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The first successful heart transplant 50 years ago by Dr.Christiaan Barnard in Cape

Town, South Africa revolutionized cardiovascular medicine and research. Following this

procedure, numerous other advances have reduced many contributors to cardiovascular

morbidity and mortality; yet, cardiovascular disease remains the leading cause of

death globally. Various unmet needs in cardiovascular medicine affect developing and

underserved communities, where access to state-of-the-art advances remain out of

reach. Addressing the remaining challenges in cardiovascular medicine in both developed

and developing nations will require collaborative efforts from basic science researchers,

engineers, industry, and clinicians. In this perspective, we discuss the advancements

made in cardiovascular medicine since Dr. Barnard’s groundbreaking procedure and

ongoing research efforts to address these medical issues. Particular focus is given to the

mission of the International Society for Applied Cardiovascular Biology (ISACB), which

was founded in Cape Town during the 20th celebration of the first heart transplant in

order to promote collaborative and translational research in the field of cardiovascular

medicine.

Keywords: cardiovascular medicine, heart transplant, arterial disease, aortic valve, myocardial regeneration,

tissue engineeering, interdisciplinary/multidisciplinary

INTRODUCTION

Christiaan Barnard, an innovative surgeon, transplanted the world’s first human heart onDecember
3, 1967 in Cape Town, South Africa (Figures 1A,B). Soon after, surgeons across the world started
transplanting hearts into patients with end-stage heart disease. The potential of rejection required
immunosuppression, which left patients susceptible to infection. The approval of cyclosporine
use for transplant recipients allowed for better post-transplant patient care and improved patient
survival. In 2016, 3,209 hearts were transplanted in the U.S. alone and over 5,000 worldwide (1).
However, the availability of transplantable hearts and their function once implanted is still far
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from optimal. To help overcome issues in the field of cardiac
and vascular diseases more broadly, a collaborative group
of cardiac surgeons, cardiologists, engineers and biologists
founded the International Society for Applied Cardiovascular
Biology (ISACB) in Cape Town during the 20th celebration
of the first heart transplant in 1987. Now after more than
30 years, ISACB has nurtured an alliance among academic
scientists and engineers, clinicians, and industry-based scientists
to understand, prevent, and manage cardiovascular disease.

While scientists, engineers and clinicians have a long history
of cooperation, with strong academic roots and participation
in professional societies, the participation of industry in
professional society meetings and has been dominated by
marketing considerations. Proprietary concerns have further
isolated many corporate scientists from open forums of
communication. As stated by founding member and former
ISACB President Peter Zilla, these “traditional roles and
stereotypes must rapidly wane in light of the complexity that
is required for any biologically “conscientious” product of
today or tomorrow.... and... industry scientists must be better
integrated within the academic and medical communities.”
Dr. Zilla (Figure 1C), a surgeon scientist and Head of the
Christiaan Barnard Department of Cardiothoracic Surgery of
the Groote Schuur Hospital and the University of Cape
Town, emphasizes the importance of understanding relevant
science and corporate considerations while providing the
surgeon with a usable solution as essential in developing
better treatments for cardiovascular diseases. Collaborations
between scientists, surgeons, engineers and investigators from
other fields stimulates new opportunities to develop translatable
solutions to significant cardiovascular issues. Thirty years later,
and now 50 years after the world’s first heart transplant,
ISACB continues to foster a multidisciplinary convergence of
professional expertise and experiences, through the application
of biology to clinical medicine in order to prevent and
overcome cardiovascular disease. Moreover, ISACB has also
fostered collaboration among professional societies focused
on cardiovascular biology, cardiology, surgery, pathology, and
bioengineering, including joint meetings with the Society for
Cardiovascular Pathology (SCVP), the North American Vascular
Biology Organization (NAVBO), Heart Valve Tissue Engineering
(HVTE), and others.

In this perspective, we summarize developments in the

restoration of cardiac function, including improved blood flow,

valvular repair, replacement and tissue engineering, regeneration

of myocardial tissue, mechanisms for vascular and valvular

diseases, and other related areas. Particular attention will be
paid to the practical application of potential therapies, as was

discussed at the scientific sessions during the 30th anniversary
of ISACB, which was held in Cape Town in December of
2017 to coincide with the celebration of the world’s first
heart transplant (Figure 2). More specifically, ISACB members
have made important (and largely ongoing) advances and
contributions to:

1. Unraveling the mechanisms of atherosclerosis and its
complications (such as myocardial infarction), coupled

with imaging technologies that reveal dynamic vascular and
cardiac structures, atherosclerotic risk factors, and improved
diagnostic strategies. This mechanistic understanding
has immense clinical benefit. Recent major areas in
atherosclerosis research that have made remarkable
progress include the biology of vascular inflammation,
assessment of vulnerable plaque, and advancements in lipid
lowering statins.

2. Leading a virtual explosion in the number and scope of
cardiovascular surgical and interventional diagnostic and
therapeutic procedures and devices used to manage heart
disease. Four developments are noteworthy in this regard:
(1) the emergence of pediatric and adult cardiac surgery as
routine therapies, including repairs for congenital cardiac
abnormalities and acquired valvular heart disease, and valve
replacement and coronary artery bypass surgery, (2) the
growth of cardiac transplantation as a clinically-important
therapeutic modality, beginning in 1967, and enabled by
the development of endomyocardial biopsy as a primary
and invaluable diagnostic tool, and the widespread use
of this technology in patients with diverse pathologies of
the myocardium; (3) the development and use of a broad
array of prosthetic and adjunctive medical devices (including
heart valves, vascular grafts and stents, and cardiac assist
devices), demonstration of their complications, and improved
generations of these devices, often through collaborations with
industry; and (4) the recognition of the central importance
of myocardial protection in cardiac surgery and intervention,
which permitted the above to occur.

3. Elucidating the impact of genetic abnormalities on many
specific subsets of cardiovascular disease, including the
single-gene mutation etiologies of congenital abnormalities,
(hypertrophic, dilated, and arrhythmogenic right ventricular)
cardiomyopathies, channelopathies, and connective tissue
disorders such as Marfan, Loeys–Dietz, and Williams
syndromes, as well as complex multi-gene phenotypes and
gene-environment interactions.

We describe below selected areas of current interest and
active contribution of ISACB members that were discussed
at the Cape Town 50th Anniversary meeting that are
likely to yield considerable clinical benefit over the next
several decades.

VASCULAR DISEASE, ARTERIAL
REMODELING, AND VASCULAR
REPLACEMENT

Vascular disease encompasses a broad range of pathologies,
extending from the cerebral vasculature to vessels in the lower
limbs. While there is a broad range of arterial and venous
diseases with varying risk factors, symptoms, and complications,
this section focuses on two of major current clinical issues:
atherosclerosis and aneurysms. Several recent studies and
findings provide an overview of current efforts and areas for
future work.
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FIGURE 1 | (A) Wax figures of the cardiac surgeon Christiaan Barnard, his team, and the patient Louis Washkansky during the first human heart transplantation at the

Heart of Cape Town Museum in Groote Schuur Hospital that took place in 1967. (B) Groote Schuur Hospital where the first human heart transplantation was

performed by Christiaan Barnard. This beautiful hospital is located on the slope of Devil’s Peak shown in the background. (C) Peter Zella, MD, PD, Ph.D., FCs, Head

of the Christiaan Barnard Department of Cardiothoracic Surgery at Groote Schuur Hospital of the University of Cape Town. He co-founded the ISACB and was a past

president of the society. Dr. Zilla organized the 50th Anniversary Heart Transplant Celebration in Cape Town, “Courage and Innovation: 50 Years of transplantation” at

Groote Schuur Hospital in December, 2017.

FIGURE 2 | (A) ISACB Meeting in 2017 took place as part of the 50th Anniversary Heart Transplant Celebration in Cape Town, “Courage and Innovation: 50 Years of

transplantation” at Groote Schuur Hospital. (B) ISACB members at the reception of the 50th Anniversary Heart Transplant Celebration in Cape Town, “Courage and

Innovation: 50 Years of transplantation”.
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Atherosclerosis and Tissue Engineered
Vascular Grafts
Coronary artery atherosclerosis is associated with an
inflammatory process (2) and contributes to significant
morbidity and mortality (3). Surgeons often implant bypass
grafts to deliver oxygenated blood around a stenosis to distal
coronary beds. Current gold standard treatments use vessels
harvested from other parts of the body since this autologous
approach outperforms synthetic grafts. Unfortunately, these
vessels require surgical harvesting and are prone to restenosis
due to intimal hyperplasia. A current clinical focus is the
development of a long-lasting tissue-engineered vascular graft
(TEVG) (4). Despite significant efforts, ideal TEVGs have
remained elusive. Many groups are working on developing
TEVGs with appropriate mechanical properties, bioactivity, and
biocompatibility (4, 5). Protein-coated polytetrafluoroethylene
(ePTFE) grafts lined with autologous endothelial cells have
shown long-term patency in almost 500 patients. The complexity
of the cell sourcing and seeding procedures, however, does
not make this technique amenable to routine use in vascular
surgery. Yet, the clinical successes indicate the potential at this
early stage of tissue engineering efforts. Ongoing efforts in vitro
and in vivo seek to optimize long-term patency, mechanical
properties, and reendothelialization (6). Recent advancements
suggest continued improvements are possible and continued
development could eliminate many of the issues associated with
current synthetic grafts.

Atherosclerosis can also be present in peripheral arteries,
and peripheral artery disease (PAD) can lead to intermittent
claudication and critical limb ischemia in later stages of disease
progression (7). The risk of developing lower-limb PAD increases
with obesity, a history of atherosclerosis, high triglycerides, low
high-density lipoprotein, and aging (8). Ongoing efforts seek
to develop non-invasive interventions to treat atherosclerosis
and prevent deleterious remodeling of the vascular wall. A
recent study showed an association between serum levels of
sortilin, a glycoprotein involved in glucose and lipid metabolism,
with aortic calcification and general cardiovascular disease risk
(9). Carotid artery atherosclerosis revealed PCSK6 as a novel
protease, possibly making these lesions prone to rupture (10).
The development of a novel platelet lysate hydrogel has shown
promise to promote angiogenic activity of mesenchymal stem
cells (MSC) that can also be delivered concomitantly (11). While
each of these individual findings may lead to a therapeutic
breakthrough, the combination of multiple studies over the next
50 years has the potential to improve our mechanistic insight into
atherosclerosis and PAD, providing unique treatment solutions.

Emerging Evidence for
Monocyte/Macrophage Heterogeneity
Accumulating evidence from basic science and clinical
medicine suggests that inflammation plays critical roles in
the pathogenesis of atherosclerotic vascular diseases and
their clinical complications (12). Emerging evidence indicates
that macrophages are a heterogeneous population (13).
Similarly, we know that monocytes, generally considered as

macrophage precursors, are also heterogeneous (14). Changes
in macrophage behavior and attributes in response to systemic
or local environmental cues may help execute specific functions
during the disease process. Traditionally macrophages were
thought to adopt a pro-inflammatory or anti/non-inflammatory
phenotype in response to stimuli (M1 vs. M2 polarization),
but new evidence suggest that macrophage heterogeneity is
more multi-dimentional (15–17). Studies using single cell
analyses have demonstrated the dynamic and complex nature of
human primary monocytes and macrophages heterogeneity
(18–20). Understanding the underlying mechanisms of
monocyte/macrophage heterogeneity and related therapeutic
implications may require innovative approaches such as machine
learning from large clinical studies.

Aneurysms: Imaging, Biomechanics, and
Novel Therapies
Abdominal aortic aneurysm (AAA) is an inflammatory disease
of the aorta resulting in pathologic dilation of the vessel
wall. Clinically, an aortic diameter 50% larger than normal
is considered aneurysmal, and only surgical treatment options
currently exist (21). Between 5 and 10% of people in the
industrialized world over the age of 65 suffer from AAAs (22,
23), accounting for roughly 16,000 deaths and 150,000 inpatient
hospitalizations per year in the U.S (24, 25). Although recent
studies have provided insight into the pathogenesis of AAA, a
detailed understanding of the underlying mechanisms that lead
to AAA expansion remains incomplete.

Development of novel therapies that will interrupt
development of an AAA or halt aneurysm progression remains
a challenge (26). Efforts are focusing on investigating the
association between genetic variants and aneurysm formation
(27) and the role of enzyme activity in extracellular matrix
(ECM) changes within the aortic wall (28). Further work has
focused on the role of the inflammasome, including both
innate immunity and inflammation, in aneurysm formation and
progression (29). Recent studies have shown that serum amyloid
A, a protein that associates with high-density lipoprotein when
in circulation, exacerbates acute vascular events by activating the
inflammasome (30, 31). Others have investigated the correlation
between circulating biomarkers and aortic disease, showing
that elevated circulating levels of the soluble receptor for
advanced glycation end products is associated with a variety of
aortopathies, independent of aortic diameter (32). Identifying
patients at increased risk for aneurysm development and then
increasing aortic wall strength through pharmacologic means
could slow growth of AAAs to large diameters where rupture is
more likely.

Beyond aortic wall research, blood flow hemodynamics have
been shown to be critical to the formation and growth of
aneurysms, dissections, and thrombus (33). This provides strong
motivation to develop sophisticated data-driven models of
blood flow, pressure, and wall elasticity associated with AAAs.
Recent work focused on implementing a multi-modality imaging
approach that combined high frequency ultrasound (US) and
optical coherence tomography (OCT) as inputs for a murine
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computational modeling study (34). The results showed that
differences in final lesion size and compositions correlated
with vortical structures obtained through mouse-specific fluid
dynamic simulations, suggesting that differences in morphology
and hemodynamics play crucial roles in AAA formation. These
data agree with a large amount of previous work where
imaging-based computational findings have suggested a link
between hemodynamic perturbations and aneurysmal disease
heterogeneity (35). The combination of imaging, hemodynamic
simulations, and biomechanical analysis is proving to be useful
for exploring potential translational strategies that could soon
be useful to predict possible aneurysm expansion and rupture
(36, 37). Taken together, these recent advancements suggest a
bright future for multi-disciplinary cardiovascular research in
clinical medicine, genetics, biology, and engineering to address
unmet clinical need associated with AAA.

VALVE DISEASE AND VALVE REPAIR AND
REPLACEMENT TECHNOLOGIES

Valve diseases constitute a global health burden. In developed
countries, age-related calcific aortic valve disease (CAVD)
eventuates in aortic stenosis, whereas in developing countries,
rheumatic heart disease remains the leading cause of valvular
structural abnormalities (38). Other key causes of valvular
dysfunction include mitral valve prolapse (myxomatous valve
disease) and functional mitral regurgitation owing to ischemic
heart disease. High rates of congenital valve abnormalities
present complications in pediatric patients without regard
to environmental conditions. Each of these causes of valve
dysfunction represent unique challenges in the management of
valve disease, but appropriate solutions hinge on understanding
the factors that govern valve homeostasis and function.

Although decades of basic and clinical research and the advent
of lipid lowering therapies (especially statins) have markedly
reduced morbidity and mortality associated with atherosclerotic
cardiovascular diseases, clinical trials have shown that statins
have no effect on progression of existing CAVD, and thus no
effective therapy is available. As a result, clinical options for
patients with CAVD are limited to invasive open heart surgery
or transcatheter valve implantation (39).

Pathological remodeling most commonly affects the aortic
and mitral valves, likely a consequence of higher systemic
pressures, underscoring the importance of biomechanical
function and sensitivity. Given the relatively high incidence and
severity, we focus our discussion here on aortic valve disease and
replacement, an area of tremendous clinical need.

Aortic Valve, Function, Structure, Biology,
and Target Discovery
Unidirectional blood flow from the left ventricle to the aorta
for systemic distribution normally occurs through coordinated
action of three leaflets. Leaflet action is controlled by a layered
and highly organized ECM microarchitecture (40–43). The
ECM structure is maintained by two cell populations: valvular
endothelial cells (VECs) and valvular interstitial cells (VICs).

VECs appear phenotypically distinct from other endothelial cell
populations in vascular tissues and exhibit regional heterogeneity
with side-specific differences in gene expression (44–46). VICs
are a poorly defined population of cells with subpopulations of
fibroblasts, myofibroblasts, smooth muscle cells, and neuron-like
cells previously identified within the leaflets (47, 48). Phenotypic
changes in VECs and VICs have been associated with aortic
valve remodeling (49), but the relative contributions of these
cells and associated subpopulations remain unknown. The role of
inflammation in valve remodeling (50, 51) is especially relevant
when considering approaches to valve disease in developing
countries, where rheumatic heart disease is a major contributor.
VECs and VICs also display mechanosensitivity and readily
respond to changes in the mechanical environment (52–55).
The complex cellular and biomechanical environment is difficult
to recapitulate in vitro and animal models of aortic valve
disease are lacking (56), making mechanistic studies on the
biomechanical and biochemical initiators of disease difficult
to perform.

Recent studies have sought to overcome this limitation by
using large, unbiased proteomic and transcriptomic approaches
to characterize molecular changes in aortic valve leaflets obtained
from patients undergoing replacement surgeries (57). Combining
pathological characterization of the leaflets following resection
with network-based analysis of the proteomic and transcriptomic
data has yielded new insight into the potential molecular
drivers of aortic valve disease. Coupled with new genome wide
association studies that have revealed new lipid associations with
aortic valve disease, these big data approaches may provide new
clues about points of non-invasive therapeutic intervention and
the development of drug-based therapies (58, 59). However,
challenges remain in identification of patients during the early
stages of disease before gross remodeling of the aortic valve
leaflets necessitate replacement.

Synthetic and Bioprosthetic Approaches to
Aortic Valve Replacement
Given the lack of non-invasive treatment or suitable options for
CAVD, the traditional clinical approach has been surgical valve
replacement. First introduced in 1960, early iterations of devices
for aortic valve replacement utilized mechanical valves consisting
of caged-ball or tilting disk designs surgically implanted into the
aortic orifice following removal of the diseased valve (60). These
devices provided the first viable clinical solution for patients with
aortic valve abnormalities and offered extraordinary reduction
in mortality associated with CAVD. Of note, inoperable patients
with CAVD have a 2–3 year mortality of <50% (61, 62).
Though these devices helped correct valve dysfunction, nearly
all patients who received mechanical valves suffered valve-
related complications within 10 years, and many died of these
complications (63).

To enhance biocompatibility and create a more normal
geometry, bioprosthetic valves were introduced in the clinic
in the late 1960s as an alternative to mechanical valves (64).
Bioprosthetic valves are fabricated from glutaraldehyde treated
(and hence non-viable) porcine aortic valve or bovine pericardial
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tissue formed into a tri-leaflet structure. Bovine pericardium
is used most frequently today. These valves do not require
lifelong anticoagulation therapy, and bioprosthetic valves more
adequately recapitulate the biomechanics and hemodynamics
of native aortic valves. Nevertheless, bioprosthetic valves
frequently undergo calcification, leading to stenosis or tearing
with regurgitation. After ∼15–20 years, bioprosthetic valves
often must be replaced, requiring the patient to undergo
an additional invasive surgical procedure. The mineral forms
due to phosphorus in devitalized cell remnants and possibly
residual aldehyde affinity for mineral. Newer versions of
bioprosthetic valves overcome this limitation through detergent-
based treatments that reduce cell-based material and inhibit
mineral deposition (65). To avoid multiple surgeries, modern
mechanical valves have been deemed more suitable for younger
patients who need aortic valve replacement. Clinicians must
weigh the relative risks of reoperation to replace bioprosthetic
valves vs. the risks associated with anticoagulant therapy in
patients with mechanical valves (66).

The advent of transcatheter aortic valve implantation (TAVI)
has begun to revolutionize aortic valve replacement. Synthetic
or bovine pericardial-based aortic valves are placed into the
aortic annulus using an endovascular catheter. The catheter
is most often introduced through the femoral artery and
guided to the annulus whereupon the replacement aortic valve
is deployed, displacing the diseased aortic valve (67). First
introduced for elderly patients and those deemed unfit for
surgical-based replacements, TAVI is becoming standard care
for many patients with CAVD (68). Patients undergoing TAVI
procedures have similar outcomes as those who receive surgical
aortic valves (69). Early analyses indicated that TAVI may
induce stroke, paravalvular leak, and vascular wall damage during
catheterization; however, subsequent studies have shown that
other complications may be less of a concern than those arising
from surgery (70, 71). TAVI “valve-in-valve” approaches also
obviate the need for open surgical procedures for patients with
degeneration of a previously implanted bioprosthetic valve. After
the initial bioprosthetic valve deteriorates, a TAVI procedure can
introduce a new valve that is likely to exceed the expected lifespan
of the patient.

The leading cause of aortic valve disease in developing
countries is rheumatic heart disease, but the local infrastructure
is not generally well-suited for open heart procedures. TAVI
may provide a more appropriate option for patients in these
regions (72); however, two specific limitations must be overcome.
Typically, aortic valve disease and bioprosthetic degeneration
are associated with the deposition of calcific mineral on the
leaflets. This mineral provides a structure to anchor TAVI
valves, but rheumatic-induced aortic valve remodeling does
not usually involve heavy calcification. Positioning the catheter
during TAVI also requires imaging modalities not commonly
available in developing countries. Recently developed TAVI
strategies designed specifically for low resource settings may
help overcome these limitations (73). The new design employs
a supra-annular anchoring technique that latches to the non-
calcified valve structure and provides tactile feedback that allows
the clinician to locate the correct annular position without the

need for fluoroscopic imaging. This technique could address a
major unmet clinical need in developing countries.

Engineering Living Aortic Valve Tissue
Since the first replacement aortic valves were introduced,
advancements in both valve design and replacement techniques
have provided lifesaving options for many patients. However,
issues remain, particularly for pediatric patients who
require aortic valve replacement due to congenital valvular
abnormalities. These children often require multiple procedures
to replace valves that do not adapt to somatic growth, and
calcification of valves and conduits is accelerated in young
recipients. These patients would benefit from engineered aortic
valve constructs that fully integrate with native host tissues, do
not degenerate, and adapt to size and pressure changes in the
cardiovascular system. Efforts to develop tissue engineered aortic
valves should integrate knowledge of the complex biological
environment, dynamic biomechanics, material durability,
and delivery/implantation methods discussed in the previous
sections. Early attempts to engineer living aortic valve tissues
employed biodegradable scaffolds seeded withmixed populations
of arterial-derived endothelial cells and fibroblasts (74). These
constructs yielded ECM deposition consistent with native valve
structure after 2 months in an ovine model, demonstrating the
potential utility of a living engineered tissue that can actively
remodel appropriately after implantation (75).

Translation of these proof-of-concept techniques to clinical
practice for human patients remains elusive, however. Questions
persist on the appropriate cell source, the most appropriate
material for the scaffolds, the minimum biomechanical
functionality required for implantation, and the methods to
assess remodeling in situ following implantation (76). In the
early 2000s, the first tissue engineered aortic valve replacement
surgeries were performed in neonates with severe congenital
malformations (77). These valves exhibited beneficial early
remodeling in an ovine model, and gross long-term ECM
remodeling was attributed to a problem with the animal model.
The outcomes from initial clinical trials, however, were largely
poor. Many of the valves exhibited remodeling concomitant with
inflammation, including fibrosis and deterioration, comparable
to the observations made in the ovine endpoints (77).

These early outcomes reduced enthusiasm for aortic valve
tissue engineering, but the clinical need for pediatric patients
with aortic valve dysfunction remains. Early clinical successes
have been noted in pediatric mitral valve repair using constructs
of porcine small intestinal submucosa handmade in the clinic to
resemble valve leaflets (78). The ad hoc use of this material in
patients with few other clinical options has yielded promising
results in short-term clinical follow-ups and work by recruiting
endogenous cells that stimulate leaflet remodeling and growth
(79, 80). Similar strategies are being developed for aortic
valve replacement. Many approaches currently in pre-clinical
development seek to recruit host cells after implantation of a
polymer matrix without cells or other biological adjuncts. In such
an approach, proper ECM development and leaflet maturation
takes cues from and depends on processes that occur in native
valve development (so-called “in situ tissue engineering”) (81).
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This strategy enables off-the-shelf availability of constructs
without the need for maintenance of cellular viability, and could
provide a clinically feasible solution that avoids cell sourcing
complications (82).

Whether these tissue engineered constructs can adequately
recapitulate the function of native aortic valves remains to
be seen. Perhaps the complete recapitulation of the complex
biological structure and biomechanical properties of native valve
are not required to produce adequate and lasting function.
Imperfect strategies that offer new life to a patient with no other
options provide clinical value, and knowledge gained through
iterations of incremental improvement will help fill gaps in
our current understanding of aortic valve biology and function.
Ultimately, non-invasive therapeutics may prevent or reverse
adult-onset aortic valve remodeling, and minimally invasive
implantation of tissue engineered valves may fix congenital
abnormalities in pediatric patients. Achieving these goals will
require concerted interdisciplinary efforts of basic scientists,
engineers, and clinicians. All are well-represented within ISACB.

CARDIAC REGENERATION

Unlike other tissues in the body, the heart does not possess
significant regenerative capacity. The adult heart responds to
infarction by creating a collagen dense scar. While this may
strengthen themechanical properties of the wall to help eliminate
ventricular rupture, it decreases the overall pump capacity of the
heart. In many cases, this decreased function leads to congestive
heart failure. While a heart transplant is currently the only “tried
and true” means to restore mechanical pump function in these
patients, the lack of organ donors calls for additional solutions.

Engineered cardiac tissues offer a potential solution. Rapid
advances in cell therapy, including induced pluripotent stem
cells, have demonstrated that cells can be grown in the laboratory
and differentiated into cardiac muscle cells. In order to restore
contractile function in the heart, these cells need to form an
aligned and synchronized dense network, and a vascular supply
will be needed to maintain viability. Thus, tissue engineered
cardiac scaffolds should provide for cell attachment and survival
while allowing the scaffold to contract in sync with the rest of
the heart.

Engineering Cardiac Scaffolds
When considering scaffolds for cardiac tissue engineering, many
factors must be considered for the vast applicability of these
materials (83). Cost, sustainability, and labor skill requirements
must all be considered for widespread use. A potential starting
point for engineered cardiac tissue is an acellular scaffold (84).
Investigators have used a master bank of human cells to produce
the ECM for these scaffolds. This allows for a controlled initial
material source, which helps bring costs down and maintain
quality control over the product. Decellularization leaves an ECM
that is attractive for native cells to adhere and proliferate (85–
87). Lyophilization and sterilization yields an “off the shelf ”
product, which also helps bring down costs. These scaffolds
can be produced in a Good Manufacturing Practices (GMP)
facility with appropriate quality controls, allowing for consistent

production of scaffolds with the same properties. Most pre-
clinical work to date with this scaffold has been in a congenital
model, showing that the scaffold grows with the animal. The
Emmert/Hoerstrup group is currently working to develop the
scaffold as a cardiac patch.

Difficulties remain in vascularizing scaffolds to maintain cell
viability. Instead of using mammalian cells to produce a scaffold,
investigators are looking toward the plant kingdom, specifically
spinach leaves (88). After the decellularizing process, the vascular
network inherent to the plant remains and can be used to
perfuse fluid. Microspheres, of similar size to red blood cells,
were also able to pass through the plant vasculature, and the
scaffold is able to serve as a basement membrane for contracting
cardiac myocytes. Further work, however, is required for clinical
realization of this technique.

Cells for Cardiac Regeneration
Clinical trials on cell therapy for heart disease have demonstrated
only limited success (89). This may be due in part to the
variability in the cells used in cardiac cell therapy. Most cardiac
clinical trials have utilized MSC. While this cell type has
not demonstrated deleterious effects, improvement in cardiac
function appears to be limited.

Embryonic stem cells (ESCs) and induced pluripotent stem
cells (iPS cells) have demonstrated the potential to form
contractile myocytes. ESCs can proliferate to provide a plentiful
source of cells. They are also able to differentiate into contracting
cells with many properties similar to adult cardiac myocytes.
ESCs, however, remain a topic of controversy. An exciting
discovery in 2006 introduced a new cell type—iPS cells that
can be produced from adult differentiated cells (e.g., fibroblast)
through genetic engineering (90). By inserting specific genes
regulating transcription factors, the adult cells can be induced
to becoming an embryonic-like stem cell. These cells can then
be differentiated into contractile cells with properties similar
to cardiac myocytes. Thus, a patient’s own cells can potentially
yield cardiac myocytes that restore cardiac function, eliminating
any immune rejection response from the recipient. However,
significant concerns still remain for both ESCs and iPS cells prior
to their use in the clinic. Cell sorting and validation is essential to
moving the field forward. Incorporation of the wrong cell type in
the heart can lead to fatal arrhythmias or worse, and proliferation
of these cells must be regulated.

THE NEXT 50 YEARS

Despite decades of active research efforts in cardiovascular
biology, few basic science discoveries have arrived in the
clinic as efficient drugs or devices. Indeed, many preclinical
breakthroughs have failed to survive clinical translation. Because
of insufficient expertise and tight funding, academic investigators
often struggle to translate findings into clinical development
(91, 92). This gap also results from strategies in industry to
avoid investing in early, high-risk targets (93, 94). Clearing such
roadblocks requires new paradigms for translational research.
As ISACB has consistently promoted since it was founded,
close collaboration between academic investigators and industry
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scientists, who can share clear goals and understand potential
mutual benefits, will facilitate exchange of ideas, resources, and
expertise and lead to innovative therapies for cardiovascular
diseases (15, 95).

Looking back on the improvements made in treating
cardiovascular diseases over the past 50 years, one cannot help
but wonder: what key advances will occur in the next 50
years? In addition to the areas discussed above, endovascular
therapies, valve repair and replacement technologies, arrhythmia
ablation, xenotransplantation, and long-term cardiac support
(both mechanical and biological) will almost certainly continue
to improve. Additionally, it is probable that significant strides
will be made toward directed prevention of a broad range of
cardiovascular conditions. New discoveries require innovative
technologies. Considering the accelerated speed of technological
development, courage and innovation are important values,
as suggested during the 50th Anniversary Heart Transplant
Celebration. With effective collaboration fostered by the ISACB
and similar cross-disciplinary societies, the next 50 years will

likely lead tomanymore life-saving treatments that will hopefully
be extended to ALL patients around the world.
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