.4% –0.029 6.6% –0.039 8.0%

1 –0.065 12.1% –0.100 22.7% –0.129 34.8%

Scenario 5: cU ¼ �1 cU ¼ 0 cU ¼ 1

–2 –0.293 87.4% –0.290 78.3% –0.110 18.1%

–1 –0.145 45.3% –0.103 24.0% 0.043 8.9%

–0.5 –0.069 16.0% –0.028 6.9% 0.043 10.0%

–0.2 –0.025 6.6% –0.004 5.4% 0.023 6.3%

0 0.002 4.9% 0.000 5.0% –0.001 5.5%

0.2 0.023 6.4% –0.005 4.8% –0.025 6.3%

0.5 0.046 9.7% –0.029 6.4% –0.068 15.0%

1 0.042 9.1% –0.101 23.2% –0.146 45.3%

2 –0.112 18.6% –0.291 77.7% –0.293 87.1%

Scenario 6: c0 ¼ �1 c0 ¼ �2 c0 ¼ �2:4

–1 –0.103 23.5% –0.086 6.7% –0.064 5.4%

–0.5 –0.024 6.4% –0.019 4.8% 0.000 5.0%

–0.2 –0.007 4.9% –0.002 5.0% –0.001 4.9%

0 0.001 4.4% –0.002 5.2% –0.006 4.9%

0.2 –0.003 5.2% 0.000 4.9% –0.002 5.0%

0.5 –0.027 6.3% –0.018 4.9% –0.012 5.4%

1 –0.104 24.1% –0.081 6.9% –0.072 5.7%
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individual would have been sampled with 20% probabil-

ity, that individual is effectively replicated four times to

represent the 80% of similar individuals who were not

sampled.

Simulations with inverse probability weighting

To investigate the utility of inverse probability weighting

to correct for selection bias in Mendelian randomization,

we extend the simulations presented in the previous sec-

tion. We consider Scenario 5 with a varying confounder

effect on selection, cU ¼ �1; 0;1, where cU ¼ 0 is

equivalent to Scenario 1. We perform logistic regression of

selection on the risk factor in the full population of

100 000 individuals to estimate the selection probabilities

and then perform linear regression of the outcome on the

genetic variant weighting by the reciprocals of these proba-

bilities in the 10 000 selected individuals only. For cU ¼ 0,

the selection model is correctly specified whereas, for

cU ¼ 61, it is not.

Trimming of weights

A disadvantage of inverse probability weighting is that

individuals with a very small probability of selection can

receive a very large weight in the analysis. Whereas this is

appropriate theoretically, the presence of such individuals

can lead to highly variable and imprecise estimates. It is

common in practice to trim weights above some thresh-

old29—e.g. to set the largest 1% of weights to be equal to

the 99th percentile of the empirical distribution of weights.

In our simulations, we perform analyses with no trimming,

and with trimming at the 99th and 95th percentiles.

Results

Simulations were repeated for 10 000 datasets for each set

of parameters. The results are shown in Table 3. When the

inverse probability model was correctly specified (cU ¼ 0),

inverse probability weighting reduced selection bias and

the resulting causal effect estimates were unbiased. When

the weighting model was not correctly specified (cU ¼ 61),

bias was present. For small values of cX, bias induced by

inverse probability weighting was worse than that arising

from selection bias. For large values of cX, inverse proba-

bility weighting did improve bias, even though the weight-

ing model was not correctly specified. In practice,

additional information on possible confounders is often

available and can also be incorporated in the weighting

scheme. Somewhat paradoxically, although increasing the

effect of the confounder on the risk factor aU increases se-

lection bias, it also increases the correlation between the

risk factor and confounder, meaning that misspecification

in the weighted model based on the risk factor only is

less severe (Supplementary Table 6, available as

Supplementary data at IJE online). Trimming had little ef-

fect on results except in the case of extreme values of the

risk factor–selection parameter cX ¼ 62, where it reintro-

duced some of the bias that had been removed by using in-

verse probability weighting, but reduced the variability of

estimates.

Example: effect of lipoprotein(a) on
secondary cardiovascular disease

Lp(a) is an unusual risk factor for Mendelian randomiza-

tion, as genetic variants in the LPA gene region explain up

to 90% of its variance.30 This comes in contrast to most

Mendelian randomization investigations, where genetic

variants explain a small proportion of the variance in the

risk factor, often as low as 1–5% for sets of genetic var-

iants and polygenic risk scores, and generally less for indi-

vidual genetic variants. Consequently, even moderate

selection bias may have a serious impact on Mendelian

randomization analyses of Lp(a). Previous investigations

have demonstrated associations between genetic variants

in the LPA gene region and CHD.31,32 However, a recent

investigation of individuals with previous established CHD

did not find an association between variants in the same re-

gion and subsequent cardiovascular mortality.18 We con-

sider by simulation whether this result could be explained

by selection bias.

Our data-generating model is the same as in the simula-

tion study except that the outcome is binary:

Yi � BernoulliðpYiÞ

logit pYi ¼ b0 þ bXXi þ bUUi:

Parameter values are informed by the literature on

Lp(a) to resemble the analysis of Zewinger et al.,18 with

the selection variable S representing an initial CHD event

and the outcome Y representing cardiovascular mortality.

As in Zewinger et al.,18 we use a sample size of n¼ 3313

for the main analysis. This is assumed to be drawn from a

larger population of size N¼ 100 000. We use a single ge-

netic instrument that explains 36% of the variation in

Lp(a) levels (aG ¼
ffiffiffiffiffiffiffiffiffiffi
0:36
p

); this is the proportion of varia-

tion previously reported31 as explained by the two variants

associated with Lp(a) levels that were used in Zewinger

et al.’s analysis. We also set aU ¼
ffiffiffiffiffiffiffiffiffiffi
0:32
p

, implying that

half of the remaining variation in Lp(a) is due to the con-

founder. We assume that the effect of Lp(a) on CHD risk

(the selection event) is equal to the effect of Lp(a) on
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cardiovascular mortality (the outcome event): cX ¼ bX ¼
þ0:25. Similarly, the effects of the confounder on CHD

risk (cU) and cardiovascular mortality (bU) are assumed

equal. We set c0 ¼ �2, meaning that around 20% of the

population experience a CHD event and survive to be eligi-

ble for selection. We set b0 to obtain around 20% outcome

events in the selected sample (corresponding to the 621 car-

diovascular deaths in the original study). We took different

values of the confounder effects cU ¼ bU ¼ 0;þ0:2;þ0:5;

þ1;þ1:5;þ2. We generated 10 000 datasets for each value

of the confounder effect and calculated in each case the as-

sociation coefficient from logistic regression for the first

3313 participants in the population (no selection) and the

first 3313 with the selection event.

Table 4 shows the results: the mean association esti-

mates with no selection and with selection, and the empiri-

cal power under selection. Empirical power for the sample

Table 3. Median, standard deviation (SD), median standard error (Med SE) of estimates and empirical Type 1 error rate (%) for

the risk factor�outcome causal effect with correctly specified inverse probability weighting selection model (cU ¼ 0) and mis-

specified selection model (cU61) for different values of the selection effect (cX)

cX Median SD Med SE Type 1 Median SD Med SE Type 1 Median SD Med SE Type 1

cU ¼ 0 No trimming Trimming at 99% Trimming at 95%

�2 �0.008 6.499 0.072 39.6% �0.113 0.129 0.085 33.8% �0.206 0.124 0.096 56.8%

�1 �0.002 0.091 0.071 11.4% �0.032 0.089 0.075 10.7% �0.076 0.091 0.080 17.8%

�0.5 �0.002 0.076 0.071 6.3% �0.010 0.076 0.072 6.3% �0.027 0.078 0.074 7.2%

�0.2 0.000 0.072 0.071 5.2% �0.002 0.072 0.071 5.1% �0.007 0.073 0.072 5.1%

0 0.001 0.072 0.071 5.0% 0.001 0.072 0.071 5.0% 0.001 0.072 0.071 5.0%

0.2 0.001 0.072 0.071 5.0% �0.001 0.072 0.071 4.9% �0.006 0.073 0.072 5.1%

0.5 0.001 0.076 0.071 6.5% �0.008 0.076 0.072 6.4% �0.024 0.078 0.074 6.7%

1 �0.001 0.091 0.071 11.3% �0.032 0.089 0.075 10.7% �0.074 0.092 0.080 17.8%

2 �0.008 0.902 0.072 38.8% �0.118 0.130 0.085 34.2% �0.210 0.125 0.096 58.1%

cU ¼ �1 No trimming Trimming at 99% Trimming at 95%

�2 �0.031 1.226 0.058 49.0% �0.130 0.109 0.071 47.3% �0.207 0.103 0.081 69.5%

�1 0.009 0.110 0.058 24.0% �0.043 0.086 0.065 17.6% �0.097 0.086 0.072 30.7%

�0.5 0.025 0.076 0.059 14.7% �0.003 0.075 0.063 9.5% �0.040 0.077 0.068 11.6%

�0.2 0.033 0.069 0.061 11.9% 0.016 0.069 0.063 7.9% �0.010 0.072 0.067 6.7%

0 0.040 0.067 0.063 11.8% 0.029 0.067 0.064 8.8% 0.010 0.069 0.066 6.0%

0.2 0.043 0.066 0.064 10.6% 0.037 0.066 0.065 9.1% 0.024 0.068 0.067 6.8%

0.5 0.049 0.067 0.067 10.9% 0.047 0.067 0.068 10.5% 0.043 0.068 0.068 9.7%

1 0.050 0.074 0.074 10.9% 0.047 0.074 0.074 10.3% 0.041 0.075 0.075 8.9%

2 0.032 0.123 0.086 16.9% �0.013 0.117 0.093 11.0% �0.067 0.119 0.100 13.9%

cU ¼ 1 No trimming Trimming at 99% Trimming at 95%

�2 0.030 0.122 0.087 16.7% �0.015 0.117 0.093 10.6% �0.070 0.119 0.100 13.8%

�1 0.052 0.072 0.073 10.9% 0.049 0.072 0.074 10.1% 0.042 0.073 0.075 8.6%

�0.5 0.047 0.067 0.067 11.0% 0.045 0.068 0.067 10.5% 0.041 0.068 0.068 9.5%

�0.2 0.045 0.067 0.064 11.9% 0.039 0.067 0.065 10.0% 0.026 0.069 0.067 7.4%

0 0.039 0.066 0.062 11.4% 0.028 0.067 0.064 8.6% 0.009 0.069 0.066 6.1%

0.2 0.033 0.070 0.061 12.0% 0.016 0.070 0.063 8.1% �0.011 0.072 0.067 6.9%

0.5 0.025 0.076 0.060 14.1% �0.004 0.074 0.063 9.1% �0.042 0.076 0.068 11.5%

1 0.005 0.102 0.058 24.1% �0.047 0.085 0.065 17.9% �0.100 0.086 0.072 31.0%

2 �0.034 1.709 0.058 48.5% �0.132 0.110 0.071 48.0% �0.209 0.104 0.081 70.2%

Table 4. Mean association estimates in the population (‘no se-

lection’) and among individuals with a CHD event (‘with

selection’), and empirical power at a 5% level of significance

for different magnitudes of confounding in the applied exam-

ple (the b0 parameter is chosen such that the proportion of

cases in the selected sample is about 20% for each value of

bU and cU)

No selection With selection

bU, cU b0 Mean estimate Mean estimate Empirical power

0 –1.4 0.149 0.149 93.5%

þ0.2 –1.6 0.148 0.145 91.3%

þ0.5 –1.9 0.142 0.133 86.1%

þ1 –2.5 0.131 0.102 67.7%

þ1.5 –3.3 0.120 0.077 44.0%

þ2 –4.0 0.107 0.061 30.4%
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with no selection was not comparable, as there were fewer

events in this sample. Even with no selection, the association

estimate differed from aG � bX ¼ 0:15 and attenuated as cU

increased due to non-collapsibility.33,34 Bias in mean associa-

tion estimates due to selection was towards the null and in-

creased with cU. Although the investigation was well

powered in the absence of selection bias, when cU ¼ þ1:5,

bias was fairly severe and the empirical power was 45.5%.

When cU ¼ þ2, the mean association estimate had reduced

by almost half compared with the estimate with no selection

and empirical power was only 31.0%. Whereas these values

of cU are fairly large, there are individual cardiovascular risk

factors such as LDL-cholesterol that are positively correlated

with Lp(a) and do have large effects on CHD risk and cardio-

vascular mortality; a 30% lowering (approximately 1 stan-

dard deviation) of genetically predicted LDL-cholesterol has

previously been shown to reduce CHD risk by 67%,35 corre-

sponding to cU ¼ þ1:11 (�logð0:33Þ ¼ þ1:11). When all

confounders are considered together, the value of cU would

be larger still. In conclusion, this simulation exercise suggests

that it is plausible that the null finding of Zewinger et al. may

have been obtained due to selection bias.

Discussion

The aim of this paper was to consider selection bias in the

context of Mendelian randomization. We discussed scenar-

ios in which selection bias may occur, in particular those

that are likely to affect Mendelian randomization investi-

gations. We simulated data to be representative of a typical

Mendelian randomization investigation and showed that

selection bias can significantly influence causal effect esti-

mates when selection into the study is strongly influenced

by the risk factor. However, moderate selection bias did

not adversely affect estimates too severely across a range of

realistic scenarios. A similar conclusion was reached previ-

ously for genetic association estimates in the context of sec-

ondary events.36 Aside from the risk factor–selection

parameter, the magnitude of selection bias was shown to

be influenced by the strength of the confounder–risk factor

and confounder–outcome effects, as well as the con-

founder–selection parameter and selection frequency. We

demonstrated that inverse probability weighting can ame-

liorate selection bias, but only in cases where the probabil-

ity of selection can be modelled accurately. When selection

bias was moderate, misspecification in the selection model

meant that the ‘cure could be worse than the disease’.

Finally, we considered a somewhat atypical example of a

Mendelian randomization analysis in which genetic var-

iants explained a large proportion of variance in the risk

factor, and showed that strong (but credibly so) selection

bias could explain the anomalous finding that LPA var-

iants were not associated with cardiovascular mortality.

Although inverse probability weighting may be helpful

in some cases to reduce selection bias, its implementation

requires estimation of probability of selection into the

study. This typically requires information on individuals

who were not included in the study, which may not be

available. An important question when considering

whether to use inverse probability weighting is to whom

the causal estimate relates. As an example, consider esti-

mating the effect of lipid fractions (in particular, LDL-

cholesterol) on cognitive performance after a stroke event.

A Mendelian randomization analysis of a representative

sample of the general population would provide an esti-

mate of the average causal effect of LDL-cholesterol on

cognitive performance in the population as a whole (this

may be an average treatment effect or a local average treat-

ment effect, depending on the precise assumptions

made37—although previous work suggests a Mendelian

randomization estimate represents the effect of life-long in-

tervention in a risk factor, and therefore may be a poor

guide as to the impact of intervention on the risk factor in

a practical setting38). Restricting the estimate to those who

had a stroke event is likely to lead to selection bias. By in-

verse probability weighting, we can potentially resolve the

problem of selection bias, but now our estimate is

reweighted back to the original population—it represents

the average effect of intervening on LDL-cholesterol in the

population as if everyone in the population had a stroke

event. Therefore, by inverse probability weighting, we

have resolved the problem that the instrumental variable

assumptions were violated in the sample population, but

now our causal estimate relates to the general population

and not the sample population.

In the majority of simulations in this manuscript, we

have modelled selection as depending on the risk factor and

a single confounder with linear relationships between varia-

bles and the probability of selection as a logistic variable.

Although we suspect that our findings will apply to different

selection models, it would not be feasible to verify this for

every possible model configuration, as well as for binary

and time-to-event outcomes. However, our results were ro-

bust across a range of realistic scenarios. A potential exten-

sion of this work is to develop an analytic bias calculator

for instrumental variable analysis. This would be a useful

tool for sensitivity analysis not only for Mendelian randomi-

zation, but also for other contexts in which instrumental

variable analysis is used to analyse observational data.

In conclusion, selection bias can have an adverse effect

on Mendelian randomization studies, but in most cases its

importance will be less than other sources of bias, such as

pleiotropy or population stratification.
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