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Abstract 

Background:  Wolbachia pipientis are endosymbiotic bacteria present in a large proportion of terrestrial arthropods. 
The species is known to sometimes affect the ability of its host to transmit vector-borne pathogens. Central Sweden is 
endemic for Sindbis virus (SINV), where it is mainly transmitted by the vector species Culex pipiens and Culex torren-
tium, with the latter established as the main vector. In this study we investigated the Wolbachia prevalence in these 
two vector species in a region highly endemic for SINV.

Methods:  Culex mosquitoes were collected using CDC light traps baited with carbon dioxide over 9 years at 50 
collection sites across the River Dalälven floodplains in central Sweden. Mosquito genus was determined morphologi-
cally, while a molecular method was used for reliable species determination. The presence of Wolbachia was deter-
mined through PCR using general primers targeting the wsp gene and sequencing of selected samples.

Results:  In total, 676 Cx. pipiens and 293 Cx. torrentium were tested for Wolbachia. The prevalence of Wolbachia in Cx. 
pipiens was 97% (95% CI 94.8–97.6%), while only 0.7% (95% CI 0.19–2.45%) in Cx. torrentium. The two Cx. torrentium 
mosquitoes that were infected with Wolbachia carried different types of the bacteria.

Conclusions:  The main vector of SINV in the investigated endemic region, Cx. torrentium, was seldom infected with 
Wolbachia, while it was highly prevalent in the secondary vector, Cx. pipiens. The presence of Wolbachia could poten-
tially have an impact on the vector competence of these two species. Furthermore, the detection of Wolbachia in Cx. 
torrentium could indicate horizontal transmission of the endosymbiont between arthropods of different species.
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Background
The transmission of arboviruses is influenced by a num-
ber of factors, including both abiotic (e.g., temperature) 
and biotic elements (e.g., vector immune status) [1–4]. 
One important biotic factor is the intracellular symbiont 
Wolbachia pipientis (Class: Alphaproteobacteria, Order: 
Rickettsiales), present in some nematode species and an 
estimated 40% of all terrestrial arthropods [5]. Wolbachia 

is a genetically diverse species, composed of 18 phyloge-
netically distinct supergroups described to date (A–R) 
[6]. Deeply involved in the reproduction of its host [7], 
Wolbachia is known for inducing cytoplasmic incom-
patibility and giving rise to crossing types, most studied 
in Culex pipiens and its Wolbachia strain wPip, which 
belongs to supergroup B [8–10]. Additionally, it is well 
established that Wolbachia infection in mosquitoes can 
influence their ability to become infected and transmit 
several arboviruses [11–14].

In a global context, Culex mosquitoes are impor-
tant vectors for, e.g., West Nile virus (WNV) and Japa-
nese encephalitis virus (JEV) [15–18]. In Central and 
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Northern Europe, the morphologically identical vector 
species Cx. pipiens and Cx. torrentium are enzootic vec-
tors of both WNV and Sindbis virus (SINV), transmitting 
these viruses among birds [19–22]. SINV is an arthrito-
genic alphavirus present throughout the Old World [23], 
although outbreaks of human disease are only reported 
from South Africa [24, 25] and Fennoscandia [26–29]. In 
Sweden, SINV is considered endemic to the central and 
northern parts of the country [28–30].

Culex torrentium is regarded as the most important 
enzootic vector in Sweden due to its high abundance 
in endemic areas, high infection rate, and superior vec-
tor competence to Cx. pipiens [31–34]. One difference 
between Cx. torrentium and Cx. pipiens is the prevalence 
of Wolbachia-infected individuals. Previous studies in 
Germany, Belgium, Russia, Belarus, Kazakhstan, and Kyr-
gyz Republic have found Wolbachia to be very common 
in Cx. pipiens but absent in Cx. torrentium [35–38]. It 
is therefore possible that these differences in Wolbachia 
infection status could account for part of the difference 
in vector competence seen between Cx. pipiens and Cx. 
torrentium. Previous studies have however only been 
performed in regions without intense SINV transmission. 
Therefore, this study aims at investigating the Wolbachia 
prevalence in Cx. pipiens and Cx. torrentium collected in 
a highly SINV-endemic region in central Sweden.

Methods
Mosquitoes
Mosquitoes were collected at 50 different locations 
across the River Dalälven floodplains (Fig.  1) as part of 
a routine mosquito monitoring programme [39]. SINV is 
considered endemic to this region and some of the high-
est infection rates in mosquitoes have been detected here 
[22, 33]. Collections were performed every second week 
between May and September during the years 2010–2018 
using CDC light traps baited with carbon dioxide. Mos-
quitoes were identified based on morphological charac-
teristics [40], and Cx. pipiens/torrentium were sorted out 
and used for molecular identification to species. Briefly, 
individual mosquitoes were homogenized in 500  µl of 
phosphate-buffered saline (PBS) supplemented with 20% 
heat-inactivated fetal bovine serum, 100 U/ml penicillin, 
100  μg/ml streptomycin, and 2.5  μg/ml amphotericin B 
(Thermo Fischer Scientific; Waltham, MA, USA) using 
two steel beads in the Qiagen TissueLyser II™ (Qiagen; 
Hilden, Germany). Five microliters (5 µl) of the homoge-
nate was pretreated by incubating at 98  °C for 2 min in 
20 µl of dilution buffer with 0.5 µl of DNA release addi-
tive, part of the Phire Tissue Direct PCR Master Mix 
kit (Thermo Scientific; Vilnius, Lithuania). The pre-
treated homogenate was stored at −20  °C before being 
used as a template in polymerase chain reaction (PCR). 

Conventional PCR of part of the cytochrome oxidase 
subunit I (COI) was performed in 20  µl reactions with 
1  µl template using the forward primer C1-J-2183 (5′-
CAA​CAT​TTA​TTT​TGA​TTT​TTTGG-3′) and the reverse 
primer TL2-N-3014 (5′-TCC​AAT​GCA​CTA​ATC​TGC​
CAT​ATT​A-3′) at a concentration of 0.5  µM each under 
the following thermocycler conditions: initial denatura-
tion at 98  °C for 5  min, followed by 40 cycles of dena-
turation at 98 °C for 5 s, annealing at 54.5 °C for 5 s and 
extension at 72 °C for 20 s, and a final extension step at 
72 °C for 1 min. A PCR-restriction fragment length poly-
morphism (PCR–RFLP) assay [41] was performed on the 
PCR product, using the restriction enzymes FspBi and 
SspI (Thermo Fischer Scientific; Vilnius, Lithuania).

Culex pipiens molestus mosquitoes, originating from 
a field population sampled in Gothenburg, Sweden [42] 
and reared in our in-house mosquito rearing facility, 
were used as positive controls in PCR as they are natu-
rally infected with a wPip strain of Wolbachia (data not 
shown). These were also used for PCR optimization.

Wolbachia detection
Wolbachia detection was performed through PCR on 
5 µl of the mosquito homogenate, using the same Tis-
sue Direct kit procedures as described above. Wol-
bachia primers 81F (5′-TGG​TCC​AAT​AAG​TGA​TGA​
AGA​AAC​-3′) and 691R (5′-AAA​AAT​TAA​ACG​CTA​
CTC​CA-3′), designed for general detection of Wol-
bachia within supergroups A and B [43], were used at 
a final concentration of 0.5 µM each. The thermocycler 
conditions for Wolbachia detection were as described 
above but with the annealing temperature set to 58 °C. 
A subset of samples was also tested with a confirmatory 
PCR to determine whether the detected wsp gene Wol-
bachia belonged to that of the wPip strain using wPip-
specific primers wPF (5′-CGA​CGT​TAG​TGG​TGC​
AAC​ATTTA-3′) and wPR (5′-AAT​AAC​GAG​CAC​CAG​
CAA​AGAGT-3′) [44] with the same PCR conditions as 
described previously but with the annealing tempera-
ture set to 56 °C. For primer optimization, DNA integ-
rity was controlled by extraction of total DNA to make 
sure that a negative PCR result was not due to DNA 
degradation in the sample. DNA was extracted from 44 
samples with the E.Z.N.A.® Tissue DNA Kit (Omega 
Bio-Tek, Inc., Norcross, GA, USA), and visual inspec-
tion of DNA integrity was done by gel electrophoresis. 
Extracted DNA and all PCR products were visualized 
on 1.8% agarose gel stained with GelRed® Nucleic 
Acid Gel Stain (Biotium, Fremont, CA, USA) (Fig.  2). 
A subset of PCR products was purified with ExoSAP-
IT® (Thermo Fischer Scientific; Vilnius, Lithuania) and 
sequenced through Sanger sequencing (Macrogen; 
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Amsterdam, The Netherlands) to validate the method 
and verify the results.

Data analysis
All records were kept and analysed in Microsoft Excel 
2016 (Microsoft; Redmond, CA, USA). Confidence 
intervals for Wolbachia prevalence were calculated 
assuming binomial distribution using the Wilson score 
interval through RStudio (RStudio team, Boston, USA). 
P-values to determine statistical significance for dif-
ferences in Wolbachia prevalence between years were 
calculated using Fisher’s exact test with Bonferroni cor-
rection. Sequences of PCR fragments were analysed in 
the BioEdit sequence alignment editor version 7.2.5 [45].

Results
In total, 969 Culex mosquitoes (676 Cx. pipiens and 293 
Cx. torrentium) were identified to species and tested 
for Wolbachia (Fig.  2). Wolbachia was present in 96.5% 
of the Cx. pipiens population (95% CI 94.8–97.6%) but 
could only be detected in two out of 293 Cx. torren-
tium individuals (0.68% prevalence, 95% CI 0.19–2.45%) 
(Table 1). Three of the Cx. pipiens that carried Wolbachia 
from each year were tested with primers specific to the 
wPip variant of wsp, of which all 27 were found to carry a 

wsp belonging to the wPip strain. In 2012, the prevalence 
of Wolbachia in Cx. pipiens was significantly lower than 
normal (Fisher’s exact test: P  =  0.00455, OR: 0.389 CI 
[0.198–0.778], Bonferroni-corrected P  =  0.041).

Two Cx. torrentium were found to carry Wolbachia. 
Sequencing of the amplicons showed that the two par-
tial wsp sequences were only 90% identical to each other. 
The wsp sequence from one of the Cx. torrentium indi-
viduals was very similar (>  99.8% identity) to the wsp of 
Wolbachia from Cx. pipiens (GenBank: KT964224.1), but 
also to isolates from the winter moth (Operophtera bru-
mata: GenBank: KY587652.1), cabbage moth (Mamestra 
brassicae; GenBank: AB094375.1), and Toya propinqua 
(GenBank: KM386826.1). The other Cx. torrentium car-
ried a Wolbachia whose wsp gene was highly similar (>  
99.6% identity) to that of Wolbachia detected in several 
other insects, namely the spotted fritillary (Melitaea 
didyma; GenBank: MN322891.1), silverleaf whitefly 
(Bemisia tabaci; GenBank: AJ291379.1), azalea lace bug 
(Stephanitis pyrioides, GenBank: AB109622.1), Macrolo-
phus pygmaeus (GenBank: FJ374283.1), and Amauro-
soma flavipes (GenBank: JN601166.1), all of which carry 
Wolbachia from supergroup B. The sequencing results 
were confirmed by PCR using the wPip-specific wsp 
primers. This PCR amplified a correct fragment from 

Fig. 1  Map showing the collection sites of Wolbachia-screened Culex mosquitoes. Collection sites are marked as black diamonds. Map data 
retrieved from ©OpenStreetMap contributors under the Open Database License
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only one of the two Wolbachia-positive Cx. torrentium 
(Fig. 3).

Discussion
We found that Wolbachia was highly prevalent in Cx. 
pipiens collected around the River Dalälven floodplains, 
while it was nearly absent from Cx. torrentium. This 
is in line with previous European studies investigating 
large samples of Cx. pipiens, with reported Wolbachia 
prevalence of 91% in western Russia [35], 95% in central 

Russia, 81% in Belarus [36], and 93% in Germany [37]. 
Raharimalala et al. [38] detected Wolbachia in nine out of 
nine tested adult Cx. pipiens and 26 out of 48 larvae col-
lected in Belgium, which also supports the generally high 
prevalence of Wolbachia in this species. Interestingly, 
the different populations studied by Khrabrova et al. [36] 
had varying levels of Wolbachia prevalence, some with as 
few as 34.5% of individuals carrying the endosymbiont. 
Wolbachia is reported to approach fixation in most Cx. 
pipiens populations worldwide [46, 47], but this does not 
seem to hold true for all European populations.

Only Ricci et al. [48] have, to our knowledge, previously 
found Wolbachia in Cx. torrentium, after testing only 
two individuals collected in Italy. Raharimalala et al. [38], 
Leggewie et  al. [37], Vinogradova et  al. [35], and Khra-
brova et al. [36] detected no Wolbachia in Cx. torrentium 
despite having tested 42 Belgian, 188 German, 321 Rus-
sian, and 853 Eastern European individuals, respectively. 
Our study, as well as the study by Ricci et al. [47], tested 
adult mosquitoes, while the four that failed to detect 
Wolbachia in Cx. torrentium tested field-collected lar-
vae and pupae. Wolbachia is usually inherited and should 
thus be present in all life stages of the mosquito; however, 
life stage is still potentially an important consideration 
when screening for Wolbachia, both to avoid analysing 
siblings and to detect potential horizontal transmission.

Due to the low prevalence of Wolbachia in Cx. torren-
tium, we hypothesize that the two positive individuals 
or their recent ancestors acquired the infection horizon-
tally. Transmission could potentially have occurred by 
feeding on the same plants as other arthropods [49, 50] 
or through arthropod parasites, such as through mites 
sometimes feeding on mosquitoes [51, 52]. Despite wsp 

Fig. 2  Representative agarose gel of extracted DNA and amplified 
PCR products. The extracted DNA (lanes 2, 5, and 7), amplified 
cytochrome oxidase subunit I (COI) gene (lanes 3, 6, and 9), and 
amplified wsp gene (lanes 4, 7, and 10) are shown for an individual of 
each of the species Cx. pipiens, Cx. torrentium, and Cx. pipiens molestus, 
respectively

Table 1  Results of the screening of Cx. pipiens and Cx. torrentium for Wolbachia 

The mosquitoes were collected in central Sweden between 2010 and 2018. The prevalence of Wolbachia in Cx. pipiens differed significantly in year 2012 from the 
9-year average (Fisher’s exact test: P  =  0.00455, OR: 0.389 CI [0.198–0.778], Bonferroni-corrected P  =  0.041). The differences for all other years are non-significant

Year Species Total tested

Culex pipiens Culex torrentium

Tested Positive % positive Tested Positive % positive

2010 93 92 98.9 49 0 0 142

2011 21 21 100 30 0 0 51

2012 208 190 91.3 71 0 0 279

2013 62 60 96.8 52 0 0 114

2014 6 5 83.3 2 0 0 8

2015 76 75 98.7 39 2 5.2 115

2016 30 30 100 30 0 0 60

2017 53 53 100 10 0 0 63

2018 127 126 99.2 10 0 0 137

Total 676 652 96.5 293 2 0.7 969
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being a poor marker of Wolbachia strain due to its ten-
dency to recombine [53], the lineage of the Cx. torren-
tium whose wsp gene matched that of the wPip strain 
could have acquired its infection from a Cx. pipiens 
through their shared habitat and ecological niche. Alter-
native sources are also possible, since a highly similar wsp 
sequence has also been found in other Palearctic insects. 
Further studies on the mechanisms for horizontal Wol-
bachia transmission involving mosquitoes are needed to 
fully explain the occasional spread of Wolbachia to Cx. 
torrentium.

The restriction of SINV outbreaks to Northern Europe 
has been suggested to be connected to the relatively 
higher abundance of the competent vector species Cx. 
torrentium in SINV-endemic regions [31, 32]. Under lab-
oratory conditions, Cx. torrentium is significantly more 
susceptible to SINV infection than Cx. pipiens [34, 54]. 
The presence of Wolbachia in Cx. pipiens may contrib-
ute to its lower susceptibility to SINV. Such reduction 
in vector competence is often seen when transferring a 
novel Wolbachia strain into a mosquito species that is 
naturally Wolbachia-free or naturally carries a different 
strain [11, 55–58], but the impact of a naturally occur-
ring Wolbachia infection (i.e., native infection) is not as 
clear, with reports of both reduced vector competence 
[13, 14, 59] and no observed effect [60–63]. No vector 
competence studies have been done on the role of Wol-
bachia in alphavirus transmission in Culex mosquitoes. 
With relatively few data to extrapolate from, empirical 

investigation is needed to evaluate the impact of Wol-
bachia on the SINV transmission cycle.

Conclusions
Our study, performed in a SINV-endemic region of Swe-
den, confirmed previously reported general patterns of 
Wolbachia infection in Culex mosquitoes, with most Cx. 
pipiens and very few Cx. torrentium carrying the endos-
ymbiont, which potentially has implications for their dif-
ferences in vector competence. Our findings, paired with 
the specific conditions under which SINV is transmitted 
in Sweden, prompt more research into Wolbachia’s role 
in the SINV transmission cycle as well as the horizontal 
routes of Wolbachia transmission among mosquitoes.
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