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Background: Idiopathic pulmonary fibrosis (IPF) is one of interstitial lung diseases (ILDs)
with poor prognosis. S100 calcium binding protein A12 (S100A12) has been reported as a
prognostic serum biomarker in the IPF, but its correlation with IPF remains unclear in the
lung tissue and bronchoalveolar lavage fluids (BALF).

Methods: Datasets were collected from the Gene Expression Omnibus (GEO) database.
Person correlation coefficient, Kaplan–Meier analysis, Cox regression analysis, functional
enrichment analysis and so on were used. And single cell RNA-sequencing (scRNA-seq)
analysis was also used to explore the role of S100A12 and related genes in the IPF.

Results: S100A12 was mainly and highly expressed in the monocytes, and its expression
was downregulated in the lung of patients with IPF according to scRNA-seq and the
transcriptome analysis. However, S100A12 expression was upregulated both in blood
and BALF of patients with IPF. In addition, 10 genes were found to interact with S100A12
according to protein–protein interaction (PPI) network, and the first four transcription
factors (TF) targeted these genes were found according to hTFtarget database. Two most
significant co-expression genes of S100A12 were S100A8 and S100A9. The 3 genes
were significantly negatively associated with lung function and positively associated with
the St. George’s Respiratory Questionnaire (SGRQ) scores in the lung of patients with IPF.
And, high expression of the 3 genes was associated with higher mortality in the BALF, and
shorter transplant-free survival (TFS) and progression-free survival (PFS) time in the blood.
Prognostic predictive value of S100A12 was more superior to S100A8 and S100A9 in
patients with IPF, and the composited variable [S100A12 + GAP index (gender, age, and
physiological index)] may be a more effective predictive index.

Conclusion: These results imply that S100A12 might be an efficient disease severity and
prognostic biomarker in patients with IPF.
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INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and
fibrotic interstitial pneumonia of unknown etiology with
repeated acute lung injury, leading to worsening dyspnea and
deteriorating lung function (1). The prognosis of patients with
IPF is poor usually dying within 2–3 years after diagnosis (2, 3),
and the 5-year survival rate is less than 40% (4, 5). Therefore, it is
important to identify effective biomarkers for the early
identification of patients with a worse prognosis.

Studies had shown that congenital and adaptive immune
processes could coordinate existing fibrosis responses (6, 7),
and elevated monocyte count of blood were associated with
increased risks of IPF progression, hospitalization, and mortality
(8, 9). S100A12 (a member of the S100 family of calcium-binding
proteins) were mainly and highly expressed in the monocyte
cluster according to single cell RNA-sequencing (scRNA-seq)
analysis of lung tissue in patients with IPF (10–12). S100A12
takes an important role in the adhesion and migration of
leukocytes, and production of cytokines and chemokines
according to UniProt database (13). S100A12 could stimulate
innate immune cells by binding to advanced glycosylated end
product receptor (AGER) (14). In addition, Kang et al. found
that S100A12 could activate airway epithelial cells to produce
MUC5AC (mucin 5AC, oligomeric mucus/gel-forming) (15).
Also, S100A12 could inhibit lung fibroblast migration
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according to RAGE-p38 MAPK (mitogen-activated protein
kinase) signaling (16). Previous studies had demonstrated that
S100A12 was upregulated in the serum of patients with IPF, and
high expression of S100A12 was associated with higher mortality
in patients with IPF (17, 18). However, the correlation between
S100A12 and lung function, and the role of S100A12 in the lung
tissue and BALF of patients with IPF are unclear.

Therefore, in this study, we used publicly available datasets in
the Gene Expression Omnibus (GEO) database to evaluate the
association between S100A12 and lung function, and the role of
S100A12 in patients with IPF.
MATERIALS AND METHODS

Dataset Preprocessing
Figure 1 shows the workflow of our study. According to the GEO
database (http://www.ncbi.nlm.nih.gov/geo/), 24 datasets were
selected: 13 datasets came from lung tissue samples [GSE47460
(Agilent) (19), GSE32537 (Affymetrix) (20), GSE10667 (Agilent)
(21), GSE110147 (Affymetrix) (22), GSE53845 (Agilent) (23),
GSE150910 (Illumina) (24), GSE19976 (Affymetrix) (25),
GSE16538 (Affymetrix) (26), GSE48149 (Illumina) (27),
GSE76808 (Affymetrix) (28), GSE81292 (Affymetrix) (29),
GSE122960 (Illumina) (10), and GSE135893 (Illumina) (11)];
FIGURE 1 | Workflow of this study.
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8 datasets came from blood samples [GSE28042 (Agilent) (18),
GSE93606 (Affymetrix) (30), GSE33463 (Illumina) (31),
GSE19314 (Affymetrix) (32), GSE33566 (Agilent) (33),
GSE132607 (Affymetrix) (34), GSE27957 (Affymetrix) (18), and
GSE38958 (Affymetrix) (35)]; 3 datasets came from
bronchoalveolar lavage fluids (BALF) samples [GSE70866
(Agilent) (36), GSE75023 (Affymetrix) (37), and GSE121500
(Affymetrix) (38)]. R package “Affy” (39) was used to normalize
the array data. Approval of the Ethics Committee was not required
because the information of patients was obtained from the GEO.

The clinical features of each dataset were showed in the Table
S1. Percent predicted forced vital capacity (FVC% predicted) and
percent predicted diffusion capacity of the lung for carbon
monoxide (Dlco% predicted) were extracted from the
GSE38958, GSE93606, and GSE132607 datasets (blood). FVC%
predicted, Dlco% predicted, and the St. George’s Respiratory
Questionnaire (SGRQ) scores were extracted from the
GSE32537 dataset (lung). FVC% predicted, Dlco% predicted,
and percent predicted forced expiratory volume in the first
second (FEV1% predicted) were extracted from the GSE47460
dataset (lung). Lung function data in the GSE33566 dataset are
incomplete. Therefore, lung function data of this dataset were not
used in this study. Transplant-free survival (TFS) was extracted
from GSE27957 and GSE28042 datasets (blood). For progression-
free survival (PFS), patients with IPF were followed up from the
blood draw until (1) disease progression, defined as the decline in
FVC% predicted >10% over six months period; (2) death; or (3)
censoring at the last contact. Progression-free survival (PFS) was
extracted from GSE93606, and GAP index (gender, age, and
physiological index) was calculated according to previous report
(40) in the GSE93606 dataset (blood). Furthermore, follow-up
transcriptome data (1, 3, 6, 12 months) were also extracted from
the GSE93606 datasets. GSE70866 dataset was consisted of 3
cohorts (FREIBURG, SIENA, and LEUVEN), and survival and
GAP data were extracted from this dataset.

R package “stats” (v.4.0.5, Spearman correlation analysis) was
used to determine the association between S100A12 and other
genes or lung function among these datasets. Heatmap was
constructed by the R packages “gplots” (v.3.1.1), “pheatmap”
(v.1.0.12) and “RColorBrewer (v.1.1-2)”. Forest plot was
constructed by R package “forestplot” (v.1.10.1, https://CRAN.
R-project.org/package=forestplot).

The Identification of S100A12-Related
Partners and Transcription Factors (TFs)
Protein–protein interaction (PPI) network was constructed based
on the STRING database (http://www.string.embl.de/, version:
11.0b) (41), and was visualized according to Cytoscape
(a software platform for visualizing complex networks, v3.8.2).
MEM database (42) (https://biit.cs.ut.ee/mem/index.cgi) was used
to verify the correlation between S100A12 and genes came from
STRING based on hundreds of publicly available gene expression
datasets. Transcription factors (TFs) are key regulators modulated
the expression of target genes. In this study, hTFtarget database
was used to find out the TFs targeted both S100A12 and
its partners.
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The Prognosis-Related Analysis
Kaplan–Meier analysis with the log-rank test was performed to
compare TFS or PFS or survival among different groups
according to R package “survival” (v.3.2-7). The optimal cut-
off value of genes was determined for the survival analysis
according to the “surv_cutpoint” function of the R package
“survminer” (https://CRAN.R-project.org/package=survminer,
v.0.4.8). Univariate cox regression was used to estimate the
hazard ratio (HR) of non-TFS or non-PFS or death.
Multivariate Cox regression was used for the combined
analysis of genes and other variables. Time‐dependent ROC
(receiver operator characteristic) curve was constructed to
evaluate the predictive value of variables according to the R
package “survivalROC” (https://CRAN.R-project.org/package=
survivalROC, v.1.0.3).

Functional Analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) based on the DEGs [|log Fold Change
(logFC)| >1 and false discovery rates (FDR) <0.05] between the
patients with high-expression S100A12 and low-expression
S100A12 were analyzed and visualized by R package
“clusterProfiler” (v.3.18.1) (43). P-values were adjusted with
the Benjamini–Hochberg (BH) method. R package “Limma”
package (v.3.46.0) (44) was used for the analysis of DEGs. In
addition, gene set enrichment analysis (GSEA) method of R
package “clusterProfiler” (v.3.18.1) was carried out for the KEGG
analysis of all genes. Single-sample gene set enrichment analysis
(ssGSEA) was used to calculate the infiltrating score of 19
immune cells and the activity of 15 immune-related pathways
(Table S2) (45) according to the “GSVA” R package (v.1.38.2)
(46). CIBERSORT (47) is a useful analysis tool of RNA mixtures
for cellular biomarkers based on the gene expression feature sets
of 22 immune cell subtypes (http://cibersort.stanford.edu/).
Sound code downloaded from the official website of
CIBERSORT was used to calculate the 22 immune cell
subtypes score in patients with IPF. Subsequently, the 22
immune cell subtypes were classified into four types:
lymphocytes, macrophages, dendritic cell, and mast cell as
previously described (48).

Analysis of scRNA-seq Data
The computational analysis of the GSE122960 and GSE135893
dataset (lung) was performed using R package “Seurat” (4.0.3)
(49). Quality control (200 <number of feature RNA <5,000,
percentage of mitochondrial genes <20%, percentage of
ribosomal genes >3, and percentage of erythrocyte gene <0.1)
was respectively performed in the two datasets according to R
package “Seurat”. Principal component analysis (PCA) was
calculated using the Seurat RunPCA () function. Seurat
NormalizeData () function was used to normalize the scRNA-
seq data. Seurat FindIntegrationAnchors () and IntegrateData ()
function based on robust principal component analysis (RPCA)
were used to integrate multiple samples. UMAP (uniform
manifold approximation and projection) for dimension
reduction and Louvain clusters were calculated using the first
February 2022 | Volume 13 | Article 810338
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30 principal components with the Seurat RunUMAP () and
FindClusters () functions, respectively. Resolution was set as 0.8.
Seurat FindAllMarkers () function was used to find markers of
clusters, and cell types were identified based on markers of each
cluster according to CellMarker (50), PanglaoDB databases (51),
and the original articles of the two datasets. Expression and
distribution of genes were visualized according to Seurat DotPlot
(), VlnPlot () and FeaturePlot () functions. R package “Limma”
package (v.3.46.0) was used for the analysis of DEGs (logFC
>0.25, average expression >1, and false discovery rates (FDR)
<0.05) between patients with IPF and control participants in the
monocytes with S100A12 >0.

Statistical Analysis
SPSS Statistics 23 (IBM SPSS) and R software (Version 4.1.0)
were used for statistical analysis. Continuous variables were
compared by Mann–Whitney U tests. Some statistical analyses
were visualized by GraphPad Prism 9. Bilateral test was used.
RESULTS

S100A12 Expression in Patients With
Interstitial Lung Diseases (ILDs)
S100A12 is mainly expressed in the bone marrow of human
according to the National Center of Biotechnology Information
database (Supplementary Figure 1A, https://www.ncbi.nlm.nih.
gov/gene/6283). RNA sequencing (RNA-seq) and proteomic
data of normal subjects showed that S100A12 was highly
expressed in immune cells and interstitial cells in adult lung
according to lungMAP database (52), (Supplementary
Figures 1B, C). In order to explore the expression of S100A12
in ILDs, 21 datasets were extracted from the GEO database. The
results showed a significant downregulation of lung S100A12
expression in patients with IPF, while S100A12 expression of
blood and BALF samples were significantly upregulated
especially in patients with poor prognosis (Figure 2). In
addition, lung S100A12 was significantly downregulated in
patients with non-specific interstitial pneumonia (NSIP),
systemic sclerosis-related ILD (SSc-ILD), and respiratory
bronchiolitis-related ILD (RB-ILD) compared with control
Frontiers in Immunology | www.frontiersin.org 4
participants (Supplementary Figures 2A–D). However, the
significant difference of S100A12 was not well found in the
patients with sarcoidosis (Supplementary Figure 2E).

Partners and TFs of S100A12
According to the STRING database, 10 protein coding genes
(S100A8, S100A9, RELA, MAPK3, AGER, APP, NFKB1,
HMGB1, SAA1, and MAPK1) were found to interact with
S100A12 (Figure 3A). Based on MEM database, S100A8 and
S100A9 were the most notable co-expression genes of S100A12
according to hundreds of datasets (Figure 3B). According to the
hTFtarget database, the first four TFs (PPARG, NR4A1, RUNX1,
and SCRT1) of both S100A12 and the 10 interacted genes were
selected for further study (Figure 3C). S100A12 and the 10 genes
were significantly associated with NF-kappaB transcription
factor activity, RAGE receptor binding, MAP kinase activity,
the IL-17 signaling pathway, B cell receptor signaling pathway,
and T cell receptor signaling pathway according to GO and
KEGG analysis (Figure 3D). According to reviewing the
literatures published on the PubMed, a potential mechanism of
S100A12 was summarized in the Figure 3E. And, the potential
up-stream and down-stream genes were also showed.

Co-Expression Analysis and Differential
Expression Analysis
Spearman correlation analysis between S100A12 and the above
genes was conducted in patients with IPF (Figure 3F). In BALF,
7 genes (S100A8/9, AGER, SAA1, TLR2, ICAM1, and NLRP3)
were positively associated with S100A12, and PPARG was
negatively associated with S100A12. In the lung, 11 genes
(S100A8/9, NFKB1, TLR4, TLR2, VCAM1, ICAM1, TGFB1,
NLRP3, NR4A1, PPARG) were positively associated with
S100A12. In the blood, 9 genes (S100A8/9, MAPK1/3, TLR4/2,
ICAM1, NLRP3, and PPARG) were positively associated with
S100A12. These results showed that S100A8/9, TLR2, ICAM1,
and NLRP3 were the most notable genes positively associated
with S100A12 among the 3 tissues. Furthermore, differential
expression analysis was conducted between patients with IPF
and controls according to R package “Limma” (Figure 3G). In
the BALF, S100A12, S100A9, TLR2, and NLRP3 were
significantly upregulated, whereas, IL17C, TNF, and RUNX1
A B C

FIGURE 2 | Expression of S100A12 of lung tissue, BALF and blood in patients with IPF. (A) The expression of S100A12 in human lung. (B) The expression of
S100A12 in the BALF. (C) The expression of S100A12 in the blood. P-values were showed as: *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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were significantly downregulated. In the lung, S100A12, S100A8/
9, MAPK3, AGER, ICAM1, and PPARG were significantly
downregulated, whereas, VCAM1 were significantly upregulated.
In the blood, S100A12 and S100A8/9 were significantly
upregulated. These results showed that S100A8 and S100A9
were the most co-expression genes associated with S100A12,
which were included for further study.

Correlation Between Genes and Lung
Function or SGRQ Scores
S100A12, S100A8, and S100A9 were significantly negatively
associated with FVC% predicted and Dlco% predicted, and
were significantly positively associated with SGRQ scores in
the GSE32537 dataset (lung tissue, Figure 4). GSE47460
dataset (lung tissue) consisted of two platforms: GPL14550 and
Frontiers in Immunology | www.frontiersin.org 5
GPL6480. The two cohorts confirmed the significant negative
association between S100A12 and lung function, and found that
the 3 genes were also significantly negatively associated with
FEV1% predicted (Figure 4). However, there was no significant
correlation between S100A12 and lung function in the blood
datasets (Figure 4). In addition, S100A12 had more significant
correlation compared with S100A8 and S100A9.

Prognosis-Related Analysis
Patients with IPF were divided into two groups based on the
optimal cut-off value of genes as described in the methods
section. In the blood (GSE27957 and GSE28042), patients with
high-expressions S100A12 or S100A8 or S100A9 were
significantly associated with shorter TFS (transplant-free
survival) time than those with low expression (Figures 5A, B,
A B

C

D

E

F

G

FIGURE 3 | S100A12-related partners and TFs. (A) A protein–protein interaction (PPI) network of S100A12 according to STRING database. (B) The correlation between
S100A12 and the 10 genes came from the PPI network according to MEM database. (C) According to the hTFtarget database, the first four TFs of both S100A12 and the
10 interacted genes were found. (D) GO and KEGG pathway analysis of both S100A12 and the 10 interacted genes. (E) Potential S100A12 signaling pathway based on the
literatures of PubMed. (F) Co-expression analysis between S100A12 and above genes according to Spearman correlation analysis. Red represents positive
correlation, and green represents negative correlation. The numbers represent the correlation coefficients, and the darker color represents the better correlation.
(G) Heatmap of differential expression analysis between IPF patients and controls according to R package “Limma”. Red represents upregulation, and green
represents downregulation. The numbers represent the logFC, and the darker color represents the more notable difference. NA, not available.
February 2022 | Volume 13 | Article 810338
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Supplementary Figure 3A). The areas under curve (AUCs)
showed that the predicted value of S100A12 for TFS was
slightly higher than S100A8 and S100A9 (Table S3 and
Figures 5A, B). Because the dead patients are all male in the
GSE27957 dataset (blood), the result of composited prognostic
index might be difficult to assess (Supplementary Table 3).
Based on the GSE28042 dataset (blood), the predictive values of
models (S100A8/9/12 + age + gender) were superior to the single
index (Table S3 and Figure 5B). In addition, S100A12, S100A8,
S100A9, and GAP index (gender, age, and physiological index)
were significantly negatively associated with PFS (progression-
free survival) in the GSE93606 dataset (blood, Figure 5C and
Supplementary Figure 3B). According to AUC, the model
consisted of S100A12 and GAP had better predictive value
compared with that consisted of S100A9 and GAP (Table S3
and Figure 5C). In the BALF, S100A12 had better predictive
value for mortality compared with S100A8, S100A9, and GAP
(Supplementary Figure 4, Figures 6A–C). Also, the model
consisting of S100A12 and GAP was considered as the more
effective predictive model for the mortality according to ROC
curve analysis (Table S3, Figures 6A–C).

Functional Analysis
In order to reveal the underlying biological functions and
pathways correlated with S100A12, GO enrichment and KEGG
pathway analysis of DEGs [|logFC| >1 and FDR <0.05] between
patients with high-expression and low-expression S100A12 were
performed. In the 3 tissues of patients with IPF, the significant
GO terms and KEGG pathways were mainly enriched in
neutrophil activation, immune receptor activity, regulation of
inflammatory response, RAGE receptor binding, IL-17 signaling
pathway, cytokine-cytokine receptor interaction, TNF signaling
pathway, PI3K-Akt signaling pathway, NOD-like receptor
signaling pathway, and chemokine signaling pathway
Frontiers in Immunology | www.frontiersin.org 6
(Supplementary Figures 5–7). These results were consistent
with the GSEA analysis (Supplementary Figure 8).

In addition, ssGSEA analysis showed that patients with high-
expression S100A12 were more likely to have higher scores of
dendritic cells (DCs), M1 macrophages, neutrophils, regulatory T
cells (Treg), cytokine-cytokine receptor (CCR), inflammatory
response, and T cell exhaustion compared with patients with
low-expression S100A12 in the lung (Figure 7). In the BALF,
high expression of S100A12 was also significantly associated with
higher score of inflammatory response (Supplementary Figure 9).
Interestingly, in the blood, patients with high-expression S100A12
were more likely to have lower scores of B cells, CD8 T cells, Th1
cells, Th2 cells, tumor infiltrates lymphocytes (TIL), and check
point (Supplementary Figure 10). These results revealed that
S100A12 was significantly positively associated with the
inflammatory process, and the high expression of S100A12
might be associated with lower immune activity. Furthermore,
CIBERSORT analysis verified that S100A12 was significantly
positively associated with the inflammatory process in the 3
tissues (Supplementary Figures 11–13).

The scRNA-seq Analysis
Two scRNA-seq datasets [GSE135893 (IPF = 12, control = 10) and
GSE122960 (IPF = 4, control = 4)] were selected. S100A12
and AGER were mainly and highly expressed in the monocytes
and alveolar epithelial type 1 cells (AT1 cells), respectively
(Figures 8A–C and Supplementary Figures 14A–C). S100A8
and S100A9 were mainly expressed in the monocytes and
macrophages (Figures 8A–C and Supplementary Figures 14A–
C). NFKB1 was mainly expressed in the dendritic cells, SAA1 was
mainly expressed in the BPIFB1+/MUC5B+ club cells, and PPARG
was mainly expressed in the alveolar macrophages (AMs)
(Figure 8A). In addition, S100A12, S100A8, and S100A9 were
significantly downregulated in the monocytes of patients with IPF,
FIGURE 4 | Correlation between 3 genes (S100A12, S100A8, and S100A9) and lung function or SGRQ score in the lung and blood of patients with IPF. NA, not available.
February 2022 | Volume 13 | Article 810338
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and AGER was also significantly downregulated in the AT1 cells
(Figure 8D and Supplementary Figure 14D). Interestingly,
S100A8 and S100A9 were upregulated in the macrophages of
IPF. According to the GO and KEGG analysis for the DEGs
(Table S4) between patients with IPF and controls in the
monocytes with S100A12 >0, monocytes with S100A12 >0 of
patients with IPF might be more associated with antigen
processing and presentation (Figure 8E and Supplementary
Figure 14E). Interestingly, a transitional status of monocytes
was observed in the GSE135893 dataset, and expression of
S100A12 of transitional monocytes was downregulated in the
patients with IPF (Figure 8C).
DISCUSSION

IPF characterized by a radiographic and pathologic pattern of usual
interstitial pneumonia (UIP) is a chronic and fatal lung disease. In
this study, we found that S100A12 and its 2 most significant co-
expression genes (S100A8 and S100A9) were significantly
downregulated in the lung of patients with IPF, whereas, they
Frontiers in Immunology | www.frontiersin.org 7
were significantly upregulated in the BALF and blood. Also, they
were mainly expressed by themonocytes, and were also significantly
downregulated in the monocytes of patients with IPF compared
with controls according to scRNA-seq analysis. In addition,
according to the function-related bioinformatic analysis (GO,
KEGG, GSEA, CIBERSORT analysis, and ssGSEA analysis),
patients with high-expression S100A12 were more likely to have
higher inflammatory response compared with those with low-
expression S100A12. These results were consistent with the
functional annotation of UniProt database regarding S100A12 (13).

S100A12 could stimulate immune cells according to binding
to AGER (14), and activate theMAPK (mitogen-activated protein
kinase) and NF-kappa-B signaling pathways leading to
production of proinflammatory cytokines and upregulation of
cell adhesion molecules ICAM1 and VCAM1 according to
binding to AGER (13, 14). Realegeno and his colleagues also
suggested that S100A12 was also associated with toll-like receptor
2 (TLR2) (53). According to the scRNA-seq analysis, AGER was
mainly expressed in the AT1 cells, and was significantly
downregulated in patients with IPF, which was consistent with
the previous reports in the ILDGDB database (54, 55).
A

B

C

FIGURE 5 | K-M analysis and the predictive value of S100A12, S100A8, S100A9 and GAP index for the TFS and PFS in the blood of patients with IPF. (A) GSE27957
dataset (TFS), (B) GSE28042 dataset (TFS), (C) GSE93606 dataset (PFS). The acquisition of composite variable such as S100A12 + GAP was based on the multivariable
Cox regression.
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Furthermore, the loss of AGER in the pulmonary fibrosis was
induced by TGFB1 and TNF-alpha (54). Studies suggested that
S100A12 could inhibit lung fibroblast migration according to
RAGE-p38 MAPK signaling (16, 56–58). Based on the scRNA-
seq analysis, the analysis for monocytes with S100A12 expression
showed that monocytes of patients with IPF were more likely to
have higher functions of DCs compared with those of control
participants, and a transitional status was found, which imply the
differentiated ability of monocytes in the IPF. In the process of
pulmonary fibrosis, monocytes are recruited into the lung in
response to tissue injury and differentiate into long-lived
macrophages producing TGF-b, CCL18, CHI3L1, MMPs,
eventually, leading to fibroblast activation, myofibroblast
differentiation, and extracellular matrix (ECM) remodeling (7).
Studies had found that mRNA and protein level of S100A12 were
significantly decreased during monocyte-to-macrophage
differentiation (59, 60). Therefore, we speculated that the
expression of S100A12 may be similarly inhibited by TGFB1
and TNF-alpha in the process of fibrosis, or low expression of
S100A12 may be caused by the differentiation of monocytes,
which needs further study to verify. However, there is one
important gap for the exploration of mechanism of S100A12:
murine S100A12 is absent (61).

Previous studies showed that the heterodimer S100A8/A9
protein were significantly upregulated in the lung of patients
with IPF, and the two genes may promote the development of
fibrosis (62). However, in this study, the mRNA levels of the two
genes were significantly downregulated in lung of patients with
IPF compared with controls according to the high-throughput
datasets. We speculated that the mRNA level of S100A8 and
S100A9 may be not matched with the protein level of them.
According to scRNA-seq analysis, S100A12 was expressed
Frontiers in Immunology | www.frontiersin.org 8
exclusively by monocytes, independently from S100A8 and
S100A9. S100A8 and S100A9 were expressed by not only
monocytes but also macrophages, and their expressions in the
macrophages of patients with IPF were higher than controls,
which implied that S100A8 and S100A9 may play a role in the
development of IPF.

Actually, we were more likely to believe that S100A12 was
more likely to reveal the status of host defense of patients with
IPF. More and more evidences had shown that the disordered
host defense was an important contributor to disease progression
in IPF (30, 63, 64). Gastroesophageal reflux disease (GERD) is
common in patients with IPF, thereby, continuous micro-
aspiration may lead to repeated inoculation with oral and
stomach microorganisms, which leads to repetitive alveolar
injury and repair (65). Furthermore, studies showed that
patients with IPF had higher microbial load compared with
normal populations (30, 66). And, higher bacterial load was
associated not only with increased risk for disease progression
and mortality but also with the presence of s35705950
polymorphism of the MUC5B (mucin 5B, oligomeric mucus/
gel-forming), a known predisposing factor for the development
of IPF (30, 66). Interestingly, SAA1, one of partners of S100A12,
was mainly expressed in the BPIFB1+/MUC5B+ club cells.
S100A12 had been identified as an effective inflammatory
biomarker of poor prognosis in the familial Mediterranean
fever (67), acute respiratory distress syndrome (ARDS) (68,
69), hemodialysis (70), SSc-ILD (71) and so on. Based on the
GO, KEGG, and GSEA analysis, IL17 signaling pathway was the
one of important pathways in the patients with high-expression
S100A12. As a T helper 17 (Th17) cytokine, IL-17 family was
implicated in the pathogenesis of various autoimmune related
diseases. IL-17C could enhance the epithelial host defense
A

B

C

FIGURE 6 | K–M analysis and the predictive value of S100A12, S100A8, S100A9 and GAP index for the survival in the BALF of patients with IPF according to
GSE70866 dataset. (A) FREIBURG cohort, (B) SIENA cohort, (C) LEUVEN cohort. The acquisition of composite variable such as S100A12 + GAP was based on the
multivariable Cox regression.
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response by upregulating S100A12 expression (72), moreover,
S100A12 could activate airway epithelial cells to produce
MUC5AC (10). These results suggested that S100A12 could
reveal the status of host defense of patients with IPF well. In
this study, compared with alive or progression-free patients with
IPF, S100A12 was significantly higher in the BALF and blood of
progressive or/and dead patients with IPF. Also, S100A12 was
significantly higher in the lung of patients with AE-IPF (acute
exacerbation of IPF). Furthermore, high expression of S100A12
was associated not only with increased risk for disease progression
and mortality both in the BALF and blood but also with poor lung
function and quality of life in the lung. Also, due to the exclusive
expression of S100A12 in the monocytes, the prognostic predictive
value of S100A12 was more superior to S100A8 and S100A9 in
patients with IPF. Additionally, the model consisted of S100A12
and GAP may be more effective than single index, which needs
further study to verify.

In a word, based on the current available references, we
speculated that the contradictory results of S100A12 between
lung and BALF or blood may be caused by several points as
Frontiers in Immunology | www.frontiersin.org 9
follows: (1) S100A12 could inhibit lung fibroblast migration
according to RAGE-p38 MAPK signaling. The loss of AGER
was caused by TGFB1 and TNF-alpha in the pulmonary fibrosis.
Therefore, S100A12 may be inhibited by TGFB1 and TNF-alpha
in the development of fibrosis. (2) In the process of pulmonary
fibrosis, monocytes are recruited into the lung in response to
tissue injury and differentiate into long-lived macrophages. Low
expression of S100A12 may be caused by the differentiation of
monocytes. (3) S100A12 could reveal the status of host defense of
patients with IPF. When the acute exacerbation or high
microbial load occurs, S100A12 was upregulated, which may
explain that S100A12 was negatively associated with lung
function in lung of patients with IPF. (4) S100A12 could
activate airway epithelial cells to produce MUC5AC. Mucin
takes an important role in the development of IPF. Thereby,
S100A12 was upregulated in the BALF of patients with IPF.
Further study was necessary to verify the mRNA and protein
level of S100A12 in the lung and BALF of patients with IPF.

There are several limitations in this study. First, the study
lacked detailed treatment information of patients, which may
A

B

C

FIGURE 7 | Comparison of the lung ssGSEA scores between patients with high-expression and low-expression S100A12 in the GSE47460 (GPL14550) (A),
GSE47460 (GPL6480) (B), and GSE32537 datasets (C). The scores of 19 immune cells are displayed in the left side, and 15 immune-related functions are displayed
in the right side. DC, Dendritic Cell; TIL, Tumor infiltrates lymphocytes; CCR, cytokine-cytokine receptor. P-values were showed as: ns, not significant; *P < 0.05;
**P < 0.01; ***P < 0.001; ****P < 0.0001.
February 2022 | Volume 13 | Article 810338

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. S100A12 Reveals Host Defense of IPF
influence on the predictive value of S100A12. Second, the study
was based on the retrospective data from GEO, and the number
of samples in each dataset was relatively small. Third, many
prominent prognostic clinical parameters such as treatment
measures, underlying diseases and so on were not reported in
most datasets that we used; thereby, the prognostic value of
S100A12 and the correlation between S100A12 and lung
function were limited. Finally, larger-sample prospective
studies are needed to estimate the clinical relevance of S100A12.
CONCLUSION

S100A12 might be an efficient monocyte-specific disease severity
and prognostic biomarker in patients with IPF. Also, the
composited variable (S100A12 + GAP) may be a more effective
predictive index for the prognosis of patients with IPF. In addition,
Frontiers in Immunology | www.frontiersin.org 10
S100A8 and S100A9 were also useful biomarkers for the prediction
of poor prognosis. However, further studies are needed to confirm
these results and explore the underlying mechanisms.
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Supplementary Figure 1 | RNA sequencing data and proteomic profiling of
S100A12. (A) RNA-seq for S100A12 in different tissues according to National
Center of Biotechnology Information database (https://www.ncbi.nlm.nih.gov/
gene/6283). RNA-seq analysis (B) and proteomic profiling (C) for S100A12 in the
human lung according to lungMAP database.

Supplementary Figure 2 | Expression of S100A12 of lung tissue, blood and
BALF. (A-C) The expression of S100A12 in human lung. (D) The expression of
S100A12 in patients with SSc-ILD. (E) The expression of S100A12 in patients with
sarcoidosis. $P < 0.05 vs. controls; #P < 0.05 vs. patients with COPD. P values were
showed as: *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. COPD: chronic
obstructive pulmonary disease; NSIP: non-specific interstitial pneumonia; HP:
hypersensitivity pneumonitis; RB-ILD: respiratory bronchiolitis-related ILD; SSc-ILD:
systemic sclerosis-related ILD; PAH: pulmonary arterial hypertension.

Supplementary Figure 3 | Results of the cox regression regarding non-TFS in
the GSE27957 and GSE28042 datasets (A), and the cox regression regarding non-
PFS in the GSE93606 dataset (B).

Supplementary Figure 4 | Results of the cox regression regarding mortality in
the GSE70866 dataset.

Supplementary Figure 5 | Significant GO terms and KEGG pathways of DEGs
between patients with high-expression and low-expression S100A12 (lung tissue).
The top 10 significant terms for biological processes (BP), cellular component (CC),
and molecular function (MF), and significant terms for KEGG pathways in the
GSE47460 (GPL14550) (A), GSE47460 (GPL6480) (B), and GSE32537 datasets (C).

Supplementary Figure 6 | Significant GO terms and KEGG pathways of DEGs
between patients with high-expression and low-expression S100A12 (blood). The
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top 10 significant terms for biological processes (BP), cellular component (CC), and
molecular function (MF), and significant terms for KEGG pathways in the GSE27957
(A), GSE38958 (B), and GSE93606 datasets (C).

Supplementary Figure 7 | Significant GO terms and KEGG pathways of DEGs
between patients with high-expression and low-expression S100A12 according to
GSE70866 dataset (BALF). The top 10 significant terms for biological processes
(BP), cellular component (CC), and molecular function (MF), and significant terms for
KEGG pathways in the FREIBURG cohort (A), SIENA cohort (B), and LEUVEN
cohort (C).

Supplementary Figure 8 | GSEA analysis of DEGs between patients with high-
expression and low-expression S100A12 in the three tissues. Lung tissue: (A)
GSE47460 (GPL14550) dataset, (B) GSE47460 (GPL6480) dataset, (C)
GSE32537 dataset. Blood: (D) GSE38958 dataset, (E) GSE27957 dataset, (F)
GSE93606 dataset. BALF (GSE70866 dataset): (G) FREIBURG cohort, (H) SIENA
cohort, (I) LEUVEN cohort.

Supplementary Figure 9 | Comparison of the BALF ssGSEA scores between
patients with high-expression and low-expression S100A12 in the FREIBURG
cohort (A), SIENA cohort (B), LEUVEN cohort (C) in the GSE70866 dataset. The
scores of 19 immune cells are displayed in the left side, and 15 immune-related
functions are displayed in the right side. DC, Dendritic Cell; TIL, Tumor infiltrates
lymphocytes; CCR, cytokine-cytokine receptor. P values were showed as: ns, not
significant; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

Supplementary Figure 10 | Comparison of the blood ssGSEA scores between
patients with high-expression and low-expression S100A12 in the GSE27957 (A),
GSE38958 (B), and GSE93606 datasets (C). The scores of 19 immune cells are
displayed in the left side, and 15 immune-related functions are displayed in the right
side. DC, Dendritic Cell; TIL, Tumor infiltrates lymphocytes; CCR, cytokine-cytokine
receptor. P values were showed as: ns, not significant; *P < 0.05; **P < 0.01; ***P <
0.001; ****P < 0.0001.

Supplementary Figure 11 | Comparison of the lung CIBERSORT scores
between patients with high-expression and low-expression S100A12 in the
GSE47460 (GPL14550) (A), GSE47460 (GPL6480) (B), and GSE32537 datasets
(C). The scores of 22 immune cells are displayed in the left side, and the scores of 4
composited cell types are displayed in the right side. P values were showed as: ns,
not significant; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

Supplementary Figure 12 | Comparison of the blood CIBERSORT scores
between patients with high-expression and low-expression S100A12 in the
GSE27957 (A), GSE38958 (B), and GSE93606 datasets (C). The scores of 22
immune cells are displayed in the left side, and the scores of 4 composited cell types
are displayed in the right side. P values were showed as: ns, not significant; *P <
0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

Supplementary Figure 13 | Comparison of the BALF CIBERSORT scores
between patients with high-expression and low-expression S100A12 in the
FREIBURG cohort (A), SIENA cohort (B), LEUVEN cohort (C) in the GSE70866
dataset. The scores of 22 immune cells are displayed in the left side, and the scores
of 4 composited cell types are displayed in the right side. P values were showed as:
ns, not significant; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

Supplementary Figure 14 | The scRNA-seq analysis in the GSE122960 dataset
(IPF = 4, control = 4). (A)Color dot plot of S100A12 and its partners; (B) Feature plot
of S100A12, S100A8, S100A9, and AGER; (C) Violin plot of S100A12, S100A8,
and S100A9. (D) The different expressive analysis of S100A12, S100A8, S100A9,
and AGER between IPF controls in the selected cell; (E) The GO and KEGG analysis
of DEGs between IPF and controls in the monocytes with S100A12 > 0.
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38. Paplińska-Goryca M, Goryca K, Misiukiewicz-Stępień P, Nejman-Gryz P,
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