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The aim of the present paper is to determine the sex of the individual using three-
dimensional geometric and inertial analyses of metatarsal bones. Metatarsals of 60 adult
Chinese subjects of both sexes were scanned using Aquilion One 320 Slice CT Scanner.
The three-dimensional models of the metatarsals were reconstructed, and thereafter, a
novel software using the center of mass set as the origin and the three principal axes of
inertia was employed for model alignment. Eight geometric and inertial variables were
assessed: the bone length, bone width, bone height, surface-area-to-volume ratio, bone
density, and principal moments of inertia around the x, y, and z axes. Furthermore, the
discriminant functions were established using stepwise discriminant function analysis. A
cross-validation procedure was performed to evaluate the discriminant accuracy of
functions. The results indicated that inertial variables exhibit significant sexual
dimorphism, especially principal moments of inertia around the z axis. The highest
dimorphic values were found in the surface-area-to-volume ratio, principal moments of
inertia around the z axis, and bone height. The accuracy rate of the discriminant functions
for sex determination ranged from 88.3% to 98.3% (88.3%–98.3% cross-validated). The
highest accuracy of function was established based on the third metatarsal bone. This
study showed for the first time that the principal moment of inertia of the human bone may
be successfully implemented for sex estimation. In conclusion, the sex of the individual can
be accurately estimated using a combination of geometric and inertial variables of the
metatarsal bones. The accuracy should be further confirmed in a larger sample size and be
tested or independently developed for distinct population/age groups before the functions
are widely applied in unidentified skeletons in forensic and bioarcheological contexts.
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1 INTRODUCTION

“Virtopsy” is a term introduced in forensics and bio-archeology
to describe the application of the three-dimensional (3D) cross-
section imaging (CSI) analysis of human remains. These
techniques include organs’ 3D reconstruction and precise
quantitative measurements based on multi-slice computed
tomography or magnetic resonance imaging data (1). Indeed,
the replacement of traditional postmortem techniques with CSI
examination has been recommended by scientific, cultural, and
humanitarian groups due to its non-invasiveness, digital nature,
and 3D reconstruction opportunities (2). Literature data provide
numerous evidences that CSI reconstruction is useful for the
analysis of the neuronal morphology, bones, and teeth (3–8). For
instance, the possibility to estimate a person’s age by assessment
of dental pulp volume or sex by calculating long bone’s metrical
quantities has been documented (9–13).

Sex estimation of skeletal remains is a basic element in
creating a biological profile in archeology and forensics (14,
15). The estimation relies heavily on the analysis of the pelvic
and cranial features (7, 16). However, in reality, it is not rare
that the discovered skeletal remains are incomplete and
consequently investigators have to focus on the remaining
bones (17). In this context, metatarsal bones with small
quantity and surface area are more likely to be preserved
intact and in some cases they present the only option for sex
estimation (18). The prevalence of metatarsal bones at
archeo logica l s i tes ranges between 43% and 89%,
considerably more than that of other bones. For example, in
seven forensics cases in Northern Italy 97.1% metatarsal bones
were present, including 100% first metatarsal bones (19).

Research has already proven the accuracy of virtual sex
assessment using CSI of metatarsal bones. For instance,
metatarsals’ linear measurements such as maximum length,
width of head, and width of base are shown to provide
accurate sex estimation (17). In addition, the volume of the
first metatarsal bone and the torsion of the second metatarsal
bone were employed to establish successful sex and aging
protocols (19, 20). The accuracy of currently available
geometric protocols is approximately 80%, which gives
room for further improvements (19). Sex estimation can be
accurately performed using the DNA analysis, which highly
depends on the quantity and quality of DNA samples;
however, it is not an applicable method to accurately
identify sex of human skeletal remains, since the DNA
begins to degrade immediately after the cells die (21).
Although bone and teeth can provide some protection
against DNA degradation, the environment for preservation
is highly demanding, such as temperature, moisture levels,
oxygen levels, soil composition, and pH value (22). Y
chromosome deletions or mutations in the priming or
Abbreviations: 3D, three-dimensional; CSI, cross-section imaging;
HU, Hounsfield units; PMI, principal moment of inertia; PAI, principal axis
of inertia; SDI, sexual dimorphism index; ICC, intraclass correlation
coefficient ; SA: V, surface-area-to-volume ratio; SDFA, stepwise
discriminant function analysis.
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binding sites can lead to incorrect estimation of sex and
reduce the accuracy of DNA analysis (23–25). Studies show
that the accuracy of DNA analysis in determining the sex of
ancient human remains ranges from 52% to 95% (23–25). For
bone fossils, the older the fossil, the lower the amount of
extractable DNA. No extractable DNA was left in bone fossil
between 200,000 and 500,000 years ago (26). Furthermore, the
process of DNA extraction is destructive (22, 27), which is not
feasible when preservation of ancient skeletal remains is
required (28). Therefore, when we attempt to determine the
sex of bone fossils, the advantages of morphology and inertia
variables will be more obvious.

The current investigation seeks to test the hypothesis that 3D
reconstruction of metatarsal bones might present a promising
alternative to traditionally employed methods for forensics and
archeological sex estimation. More precisely, this study aims to
define physical metatarsal bone quantities of interest for the
discrimination between male and female subjects. To this
purpose, 60 subjects’ metatarsals (n = 600) were scanned using
computed tomography and virtually analyzed with an intention
to identify quantitative measurements referring to the sex of the
individual. In addition to normalizing bone’s sexual identifying
geometric variables (bone length, width, height, surface area, and
volume), this study was specifically designed to increase the sex
determination accuracy by including the inertial variables—three
principal moments of inertia (PMI) relative to their principal
axes of inertia (PAI) (x, y, and z).
2 SUBJECTS AND METHODS

2.1 Subjects
We recruited subjects from our university who volunteered to
participate in this program. Sixty healthy adults (30 males and 30
females) from Fujian Normal University were selected. Their
mean age was 20.9 ± 3.0 years, mean height 170.9 ± 9.9 cm, and
mean weight 62.5 ± 10.6 kg. The detailed characteristics of male
and female subjects are shown in Table S1 (Supplementary File
III). The study received approval from the Ethical Committee of
Fujian Normal University. The subjects provided fully informed
consent to participate in the study by signing a written consent
form. Then, a questionnaire was distributed to volunteer
students to exclude those with lower limb injury history. Each
potential subject’s annual medical report was checked to exclude
those with disease or trauma in their nervous and/or
musculoskeletal system.

2.2 Scanning Procedure
Subjects were scanned using Aquilion One 320 Slice CT Scanner
(Toshiba, Japan). The scan settings were as follows: tube voltage
of 120 kV, tube current exposure time of 50 mAs, layer distance
of 0.45–50 mm, pixel size of 0.46 ± 0.02 mm, and automatic
threshold between -1024 and 4145 Hounsfield units (HU). The
scanning was conducted along the transect of both feet, from top
to bottom. The scanning posture of 60 subjects is shown in
Supplementary File I; Figures S1A, B.
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2.3 Definition of Coordinate System of
Metatarsal Bones
The 3D models were constructed using Mimics software system
(Mimics Research 17.0 for X64; Materialise, Leuven, Belgium).
The reconstructed metatarsal bones are shown in
Supplementary File I; Figures S2A, B. Software solution was
employed to position the 3D models of 600 metatarsals
(Supplementary File II). In brief, software includes setting the
direction and order of three coordinate axes of the metatarsal.
Specifically, by going through the center of mass (COM) of the
metatarsal, the PAI set to go from metatarsal head to base was
the z axis, with the direction from the head to the base as the
positive direction; the PAI set to go from plantar to dorsal was
the x axis; and the PAI set to go from the medial metatarsal body
to lateral was the y axis.

The bone length, width, height, bone density, surface area,
volume, and three PMIs around the x, y, and z axes were obtained
from the positioned metatarsal bones (Supplementary File I;
Figures S3A, B).

2.4 Extracting Biometric Sex
Estimation Identifiers
The bone length, width, height, surface area, and volume were
extracted automatically from Mimics software (Supplementary
File I; Figure S4) and from the 3D models of metatarsal bones
described in Section 2.3.

2.4.1 Normalization of Linear Variables
Equation (1) was used to normalize the linear measurements
and to eliminate the effect from subjects’ body height
difference, possible sub-voxel scanning accuracy (29, 30),
and possible voxel order of magnitude errors from
segmentation accuracy derived from both segmentations
alone or non-detected subject micro-movement during the
scanning procedure (31):

Ln =
Lp

Lp+Wp+Hp
� 100

Wn =
Wp

Lp+Wp+Hp
� 100

Hn =
Hp

Lp+Wp+Hp
� 100

8>>>><
>>>>:

(1)

where Lp,Wp, andHp refer to the length, width, and height of
the positioned bone, and Ln, Wn, and Hn those of the
normalized, respectively.

2.4.2 Normalization of Inertial Variables
The Hounsfield number of a CT scan is a product of radiation
dose and attenuation coefficient (derived from density and
atomic number) of the scanned material (32). In our case, it is
influenced by bone density, body mass and size, and again
possible micro-movement of the subjects during scanning
procedure, which can create voxel order of magnitude
geometric dimension errors on the 3D model derived from the
scan by altering the valve of HU and thus threshold and
segmentation procedures. As we derive the mass of 3D models
of metatarsal bones from the HU used for the segmentation
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procedure to calculate the PAI, Equation (2) was employed to
eliminate those effects (31) and to normalize inertial variables:

PMIx =
PMIx

PMIx+PMIy+PMIz
� 100

PMIy =
PMIy

PMIx+PMIy+PMIz
� 100

PMIz =
PMIz

PMIx+PMIy+PMIz
� 100

8>>>><
>>>>:

(2)

2.4.3 Calculation of Surface-Area-to-Volume Ratio
The surface-area-to-volume ratio (SA: V) of 3D reconstruction
of the metatarsal bone was calculated, as shown in Equation (3):

SA :V =
S
V

(3)

where S refers to the surface area of metatarsal bone, and V to
the volume of metatarsal bone.

2.4.4 Calculation of Bone Density
The bone density of the 3D reconstructed metatarsal bone was
calculated, shown in Equation (4):

d =

Z N

1
di

N
(4)

where di =
gi
gw
, gi stands for the gray value of the volume

element, gw that of water. The equipment has been calibrated; the
gray value of the air is set to 0, and that of the water is 1024. N
refers to the number of bone’s volume elements.

2.5 Parameter Setting of the
Reconstruction
The same parameter settings were used to reconstruct all
metatarsal bones. Specifically, in the Mimics software, the
“Predefined Thresholds Sets: Bone (CT),” “Fill holes,” and
“Keep largest” options of “Thresholding” were not selected.
The operations of “Local Thresholding,” “Region Growing,”
and “Dynamic Region Growing” were not performed. In
“Morphology Operations,” the operation was set to “Close” to
operate the selected metatarsal.

2.6 Statistical Analysis
To test the influence of the reconstruction parameter setting on the
consistency of reconstructed metatarsal geometric measurements,
intraclass correlation coefficient (ICC) analysis was performed on
the length, width, height, surface area, volume, and SA: V of 60
metatarsal bones from previous research (33), where the
reconstruction parameter settings were the same as this study,
and 60 metatarsal bones were scanned and reconstructed twice.

The assumption of normality and homogeneity of variances
were tested by the Shapiro–Wilk test and Levene’s test,
respectively (Supplementary File III; Tables S3–S5). The
comparisons of measurement values between sexes were
evaluated with the independent sample t-test analysis when
data were normal distribution and homoscedasticity. The
Mann–Whitney U test was performed when data were non-
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normal distribution, and the results of Welch’s test would be
accepted when data were heteroscedasticity. The statistical level
was determined as p < 0.05. The sexual dimorphism index (SDI)
was determined as (Xm - Xf/Xm + Xf) × 100, where Xm and Xf
are the mean values of the male and female groups, respectively
(34). SDI represents the degree of variation between sexes. When
males’ variables were larger than those of the females’, the SDI
value was positive; otherwise, it was negative. The closer it got to
zero, the less significant the difference between the male and the
female was. The correlation between subjects’ characteristics
and bone variables was evaluated by Spearman’s correlation
coefficient (35).

To determine the best sex-discriminatory variables, the
stepwise discriminant function analysis (SDFA) (Wilk’s
lambda) was performed for each left and right metatarsal bone.
The assumption tests including multivariate normality,
multicollinearity, multivariate outliers within groups,
homogeneity of variances/covariances, and linearity were
conducted prior to the performance of the SDFA. Multivariate
normality was assessed by Mardia’s skewness and kurtosis (36).
A Mahalanobis distance test was used to detect multivariate
outliers (37). The Pearson correlation test was performed to test
multicollinearity among variables (38). Homogeneity of
variance–covariance matrices and linearity were evaluated by
Box’s M test and matrix scatter plots, respectively. Data analyses
were processed with SPSS 23.0 (IBM Corp.).

Prior probability was set as “all group equal” for all analyses.
The smaller value of the function’s Wilks’ lambda indicates
greater discriminatory ability of the function. The standardized
canonical discriminant coefficients imply contribution of each
variable. The higher the value, the greater the contribution of the
Frontiers in Endocrinology | www.frontiersin.org 4
variable. The structure matrix demonstrates the correlation
between each variable and the discriminant function. The
closer the value of the variable to 1, the stronger the
correlation. Unstandardized coefficients are utilized to form the
discriminant function and calculate the discriminant function
score (Y). The form of function is Y = a1x1 + a2x2 +···+ anxn + C
(a1 - an = unstandardized coefficients, x1-xn = variables, n = the
number of variables, and C = the constant value). A “leave one
out classification” procedure is performed in order to estimate
the accuracy rate of the original sample and the sample created
by cross-validation.
3 RESULTS

The original and positioned scanning postures of the investigated
metatarsal bones are shown in Figure 1. Figure 2 shows the
process of bones’ alignment in the x, y, and z planes.

Shown in Table S2 are the ICC analysis results of the length,
width, height, surface area, volume, and SA: V of the
reconstructed metatarsal bones from two scans. The best
consistency is shown in bone length, up to 1.00. The volume of
the third metatarsal presents the lowest ICC, i.e., 0.81. The ICC
values of the remaining measurements range from 0.91 to 0.99. It
is worth noting that the ICC values of SA: V are between 0.93 and
0.98, higher than those of surface area and volume.

Tables 1–3 reveal the descriptive results and SDI values of
eight variables of both sides of the investigated metatarsal bones
between sexes. The highest SDIs were found in SA: V (-6.055% –
-7.656% and -6.227 – - 7.949% from the left and right sides,
respectively), PMIz (3.797%–5.455% and 2.564%–7.692% from
FIGURE 1 | Computed tomography reconstructions of the original and positioned scanning posture of the investigated metatarsal bones. (A) Scanning postures of
a male and a female subject. (B) Reconstructed first to fifth metatarsal bones of the male and female subjects. (C) Positioned first to fifth metatarsal bones of the
male and female subjects.
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the left and right sides, respectively), and height (1.292%–2.389%
and 1.026%–2.235% from the left and right sides, respectively).
SA: V and PMIz show greater sexual dimorphism than linear
variables. Of note is that the SDI values of bone length, SA: V,
PMIx, and PMIy were negative, indicating a larger value of
females than that of males.

Tables 4–7 present independent sample t-test and Mann–
Whitney U test results of eight variables of both sides of the
investigated metatarsal bones between sexes. Highly significant
sexual differences were found in SA: V of all metatarsals and in
PMIs of the first to fourth metatarsals; in length of the first, third,
and fourth metatarsals; in height of the first, fourth, and fifth
metatarsals of both sides; and in width of the first metatarsal of
the right side (p < 0.01). Sexual differences were found in length
of the second and fifth metatarsals, in height of the third
metatarsal, and in PMIz of the fifth metatarsal of both sides (p
< 0.05). Sexual differences from the left side were found in width
of the first metatarsal, in height of the second metatarsal, and in
PMIy of the fifth metatarsal (p < 0.05). Significant differences
from the right side were found in width of the fourth metatarsal
and in PMIx and in bone density of the fifth metatarsal (p <
0.05). The first metatarsal was the most sexually dimorphic of
five metatarsals, showing significant sexual differences of all
variables except bone density, followed by the third metatarsal
with statistical difference in bone height, length, SA: V,
and PMIs.

The subjects’ body height and weight showed low correlations
(|rs| < 0.40) with variables except SA: V (0.60 <|rs| < 0.81). Length
presented multicollinearity with some variables (|rp| > 0.80), and
PMIx, PMIy showed a high correlation with PMIz (|rp| > 0.80)
(Supplementary File III; Tables S6–S15). Considering the high
SDI and significant sexual difference by the independent t-test,
the width, height, PMIz, bone density, and SA: V were selected as
independent variables for the SDFA. The probability of variables
was more than 0.001, indicating the absence of outlier in the
samples. Two multivariate outliers were identified and removed
in our study, which were found in the first metatarsal bone of the
Frontiers in Endocrinology | www.frontiersin.org 5
left and right sides, respectively. The homogeneity of variance
matrices was evaluated by Box’s M with p > 0.001 for both sides
in our analysis (Supplementary File III; Table S16). The
multivariate normality of variables was found in the first
metatarsal of the left side and in the second to fourth
metatarsals of the right side (Supplementary File III;
Table S17). Linearity among five variables was presented in
matrix scatter plots (Supplementary File III; Figures S5A, B).

Tables 8A, B describe the SDFA results for sex determination.
The results of standardized canonical discriminant coefficients
and structure matrix show that SA: V has the highest correlation
with discriminant functions and thus contributes most to
sex estimation.

The accuracies of discriminant functions based on original
samples and cross-validated samples are reported in Tables 9A, B.
The sex determination accuracies of the original samples were
between 88.3% and 98.3% of both sides. Moreover, the percentage
of correct classification of cross-validated samples was also
between 88.3% and 98.3% of both sides. No significant variance
was observed in accuracies between the original samples and the
cross-validated samples, revealing the steady predication ability of
the discriminant functions. The highest accuracy was found in the
third and fourth metatarsal bone of the right side—98.3% in our
cases. The accuracy of the right side was slightly higher than that
of the left side.
4 DISCUSSION

Parameters such as the voltage, parameter of field of view, and
reconstruction settings influence the accuracy of measurements
(length, width, height, surface area, and volume) during the 3D
reconstruction of bone. The ICC values of bone length, width,
and height presented high consistency of metatarsal
measurements between two reconstructions while the ICC
values of surface area and volume were lower than those of
linear measurements. Volume is a higher-order quantity
FIGURE 2 | Positioning of the reconstructed bone alongside the body coordinate system of the male and female metatarsals. To facilitate the location and
orientation positioning, COMs were aligned and the PAIs were used to define the coordinate system within each metatarsal. The rotation around the x, y, and z axes
allows to achieve the alignment of the investigated metatarsals.
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TABLE 1 | Descriptive results of normalized length, width, and height of metatarsal bone in vivo based on its PAI.

Metatarsals Geometric variables Male SDI (%) Female

Mean SD Min Max 95% CI Mean SD Min Max 95% CI

1st Length L 0.553 0.014 0.528 0.577 0.548–0.558 -0.896 0.563 0.011 0.543 0.586 0.559–0.567
R 0.550 0.013 0.525 0.574 0.545–0.555 -1.168 0.563 0.011 0.542 0.583 0.559–0.567

Width L 0.251 0.008 0.225 0.265 0.247–0.254 0.803 0.247 0.006 0.238 0.265 0.244–0.249
R 0.253 0.008 0.224 0.269 0.250–0.256 1.403 0.246 0.005 0.233 0.255 0.244–0.248

Height L 0.196 0.008 0.182 0.214 0.193–0.199 1.554 0.190 0.009 0.174 0.210 0.187–0.193
R 0.197 0.008 0.182 0.215 0.194–0.200 1.546 0.191 0.008 0.174 0.202 0.187–0.194

2nd Length L 0.659 0.015 0.629 0.687 0.653–0.664 -0.528 0.666 0.010 0.639 0.686 0.663–0.670
R 0.658 0.015 0.624 0.693 0.652–0.663 -0.529 0.665 0.011 0.637 0.681 0.661–0.669

Width L 0.145 0.008 0.133 0.164 0.142–0.148 0.694 0.143 0.006 0.132 0.157 0.141–0.145
R 0.145 0.008 0.129 0.162 0.142–0.148 1.045 0.142 0.007 0.122 0.157 0.140–0.145

Height L 0.196 0.010 0.178 0.220 0.192–0.200 1.292 0.191 0.008 0.178 0.218 0.188–0.194
R 0.197 0.010 0.173 0.219 0.193–0.201 1.026 0.193 0.008 0.176 0.207 0.190–0.195

3rd Length L 0.663 0.013 0.636 0.687 0.658–0.668 -0.674 0.672 0.010 0.650 0.690 0.668–0.676
R 0.663 0.014 0.634 0.684 0.658–0.668 -0.749 0.673 0.012 0.647 0.692 0.668–0.677

Width L 0.139 0.008 0.125 0.156 0.137–0.142 1.091 0.136 0.006 0.123 0.152 0.134–0.138
R 0.139 0.008 0.128 0.156 0.137–0.142 1.091 0.136 0.007 0.121 0.152 0.133–0.138

Height L 0.198 0.009 0.178 0.222 0.195–0.201 1.538 0.192 0.008 0.173 0.206 0.189–0.195
R 0.198 0.009 0.180 0.221 0.194–0.201 1.538 0.192 0.009 0.172 0.213 0.188–0.195

4th Length L 0.670 0.012 0.645 0.696 0.666–0.674 -0.741 0.680 0.010 0.659 0.699 0.677–0.684
R 0.668 0.013 0.638 0.697 0.664–0.673 -0.890 0.680 0.011 0.656 0.697 0.676–0.684

Width L 0.148 0.007 0.135 0.166 0.146–0.151 0.680 0.146 0.008 0.135 0.168 0.143–0.149
R 0.149 0.006 0.138 0.159 0.147–0.151 1.361 0.145 0.007 0.127 0.160 0.142–0.148

Height L 0.182 0.010 0.160 0.209 0.178–0.185 2.247 0.174 0.008 0.161 0.189 0.171–0.177
R 0.183 0.010 0.163 0.213 0.179–0.186 2.235 0.175 0.007 0.161 0.192 0.172–0.178

5th Length L 0.658 0.014 0.630 0.706 0.653–0.663 -0.679 0.667 0.012 0.642 0.692 0.663–0.672
R 0.661 0.013 0.637 0.701 0.656–0.665 -0.527 0.668 0.010 0.642 0.693 0.664–0.672

Width L 0.192 0.010 0.163 0.207 0.188–0.196 0.524 0.190 0.008 0.173 0.205 0.187–0.192
R 0.191 0.011 0.164 0.206 0.187–0.195 0.526 0.189 0.007 0.175 0.203 0.187–0.192

Height L 0.150 0.008 0.131 0.173 0.147–0.153 2.389 0.143 0.007 0.130 0.158 0.141–0.146
R 0.148 0.008 0.134 0.168 0.145–0.151 1.718 0.143 0.007 0.130 0.155 0.140–0.145
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PAI, principal axes of inertia; SDI, sexual dimorphism index; 95% CI, 95% confidence interval of difference.
All linear variables were normalized by Equation (1).
TABLE 2 | Descriptive results of SA: V (mm-1) and bone density (HU/1024) of metatarsal bone in vivo.

Metatarsals Geometric variables Male SDI (%) Female

Mean SD Min Max 95% CI Mean SD Min Max 95% CI

1st SA: V L 0.256 0.016 0.224 0.297 0.250–0.262 -6.055 0.289 0.014 0.262 0.315 0.284–0.294
R 0.256 0.016 0.223 0.299 0.250–0.262 -6.227 0.290 0.013 0.263 0.315 0.285–0.295

Density L 1.602 0.059 1.452 1.718 1.580–1.624 0.786 1.577 0.054 1.436 1.670 1.557–1.597
R 1.605 0.072 1.462 1.744 1.578–1.632 0.690 1.583 0.056 1.443 1.681 1.462–1.744

2nd SA: V L 0.362 0.022 0.328 0.420 0.354–0.371 -7.417 0.420 0.026 0.359 0.470 0.411–0.430
R 0.359 0.020 0.332 0.413 0.351–0.367 -7.949 0.421 0.027 0.366 0.487 0.411–0.431

Density L 1.710 0.078 1.522 1.907 1.681–1.739 -1.099 1.748 0.077 1.592 1.909 1.720–1.777
R 1.710 0.085 1.522 1.913 1.678–1.742 -0.581 1.730 0.069 1.586 1.860 1.705–1.756

3rd SA: V L 0.386 0.018 0.348 0.417 0.379–0.393 -7.656 0.450 0.021 0.407 0.502 0.442–0.457
R 0.383 0.016 0.346 0.407 0.377–0.389 -7.822 0.448 0.022 0.409 0.504 0.440–0.456

Density L 1.661 0.077 1.502 1.844 1.633–1.690 -0.150 1.666 0.068 1.514 1.777 1.641–1.692
R 1.660 0.075 1.496 1.803 1.632–1688 0.242 1.652 0.064 1.516 1.775 1.628–1.676

4th SA: V L 0.377 0.016 0.341 0.418 0.371–0.383 -7.371 0.437 0.023 0.392 0.487 0.428–0.445
R 0.375 0.016 0.335 0.408 0.368–0.381 -7.635 0.437 0.023 0.392 0.484 0.428–0.446

Density L 1.631 0.077 1.429 1.760 1.602–1.660 0.215 1.624 0.061 1.458 1.751 1.601–1.647
R 1.633 0.071 1.429 1.731 1.607–1.660 0.400 1.620 0.053 1.482 1.718 1.600–1.639

5th SA: V L 0.346 0.017 0.313 0.388 0.340–0.353 -6.989 0.398 0.023 0.354 0.444 0.389–0.406
R 0.345 0.016 0.307 0.370 0.339–0.351 -7.133 0.398 0.023 0.358 0.450 0.389–0.406

Density L 1.682 0.077 1.466 1.798 1.654–1.711 0.478 1.666 0.053 1.569 1.813 1.647–1.686
R 1.682 0.070 1.466 1.788 1.655–1.708 0.870 1.653 0.053 1.549 1.800 1.633–1.672
SDI, sexual dimorphism index; 95% CI, 95% confidence interval of difference.
SA: V was calculated by Equation (3). The bone density was calculated by Equation (4).
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compared to length, width, and height. For example, the ICC
value of the side length of a square is 0.91, while that of its
volume is 0.75. The ICC value of SA: V was also calculated, and
the lowest ICC values rose to 0.93, indicating that SA: V has
higher consistency than surface area and volume. Therefore, SA:
V instead of surface area and volume was used in this study.
Parameters such as field of view and voltage were not set
the same in the two scans, which also affected the ICC values
of the reconstructed metatarsal measurements. From this view,
the ICC values of metatarsals’ measurements between two
reconstructions were high, indicating that the reconstructed
3D bone model was precise under these reconstruction
parameter settings. It is reasonable to assume that the
parameter setting mentioned in Methods generated an accurate
reconstruction model.

The sexual dimorphism in the human skeleton system is well
studied (10, 39–46). Researchers keep on exploring the potential
of bones in sex estimation, for instance, mandible (47), long
bones of the upper limb (44, 46, 48), metacarpals and phalanges
(45), pelvis (41, 42), tibia (9), metatarsal (19, 49, 50), and
proximal foot phalanges (51). The accuracy of sex estimation
provided by different parts of the bone varied ranged from 66%
to 99%. For metatarsal bone, this study showed for the first time
Frontiers in Endocrinology | www.frontiersin.org 7
that the SA: V and PMIz of metatarsal bone with significant
sexual dimorphism may be successfully implemented for sex
estimation. The discriminant accuracy of metatarsal’s geometric
and inertial variables of Chinese samples in this study were
between 88.3% and 98.3%, which were comparable to the
accuracy reported in the Portuguese Caucasian population
(83.0%–100.0%) (49), the Greek samples (80.7%–90.1%) (17),
the Iranian population (82.6%–86.9%) (50), and the Egyptian
population (81.3%–97.5%) (52). The accuracy variation can be
found in different populations, indicating that the classification
accuracy of metatarsal bone was population-specific. Gibelli et al.
reported the superiority of linear measurements over volumetric
measurements in sex estimation (19). In our study, the SA: V and
PMIz offive metatarsal bones showed greater sexual dimorphism
than linear variables and SA: V contributes most to sex
estimation. The discriminant function based on SA: V
provided 91.7% accuracy (91.7% cross-validated). Studies
found that SA: V would decrease with increasing body size as
trabeculae became thicker (53–55). In our cases, high and
negative correlations (0.60 <|rs| < 0.81) were found between
SA: V and body weight as well as between SA: V and body height,
indicating that high classification accuracy and significant sexual
dimorphism of the SA: V value may arise from the differences in
TABLE 3 | Descriptive results of three normalized PMIs of metatarsal bone in vivo based on its PAI.

Metatarsals Inertial variables Male SDI (%) Female

Mean SD Min Max 95% CI Mean SD Min Max 95% CI

1st PMIx L 0.462 0.005 0.446 0.470 0.459–0.464 -0.431 0.466 0.003 0.460 0.471 0.464–0.467
R 0.461 0.006 0.447 0.470 0.459–0.463 -0.432 0.465 0.003 0.460 0.471 0.464–0.467

PMIy L 0.452 0.005 0.444 0.467 0.450–0.454 -0.550 0.457 0.004 0.449 0.467 0.455–0.458
R 0.451 0.005 0.443 0.463 0.449–0.453 -0.551 0.456 0.003 0.450 0.466 0.455–0.458

PMIz L 0.087 0.009 0.064 0.099 0.084–0.090 5.455 0.078 0.006 0.063 0.089 0.075–0.080
R 0.088 0.009 0.067 0.103 0.085–0.091 6.024 0.078 0.005 0.068 0.089 0.076–0.080

2nd PMIx L 0.478 0.003 0.472 0.485 0.477–0.479 -0.209 0.480 0.002 0.476 0.483 0.479–0.481
R 0.478 0.003 0.472 0.485 0.477–0.479 -0.209 0.480 0.002 0.477 0.482 0.479–0.481

PMIy L 0.488 0.002 0.484 0.491 0.487–0.489 -0.102 0.489 0.001 0.486 0.491 0.489–0.490
R 0.487 0.003 0.474 0.490 0.486–0.488 -0.205 0.489 0.001 0.486 0.492 0.489–0.490

PMIz L 0.034 0.004 0.024 0.042 0.033–0.036 4.615 0.031 0.003 0.026 0.038 0.030–0.032
R 0.035 0.001 0.026 0.044 0.033–0.036 6.061 0.031 0.002 0.026 0.037 0.030–0.031

3rd PMIx L 0.477 0.003 0.470 0.484 0.476–0.478 -0.209 0.479 0.002 0.476 0.483 0.478–0.480
R 0.477 0.003 0.469 0.483 0.476–0.478 -0.313 0.480 0.002 0.476 0.483 0.479–0.480

PMIy L 0.489 0.002 0.486 0.492 0.488–0.489 -0.102 0.490 0.001 0.488 0.492 0.489–0.490
R 0.488 0.002 0.485 0.492 0.488–0.489 -0.204 0.490 0.001 0.487 0.492 0.489–0.490

PMIz L 0.034 0.004 0.024 0.044 0.033–0.036 4.615 0.031 0.003 0.027 0.035 0.030–0.032
R 0.035 0.004 0.025 0.046 0.033–0.036 7.692 0.030 0.003 0.027 0.036 0.029–0.031

4th PMIx L 0.479 0.003 0.473 0.486 0.478–0.480 -0.208 0.481 0.002 0.477 0.484 0.480–0.481
R 0.478 0.003 0.472 0.484 0.477–0.479 -0.313 0.481 0.002 0.477 0.486 0.480–0.481

PMIy L 0.487 0.002 0.484 0.492 0.487–0.488 -0.103 0.488 0.001 0.485 0.490 0.488–0.489
R 0.487 0.002 0.483 0.491 0.486–0.488 -0.103 0.488 0.002 0.482 0.491 0.488–0.489

PMIz L 0.034 0.004 0.023 0.041 0.032–0.036 4.615 0.031 0.003 0.026 0.037 0.030–0.032
R 0.034 0.004 0.026 0.041 0.033–0.036 4.615 0.031 0.003 0.026 0.036 0.030–0.032

5th PMIx L 0.484 0.003 0.479 0.491 0.483–0.485 -0.103 0.485 0.002 0.481 0.487 0.484–0.485
R 0.484 0.002 0.480 0.489 0.483–0.485 -0.103 0.485 0.002 0.482 0.488 0.485–0.486

PMIy L 0.475 0.004 0.468 0.487 0.474–0.476 -0.210 0.477 0.003 0.470 0.482 0.476–0.478
R 0.476 0.004 0.468 0.484 0.474–0.477 -0.105 0.477 0.003 0.472 0.482 0.476–0.478

PMIz L 0.041 0.006 0.022 0.051 0.039–0.043 3.797 0.038 0.004 0.032 0.049 0.037–0.040
R 0.040 0.006 0.027 0.052 0.038–0.043 2.564 0.038 0.004 0.031 0.046 0.036–0.039
O
ctober 20
21 | Volu
me 12 | A
PAI, principal axes of inertia; SDI, sexual dimorphism index; 95% CI, 95% confidence interval of difference; PMIx, principal moments of inertia around the x axis of the bone; PMIy, principal
moments of inertia around the y axis of the bone; PMIz, principal moments of inertia around the z axis of the bone.
All inertial variables were normalized by Equation (2).
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body size between males and females. On the other hand,
normalized linear and inertial variables presented low
correlations (|rs| < 0.4) with body height and weight,
suggesting that normalized bone height and PMIz value were
Frontiers in Endocrinology | www.frontiersin.org 8
less likely affected by the differences in individuals’ height and
weight in sex estimation.

It is known from the natural principles that form follows
the function. Loading can significantly modify bone shape and
TABLE 4 | Independent sample t-test results of normalized length, width, and height of metatarsal bone in vivo based on its PAI between sexes.

Metatarsals Geometric parameters t value df Sig. (2-tailed) 95% CI

Lower upper

1st Length L -3.135 58.000 0.003** -0.016 -0.004
R -4.319 58.000 0.000** -0.020 -0.007

Height L 2.872 58.000 0.006** 0.002 0.010
R 3.300 58.000 0.002** 0.003 0.011

2nd Length L -2.411 50.345 0.020* -0.014 -0.001
R -2.126 58.000 0.038* -0.014 0.000

Width L 1.282 58.000 0.205 -0.001 0.006
R 1.458 58.000 0.150 -0.001 0.007

Height R 1.881 58.000 0.065 0.000 0.009
3rd Length L -3.079 58.000 0.003** -0.016 -0.003

R -2.931 58.000 0.005** -0.016 -0.003
Width L 1.853 58.000 0.069 0.000 0.007

R 1.894 58.000 0.063 0.000 0.008
Height L 2.835 58.000 0.006** 0.002 0.010

R 2.546 58.000 0.014* 0.001 0.011
4th Length L -3.612 58.000 0.001** -0.016 -0.005

R -3.780 58.000 0.000** -0.018 -0.005
Width R 2.337 58.000 0.023* 0.001 0.008
Height L 3.333 58.000 0.002** 0.003 0.012

R 3.326 58.000 0.002** 0.003 0.012
5th Length R -2.510 58.000 0.015* -0.014 -0.002

Width L 1.113 58.000 0.271 -0.002 0.007
Height L 3.330 58.000 0.002** 0.003 0.011

R 3.089 58.000 0.003** 0.002 0.009
October 2021 | V
olume 12 | Article 7
PAI, principal axes of inertia; 95% CI, 95% confidence interval of difference.
*Significance level: p < 0.05.
**Significance level: p < 0.01.
TABLE 5 | Independent sample t-test results of SA: V (mm-1) and bone density (HU/1024) of metatarsal bone in vivo between sexes.

Metatarsals Geometric parameters t value df Sig. (2-tailed) 95% CI

Lower upper

1st SA: V L -8.432 58.000 0.000** -0.041 -0.025
R -8.751 58.000 0.000** -0.041 -0.026

Density L 1.694 58.000 0.096 -0.004 0.054
R 1.270 58.000 0.209 -0.012 0.055

2nd SA: V L -9.212 58.000 0.000** -0.071 -0.045
R -10.189 58.000 0.000** -0.074 -0.050

Density L -1.930 58.000 0.058 -0.079 0.001
R -1.017 58.000 0.313 -0.060 0.020

3rd SA: V L -12.808 58.000 0.000** -0.074 -0.054
R -13.371 58.000 0.000** -0.075 -0.056

Density L -0.276 58.000 0.783 -0.043 0.032
R 0.425 58.000 0.673 -0.028 0.044

4th SA: V L -11.613 58.000 0.000** -0.069 -0.049
R -12.038 52.206 0.000** -0.073 -0.052

Density L 0.361 58.000 0.719 -0.030 0.043
5th SA: V L -9.951 58.000 0.000** -0.062 -0.041

R -10.264 58.000 0.000** -0.063 -0.042
Density L 0.943 58.000 0.350 -0.018 0.050
95% CI, 95% confidence interval of difference.
*Significance level: p < 0.05.
**Significance level: p < 0.01.
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mass, and this influence is long-lasting (56). Bone robusticity is
generally considered as an important indicator of the magnitude
and nature of the force that acts on the bone, providing
information about the habitual behavior of organism (57–59).
Some studies reported the sexual differences in robusticity of
hand and foot bones (17, 51, 60). In our study, high SDIs of bone
height and PMIz may reflect differences in genetics and physical
activity level between sexes. In linear measurements, higher SDI
values were found in bone height other than in bone width and
Frontiers in Endocrinology | www.frontiersin.org 9
length, which was consistent with findings of the literature (17,
50). Ruff et al. found that the diaphyseal cross-sectional size
changed significantly with the increase of mechanical load (body
weight increase) (61). Similar results were discovered by
Lieberman et al., reporting a significant change in the
diaphyseal cross-sectional geometry of limb bone of sheep after
3 months’ moderate exercise (62). PMI is associated with bone
morphology and mass distribution. Significantly higher PMIz
values in the male than in female population presumably come as
TABLE 6 | Independent sample t-test results of normalized PMIs of metatarsal bone in vivo based on its PAI between sexes.

Metatarsals Geometric parameters t value df Sig. (2-tailed) 95% CI

Lower upper

1st PMIx L -3.482 47.595 0.001** -0.006 -0.002
R -3.644 44.215 0.001** -0.007 -0.002

PMIy L -4.276 58.000 0.000** -0.008 -0.003
R -4.601 48.491 0.000** -0.008 -0.003

PMIz L 4.729 51.796 0.000** 0.005 0.013
R 5.204 48.064 0.000** 0.006 0.014

2nd PMIx L -3.772 58.000 0.000** -0.003 -0.001
R -4.669 46.392 0.000** -0.004 -0.002

PMIy L -3.303 58.000 0.002** -0.002 0.000
R -4.946 58.000 0.000** -0.002 -0.001

PMIz L 3.926 58.000 0.000** 0.002 0.005
R 5.167 48.317 0.000** 0.003 0.006

3rd PMIx L -3.293 58.000 0.002** -0.003 -0.001
R -4.692 58.000 0.000** -0.004 -0.002

PMIy L -3.693 43.838 0.001** -0.002 -0.001
R -4.217 45.266 0.000** -0.002 -0.001

PMIz L 3.710 58.000 0.000** 0.002 0.005
R 4.854 46.054 0.000** 0.003 0.006

4th PMIx L -3.457 46.444 0.001** -0.003 -0.001
R -4.448 58.000 0.000** -0.004 -0.002

PMIz L 3.365 47.199 0.002** 0.001 0.005
R 4.148 50.493 0.000** 0.002 0.006

5th PMIx L -1.652 49.618 0.105 -0.002 0.000
R -2.312 50.937 0.025* -0.002 0.000

PMIy L -2.088 58.000 0.041* -0.004 0.000
R -1.823 50.929 0.074 -0.003 0.000

PMIz R 2.126 50.237 0.038* 0.000 0.005
October 2021 | V
olume 12 | Article 7
PAI, principal axes of inertia; 95% CI, 95% confidence interval of difference.
*Significance level: p < 0.05.
**Significance level: p < 0.01.
TABLE 7 | Mann-Whitney U test results of variables of metatarsal bone in vivo based on its PAI between sexes.

Sides Geometric parameters Mann–Whitney U Wilcoxon W Z Sig.

Left 1st width 282 747 -2.484 0.013*
2nd height 278 743 -2.543 0.011*
4th width 329 794 -1.789 0.074
4th PMIy 626 1091 2.602 0.009**
5th length 647 1112 2.913 0.004**
5th PMIz 298 763 -2.247 0.025*

Right 1st width 188 653 -3.874 0.000**
4th PMIy 625 1090 2.587 0.010*
4th density 350 815 -1.478 0.139
5th density 290 755 -2.366 0.018*
5th width 367 832 -1.227 0.220
PAI, principal axes of inertia.
*Significance level: p < 0.05.
**Significance level: p < 0.01.
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a consequence of the increased physical activities of the male
subjects. Namely, tarsals and metatarsals, with ligaments and
tendons from the foot arch, could resist impact and maintain
stability during walking, running, or jumping. Metatarsals
mainly bear the longitudinal pressure from its base to head,
which explains the greatest variation in ratio of PMIz values—the
load bearing along the z axis has presumably undergone
adaptability changes (63). The effect of age on bone dimension
and robusticity should be noted. No consensus has been reached.
It was found that the subperiosteal diameter increased with age
(64–66). However, some studies found that mechanical loads
during adulthood had little effect on the external dimensions of
long bone diaphysis and the age-related changes in diaphyseal
cross-sectional size of bone were not evident (67–70). It may
indicate that the diaphyseal cross-sectional properties of bone
were mainly affected by physical activity before skeletal maturity
(70). The effect of age and mechanical loads on the geometric and
inertial characteristics of metatarsal bone needs further in-depth
studies of larger sample size of different ethnical/racial groups.

How to best implement the CSI analysis for sex estimation in
forensics and archeology can be discussed, but some
methodological issues have to be resolved. Firstly, the
measurements that differ in the male and female populations
Frontiers in Endocrinology | www.frontiersin.org 10
should be identified. Those variables may be geometric (length,
width, height, SA: V) and inertial (PMIs). The present paper
paves the way for sex estimation by introducing the concept of
PMI-oriented bone coordinate system normalization. PMIz is
the attribute of the rotational movements; it is an analog of the
mass of the translational movements. The advantage of the
inertial analysis is the evidence that such analysis does not
depend on factors such as nutrition and genetics, as is the case
for linear variables. It quantitatively assesses the foot bone
physical properties, providing more accurate data than
qualitatively measured pelvis and cranium or metrical
approaches focusing on a single bone element (20, 71).
Secondly, the method that yields precise measurements based
on 3D models should be determined. The present paper
introduces a bone positioning method. The body coordinate
system sets COM as the origin, achieving bone location, and sets
three PAIs of bone as the body coordinate axes, positioning bone
posture to avoid measurement error caused by different scanning
positions, which ensures the high accuracy of dimensions along
the axis (bone length, width, and height). One additional
advantage of this method is that the dimension of bone along
the axis can be obtained automatically, reducing the possible
error caused by manual measurement.
TABLE 8A | Stepwise discriminant function analysis for left metatarsal bone.

Functions Wilk’s lambda Unstandardized
coefficientsc

Structure
matrixd

Standardized
coefficientse

Group
centroidsf

Sectioning
pointg

Wilk’s
lambdaa

Chi-
square

sigb Male Female

Function 1 Measurements of the 1st metatarsal bone
SA: V 0.283 69.969 0.000 -72.779 -0.686 -1.098 1.536 -1.589 -0.027
Bone
density

13.129 0.144 0.745

Height 64.683 0.278 0.504

(constant) -13.556

Function 2 Measurements of the 2nd metatarsal bone
SA: V 0.380 55.225 0.000 39.926 0.946 0.974 -1.257 1.257 0.000
Height -35.974 -0.242 -0.325

(constant) -8.664

Function 3 Measurements of the 3rd metatarsal bone
SA: V 0.241 81.189 0.000 51.104 0.947 0.984 -1.746 1.746 0.000
Height -38.990 -0.210 -0.324

(constant) -13.755

Function 4 Measurements of the 4th metatarsal bone
SA: V 0.301 69.087 0.000 50.593 1.000 1.000 -1.499 1.499 0.000
(constant) -20.593

Function 5 Measurements of the 5th metatarsal bone
SA: V 0.345 60.676 0.000 51.174 0.948 1.024 -1.355 1.355 0.000
Bone
density

-4.971 -0.090 -0.327

(constant) -10.718
October
 2021 | Volume 12
aAt each step, the variable that minimizes the overall Wilks’ lambda is entered. Minimum partial F to enter is 3.84. Maximum partial F to remove is 2.71.
bp value is 0.000, which means the significant level at p < 0.001.
cUnstandardized canonical discriminant functions evaluated at group means. Take Function 1 for example, Y = 13.129 * bone density + 64.683 * height - 72.779 * SA: V - 13.556.
dStructure matrix indicates the pooled within-group correlations between discriminating variables and standardized canonical discriminant functions.
eStandardized coefficients represent the contribution of the variable to sex discrimination.
fUnstandardized canonical discriminant functions evaluated at group means.
gWhen the group mean of male is positive, discriminant score (Y) > sectioning point would be considered as male; while the group mean of male is negative, discriminant score (Y) <
sectioning point would be considered as male.
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This study is the continuation of the ongoing scientific efforts
to employ virtual 3D reconstruction in determination of
individuals’ sex and age (2, 72). Foot bones were chosen
purposely due to their wide availability in both archeological
and forensic context owing to more resistance to the rigors of
time than long bones (18). The accuracy of virtual analysis of the
metatarsal bone is proven in a previous investigation that
evaluated the efficacy of a radiological method to estimate the
Frontiers in Endocrinology | www.frontiersin.org 11
individuals’ sex using measurements of the first and second
metatarsals of a Portuguese Caucasian population (49).

The high prevalence of metatarsal bones at archeological and
forensic sites justifies that the proposed method may be widely
applied in archeology and forensics. The wide application of 3D
CSI in forensics is constrained because of ethical issues, which
also has limited the establishment of populations’ databases.
However, the data obtained during routine medical examination
TABLE 8B | Stepwise discriminant function analysis for right metatarsal bone.

Functions Wilk’s lambda Unstandardized
coefficients

Structure
matrix

Standardized
coefficients

Group
centroids

Sectioning
point

Wilk’s
lambda

Chi-
square

sig Male Female

Function 1 Measurements of the 1st metatarsal bone
SA: V 0.293 68.207 0.000 -61.716 -0.728 -0.911 1.554 -1.503 0.026
PMIz 77.849 0.504 0.535

Bone density 8.292 0.127 0.530

(constant) -2.848

Function 2 Measurements of the 2nd metatarsal bone
SA: V 0.317 65.407 0.000 37.552 0.912 0.888 -1.442 1.442 0.000
PMIz -124.899 -0.463 -0.410

(constant) -10.559

Function 3 Measurements of the 3rd metatarsal bone
SA: V 0.224 85.167 0.000 52.538 0.944 0.995 -1.828 1.828 0.000
Height -35.799 -0.180 -0.333

(constant) -14.859

Function 4 Measurements of the 4th
metatarsal bone
SA: V 0.213 87.386 0.000 54.196 0.822 1.087 -1.890 1.890 0.000
Bone density -8.403 -0.058 -0.528

Height -37.812 -0.227 -0.333

(constant) -1.557

Function 5 Measurements of the 5th metatarsal bone
SA: V 0.277 73.259 0.000 55.060 0.833 1.092 -1.590 1.590 0.000
Bone density -9.850 -0.147 -0.610

(constant) -4.021
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TABLE 9A | Accuracy of classification results of the original and cross-validated samples (left side)a.

Functions Male Female Total average (%)

N % N %

Function 1
Original 27/30 90.0 27/29 93.1 91.5
Cross-validated 27/30 90.0 27/29 93.1 91.5
Function 2
Original 27/30 90.0 26/30 86.7 88.3
Cross-validated 27/30 90.0 26/30 86.7 88.3
Function 3
Original 29/30 96.7 29/30 96.7 96.7
Cross-validated 29/30 96.7 28/30 93.3 95.0
Function 4
Original 29/30 96.7 26/30 86.7 91.7
Cross-validated 29/30 96.7 26/30 86.7 91.7
Function 5
Original 29/30 96.7 26/30 86.7 91.7
Cross-validated 29/30 96.7 25/30 83.3 90.0
aCross-validation is done only for those cases in the analysis. In cross-validation, each case is classified by the functions derived from all cases other than those cases.
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may be stored and subsequently employed in forensic analysis.
The analysis of metatarsal bones using radiography is rapid and
noninvasive. The advantages of 3D CSI forensic analysis include,
besides the potential for sex estimation, precise documentation
and 3D demonstration of forensic findings for the court,
reduction of trauma, and decreased risk of transmission of
disease (1). It is interesting to note that the CSI analysis of the
fourth metatarsal even allowed the scientists to explain the
ground-dwelling biped walking pattern of Australopithecus
afarensis dating back to 3.2 million years ago (73).

Some weaknesses of virtopsy-oriented skeletal assessments
should be noted though. The quality of the CSI can be affected by
many factors, including the scanning posture, error aggregation,
resolution, and dose, resulting in the inconsistency in the 3D
reconstruction models (74–76). Studies have shown that 3D
bone models can achieve high accuracy at the sub-millimeter
scale, while increasing the voxel resolution (from 0.3 to 0.15 mm)
does not improve the accuracy of the models (77). Our previous
study (33) compared the accuracy of 3D bone models
reconstructed with different anisotropic voxels (different pixel
sizes) and found no significant differences in the linear, volume,
and surface area measurements of the models. In particular, the
linear measurement values remained highly consistent,
indicating that pixel size had no significant influence on model
accuracy at the submillimeter scale. Micro CT scanning,
providing scans at the few-micron level for small size samples,
is commonly used to evaluate the trabecular bone microstructure
(78–80). However, the effects of multi-detector CT and micro CT
with different resolutions on the accuracy of 3D bone models are
still unclear and need to be further studied. The standardization
of the body coordinate system of bone is able to avoid the adverse
effects arising from different scanning postures, while rating
those quantities by percentage could reduce the effect from
resolution and dose. The same bone can be reconstructed by a
different operator or it can be reconstructed by the same operator
for many times, so the parameter setting of the reconstruction
process should be taken into consideration when comparing the
results of different studies on the CSI analysis of the skeletal
Frontiers in Endocrinology | www.frontiersin.org 12
tissue. For statistical results, some assumptions were not
confirmed, such as multivariate normality of the second to
fifth metatarsals of the left side and the first and fifth
metatarsals of the right side. The accuracy of formulae based
on these metatarsal variables should be treated with caution,
although discriminant function analysis is relatively robust
against deviations from multivariate normality (81). It should
be further highlighted that the accuracy of estimation may be
influenced by the characteristics of the selected bone, population,
sample size, and age. The promising results (cross-validated
accuracy ranges) of this study may in part be driven by the
small sample size as well as the same young age-group. The
potential future application of this new proposed method for sex
determination on unidentified individuals would not be as
accurate as suggested in this study. Therefore, the methods
should be tested (or independently developed) for distinct
population groups, before being widely applied in individuals
of unknown population origin (i.e., unidentified skeletons in
forensic and bioarcheological contexts).
5 CONCLUSION

This study demonstrates that sexual dimorphism was found in
both metatarsal bones’ geometric and inertial variables. A
profound analysis of 60 subjects’ metatarsals revealed that
discriminant functions based on geometric and inertial
variables of metatarsal bones generated accuracies of 88.3%–
98.3% in sex estimation. The ongoing studies are under way to
test the potential of the proposed method on the sex
determination of archaeological remains and of larger sample
size with different population groups.
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TABLE 9B | Accuracy of classification results of the original and cross-validated samples (right side).

Functions Male Female Total average (%)

N % N %

Function 1
Original 26/29 89.7 28/30 93.3 91.5
Cross-validated 26/29 89.7 28/30 93.3 91.5
Function 2
Original 29/30 96.7 26/30 86.7 91.7
Cross-validated 29/30 96.7 26/30 86.7 91.7
Function 3
Original 30/30 100.0 29/30 96.7 98.3
Cross-validated 30/30 100.0 29/30 96.7 98.3
Function 4
Original 30/30 100.0 29/30 96.7 98.3
Cross-validated 30/30 100.0 29/30 96.7 98.3
Function 5
Original 30/30 100.0 27/30 90.0 95.0
Cross-validated 30/30 100.0 27/30 90.0 95.0
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