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Abstract

Background: The domestic chicken (Gallus gallus) is widely used as a model in developmental biology and is also
an important livestock species. We describe a novel approach to data integration to generate an mRNA expression
atlas for the chicken spanning major tissue types and developmental stages, using a diverse range of publicly-archived
RNA-seq datasets and new data derived from immune cells and tissues.

Results: Randomly down-sampling RNA-seq datasets to a common depth and quantifying expression against a
reference transcriptome using the mRNA quantitation tool Kallisto ensured that disparate datasets explored
comparable transcriptomic space. The network analysis tool Graphia was used to extract clusters of co-expressed
genes from the resulting expression atlas, many of which were tissue or cell-type restricted, contained transcription
factors that have previously been implicated in their regulation, or were otherwise associated with biological processes,
such as the cell cycle. The atlas provides a resource for the functional annotation of genes that currently have only a
locus ID. We cross-referenced the RNA-seq atlas to a publicly available embryonic Cap Analysis of Gene Expression
(CAGE) dataset to infer the developmental time course of organ systems, and to identify a signature of the expansion
of tissue macrophage populations during development.

Conclusion: Expression profiles obtained from public RNA-seq datasets – despite being generated by different
laboratories using different methodologies – can be made comparable to each other. This meta-analytic
approach to RNA-seq can be extended with new datasets from novel tissues, and is applicable to any species.
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Background
Aggregation and meta-analysis of multiple large gene
expression datasets based upon common microarray
platforms is relatively commonplace in many species
(e.g. [1–3]). Although RNA-seq is rapidly supplanting
microarrays for gene expression profiling, it is not yet
clear whether data from multiple different labs can be
analysed together in an informative manner. Confounding
variables reflect the many technical – and bias-prone –
aspects of library preparation and sequencing (see reviews

[4, 5]), with RNA-seq datasets often differing in read
length [6], depth of coverage [7], strand specificity [8],
RNA extraction and library selection methods [9], se-
quencing platform [10, 11] and the choice to sequence
single- or paired-end reads [12]. For a given dataset,
these variables can together affect both the number and
type of genes detectable and the accuracy of their ex-
pression level estimates. Expression quantification is
also affected by sample quality [13] and storage method
[14], irrespective of sequencing technique: RNA de-
grades with lengthier post-mortem intervals [15] (the
extent of which is tissue-dependent [16]) with degrad-
ation resulting in inaccurate quantification, particularly
for shorter transcripts [17]. Sequencing composite bio-
logical structures (those with internal structures that
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have distinct functions), whether intentionally or inadvert-
ently, can mask the signal of structure-specific differential
expression [18]. Despite these variables, meta-analysis
combining mammalian gene expression datasets [19–21]
suggests that RNA-seq datasets are generally robust to
inter-study variation, with the expression profiles of
homologous tissues clustering more closely with each
other than with different samples from the same study
or species [22].
Expression atlases are valuable resources for functional

genomics. Groups of transcripts – members of which
will have similar expression profiles – can be associated
with a shared function, such as a particular pathway or
biological process. This principle is known as ‘guilt by
association’ [23] and has previously been used to annotate
genes of unknown function in human [2, 24, 25], pig [26],
sheep [27] and mouse [28, 29] datasets. Co-expression in-
formation is also informative in genome-wide association
studies (GWAS) of complex traits and disease suscep-
tibility. The simple principle, that genes involved in
the same trait or phenotype tend to be expressed in
the same cell type or tissue, or otherwise participate in
the same pathway, has been confirmed in multiple
datasets [28, 30].
Because of the ease of access in ovo, the chicken

(Gallus gallus) embryo has been widely used as a model
system in cell and developmental biology, constrained
only by methods for genomic manipulation in situ, or in
the germ line. These constraints were largely overcome
through the sequencing of the genome, and techno-
logical developments such as in vivo electroporation,
more than 15 years ago [31, 32]. More recent innovations
including the generation of reporter transgenes [33] and
genome editing via primordial germ cells [34–36] have
transformed the utility of the chicken as a model organism.
However, the current genome build still has many unanno-
tated or minimally annotated genes about which very little
is known [28]. Of the 18,347 protein-coding genes in ver-
sion GalGal5 of the chicken genome in Ensembl89, 7275
(40%) have only been assigned an Ensembl placeholder ID.
The domestic chicken is also a major source of animal

protein worldwide, with different lines heavily selected
for optimal production traits such as increased egg pro-
duction or rapid weight gain. The molecular basis for
these traits is increasingly being associated with genomic
loci through genome-wide association studies based
upon high density SNP platforms [37]. Both the applica-
tion of the chick as a model organism, and for candidate
gene analysis in genomic intervals associated with trait
variation, would be expedited by improvements in func-
tional genome annotation. In particular, it would be use-
ful to identify the sets of protein-coding genes that share
transcriptional regulation between the chick and the
mouse, the most widely-studied mammalian model

organism. For this purpose, we aimed to generate a com-
prehensive atlas of mRNA expression for the chicken.
With the removal of antibiotics from the food chain

and threats from emerging diseases, there is also interest
in the selection of birds with increased resistance to in-
fection or resilience to disease [38]. To support this ac-
tivity, we were particularly interested in identifying and
annotating genes expressed specifically at high levels in
cells of the innate immune system. Such gene sets have
been identified in previous studies of human [2, 24, 25],
pig [26], sheep [27] and mouse [28].
The current version of the chicken assembly was

largely derived from high-throughput (i.e. comparatively
cheap but imprecise) short read sequencing and primarily
contains protein-coding gene models. The recent use of
long-read – PacBio SMRT Iso-Seq – data has demon-
strated that the transcriptomic complexity of chickens is
comparable to humans, with many additional lncRNA
models (among others) scheduled for inclusion in future
Ensembl annotations [39].
To identify the set of genes expressed in innate immune

cells in both unchallenged and activated conditions, we
generated pure cultures of bone marrow-derived macro-
phages (BMDMs) grown in the presence of recombinant
chicken macrophage colony-stimulating factor (CSF1),
and stimulated them with the archetypal microbial agon-
ist, lipopolysaccharide (LPS) [40]. To complement the data
generated from macrophages in vitro, we also obtained
RNA-seq libraries from the caecal tonsils of birds infected
with Campylobacter, as well as from previous studies of
macrophage, dendritic cell and heterophil populations.
A global expression atlas for the chicken transcriptome
was created by combining our immune-related data
with 20 publicly archived RNA-seq datasets. Some were
collated by the Avian RNA-seq Consortium [41], while
others are drawn from a diverse range of existing publi-
cations, including studies that characterised the genetic
basis of retinogenesis [42], the genetic determinants of
meat tenderness [43], the morphological diversity of
skin appendages [44], visceral fat metabolism [45], the
transition between laying and brooding phases [46], the
effect of heat stress upon pituitary development [47]
and spleen function [48], the pathways involved in
avian influenza resistance [49], the role of lncRNAs in
the development of muscle [50], liver and adipose [51],
and the transcriptional landscape of mRNA editing
[52]. In total, 279 RNA-seq libraries were obtained, repre-
senting 48 distinct tissue and cell types at developmental
stages spanning early embryonic (5 days) to mature adult
(70 weeks post-hatching). In addition, we accessed a re-
cently published transcriptional analysis of chick develop-
ment generated by Cap Analysis of Gene Expression
(CAGE) [53], a technique which can be used to quantify
gene expression based on the transcript start site [54]. We
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show that the ‘guilt by association’ approach to functional
annotation is viable even when combining disparate
RNA-seq datasets, and utilise the meta-dataset to identify
macrophage-specific and other informative co-expression
clusters, providing a resource for genetic and genomic
study of avian trait variation.

Results
Selecting samples for inclusion in an RNA-seq
meta-dataset
Many chicken RNA-seq datasets are available in public
repositories, as detailed in [41]. Robust co-expression
clustering of any two genes depends upon sampling tis-
sues and cells in which both vary across the widest pos-
sible range. To maximise the co-expression signal, we
chose datasets to represent the greatest possible diversity
of tissues and organ systems. Not all studies contain
links to a publicly archived dataset, such as a study of in-
duced ochratoxicosis in the kidney cortex [55] and two
studies of the bursa of Fabricius [56, 57]. Samples contain-
ing less than 10 million reads were not used, such as those
from a study of the follicular transcriptome throughout
the ovulation cycle [58].
Datasets used are detailed in Additional file 1: Table S1,

and have few commonalities: they were sequenced using a
variety of Illumina instruments (HiSeq 2000/2500/
3000/4000, Genome Analyzer II/IIx, NextSeq 500 and
HiScanSQ), and include single- and paired-end, strand-
specific and non-specific, polyA-selected (mRNA-seq) and
rRNA-depleted (total RNA-seq) libraries at different
read lengths and depths. For 12 tissues, independently
sequenced RNA-seq datasets for the same tissue
(Additional file 2: Table S2) also allow for internal tests of
the validity of aggregating the data. Throughout this text
studies are referred to by their NCBI BioProject ID.

Quantifying expression by iteratively revising a reference
transcriptome
Expression was quantified – as transcripts per million
(TPM) – using an RNA-seq processing pipeline [59]
which iteratively runs the quantification tool Kallisto
[60] with each iteration using an incrementally revised
transcriptome. Kallisto requires that the user provide a
set of transcripts, which are decomposed into k-mers.
The expression of each transcript is quantified by
matching this set of k-mers to the k-mers of the reads.
For the first iteration of Kallisto, a non-redundant tran-
scriptome (57,234 transcripts, representing 17,680 Ensembl
protein-coding genes) was obtained by combining Ensembl
transcript models with NCBI mRNA RefSeqs (see Materials
and Methods).
The output was first parsed for library quality. The re-

verse cumulative distribution of TPM per gene was plot-
ted on a log-log scale (Fig. 1). The distributions generally

approximate a power-law with an exponent of approxi-
mately − 1 (Additional file 3: Table S3), consistent with
Zipf ’s law (that the probability of an observation is in-
versely proportional to its rank) [61, 62]. Four samples
with exponents < − 0.8 or > − 1.2, i.e. deviating > 20% from
the optimal value of − 1 – were excluded from further
analysis (i.e. the next iteration of Kallisto) (Additional file 3:
Table S3). Using only data from the useable samples, we
created a revised reference transcriptome. During the first
iteration of Kallisto, 55,027 of 57,234 transcripts (96%)
were detectably expressed (average TPM> 1 in at least
one tissue, where the average is the median TPM across
all replicates, per BioProject, of that tissue), representing
17,313 Ensembl protein-coding genes (Additional file 4:
Table S4). After excluding 2207 transcripts with TPM <
1 in all tissues (Additional file 5: Table S5) and those
detectable only in the 4 excluded samples (n = 57), a re-
vised transcriptome was generated containing 54,970
transcripts. For the second iteration of Kallisto, expres-
sion was re-quantified using this revised transcriptome,
creating a final set of gene-level TPM estimates. The
overall meta-dataset provides gene-level expression for
23,864 gene models (both Ensembl and NCBI) as me-
dian TPM across all replicates, per BioProject, per tis-
sue (Additional file 6: Table S6). Of these gene models,

Fig. 1 Reverse cumulative distribution of the number of genes that
have at least a given TPM. Both axes are logarithmic. Each line
represents data from an individual SRA sample ID, quantified using
the first iteration Kallisto transcriptome (i.e. a non-redundant set of
Ensembl protein-coding CDS plus trimmed RefSeq mRNAs). Samples
are not otherwise distinguished as in general, most relationships
approximate the same power-law: a minority of genes account for
the majority of reads. These relationships are piecewise linear because
the capture of lowly expressed genes is noisy, an artefact of random
transcriptome sampling. The vertical red line denotes TPM= 5. At higher
values of TPM, the majority of samples have a log-linear relationship.
Samples that deviate from this relationship are erroneous and excluded
from subsequent analysis. Exponents of each sample’s log-log plot are
given in Additional file 3: Table S3
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43% (10,090) were unannotated, having only either an
Ensembl placeholder ID or an NCBI locus ID.

Randomly down-sampling RNA-seq datasets does not
quantitatively alter their expression profiles
Higher resolution expression profiles are dependent
upon higher sequencing depths [63] with diminishing
returns – after approximately 10 million reads – on the
power to detect genes differentially expressed between
conditions [64]. For the purpose of functional annota-
tion, it is more important to minimise variation between
samples than to comprehensively capture transcripts.
Accordingly, all datasets were randomly down-sampled
to exactly 10 million reads before quantification.
To ensure the resulting co-expression signals are re-

producible, it is necessary to establish that there are no
significant differences in expression profiles introduced
by sampling. For instance, the LPS-stimulated BMDM
datasets were sequenced at depths of 37.5 to 52.6 million
reads, such that when down-sampling, the BMDM ex-
pression profile as quantified for the meta-dataset was
obtained using approximately one fifth to one quarter of
the original reads (Additional file 7: Table S7). To valid-
ate the approach, we randomly down-sampled each
BMDM dataset to 10 million reads 100 times, using seqtk
(https://github.com/lh3/seqtk, downloaded 29th Novem-
ber 2016) seeded with a random integer between 0 and
10,000 (Dataset S1). After performing an all-against-all
correlation of the 100 sets of data, the average Spearman’s
rho was > 0.96 (Additional file 8: Table S8), with the abso-
lute difference, per gene, between maximum and mini-
mum expression level averaging approximately 8 TPM
(Fig. 2 and Additional file 9: Table S9). 70–75% of the
genes detectably expressed (TPM> 1) in at least one of
the 100 random samples were detected in all 100 samples
(Additional file 8: Table S8). Conversely, < 5% of the genes
were detectable in < 5% of the samples (Additional file 8:
Table S8). The detection of these genes was stochastic, as
they were expressed at very low levels – on average, 1.3
TPM (Additional file 8: Table S8).

Biologically meaningful expression profiles are identified
even after combining disparate RNA-seq datasets
If a meta-analytic approach to RNA-seq is valid, subsets
of transcripts enriched in a given tissue should have an-
notations functionally appropriate to that tissue. To test
this, we calculated a preferential expression measure
(PEM) for each gene [65], essentially the median expres-
sion divided by the mean. We then obtained the set of
Gene Ontology (GO) terms enriched in each subset of
genes with the highest PEM associated with a particular
tissue (Additional file 10: Table S10) (see Materials and
Methods). Consistent with the function of each tissue, the
bursa of Fabricius (the site of B cell synthesis [66]) showed

tissue-specificity for the expression of genes enriched for
‘defence response to bacterium’ (p = 8.3 × 10− 5), breast
muscle for ‘striated muscle contraction’ (p = 1.9 × 10− 6),
cerebrum for ‘synaptic transmission’ (p = 1.5 × 10− 4), claw
epithelium for ‘bone mineralisation’ (p = 6.4 × 10− 4),
heart for both ‘muscle contraction’ (p = 8.8 × 10− 6) and
‘cellular respiration’ (p = 4.6 × 10− 15), kidney for ‘oxida-
tion-reduction process’ (p = 5.3 × 10− 5), pancreas for
‘proteolysis’ (p = 0.001), pituitary gland for ‘endocrine
system development’ (p = 2 × 10− 4), retina for ‘visual
perception’ (p = 7.2 × 10− 17), spleen for ‘immune re-
sponse’ (p = 2.2 × 10− 6), and trachea for ‘cilium morpho-
genesis’ (p < 1 × 10− 30) (Additional file 10: Table S10).
In an all-against-all correlation matrix (Pearson’s r)

(Additional file 11: Table S11), the expression profiles of
like tissues were correlated regardless of their BioProject of
origin (Additional file 12: Table S12). A sample-to-sample
network graph also demonstrates that samples of the same
or related tissues cluster together (Fig. 3). Taken together,
these results validate the aggregation of data from multiple
sources to create an informative expression atlas.

Signals of co-expression allow for informative functional
annotation
Network analysis of the meta-dataset was performed
using Graphia Professional, a commercial version of Bio-
Layout Express3D [67, 68], previously applied to pig [26],
sheep [27] and mouse [28] microarray datasets and
CAGE data from the FANTOM5 consortium [24, 25]. A

Fig. 2 Randomly down-sampling RNA-seq reads has minimal impact
on the overall expression profile, primarily affecting expression level
estimates of lowly expressed genes. Data shown is from one dataset –
unchallenged BMDMs from an adult female broiler (Ross 308) – although
with quantitatively similar findings from other samples. The figure plots
the average TPM per gene, taken after 100 random samples of 10 million
reads, against the TPM obtained in each sample. The line y= x is shown
in red

Bush et al. BMC Genomics  (2018) 19:594 Page 4 of 19

https://github.com/lh3/seqtk


Pearson’s correlation matrix for each gene-to-gene com-
parison was visualised as a network graph of 18,127
nodes (genes) linked by 632,038 edges (correlations above
a certain threshold; in this case, r = 0.8). Clusters of inter-
connected nodes represent sets of genes that share a sig-
nal of co-expression. These clusters were identified by
applying the Markov clustering (MCL) algorithm [69] to
the network graph, at an inflation value (which determines
cluster granularity) of 2.2. The contents of each cluster are
given in Additional file 13: Table S13.
Many of the co-expression clusters comprised genes

with a tissue- or process-specific expression profile. Add-
itional file 14: Table S14 summarises the highest PEM
value for a tissue in each of the clusters with > 25 mem-
bers. Cluster 2 was largely brain-specific: of the 655
genes in this cluster, 281 (43%) had their highest PEM
in the hypothalamus, 155 (24%) had their highest PEM
in the cerebrum and 115 (18%) had their highest PEM
in the cerebellum. Other clusters contained genes with

expression enriched in liver (cluster 6), ovary (cluster 7),
trachea (cluster 8), testis (cluster 10), retina (clusters 13
and 24), feather epithelium (cluster 14), breast muscle
(cluster 16), kidney (cluster 17), pituitary gland (clusters
19 and 25), Campylobacter-infected caecal tonsils (cluster
20), spleen (clusters 21 and 22) and adipose (cluster 23).
The tissues in some of these clusters were repre-

sented by multiple independent projects combined in
this meta-atlas. For instance, cluster 6 comprises genes
that were enriched in the liver, with data from three
separate BioProjects. Some variation in expression esti-
mates between these independent liver samples did not
affect their inclusion in the same co-expression cluster.
Furthermore, the GO terms enriched in each cluster
are functionally consistent with its observed tissue-spe-
cificity (Additional file 15: Table S15).
Some clusters were associated with processes shared

by multiple tissues. The largest cluster, cluster 1, was
enriched in embryo-derived samples, and the GO terms

Fig. 3 2D representation of a sample-to-sample network graph, plotting Spearman’s correlations between expression profiles. The graph was
built using an RNA-seq meta-dataset with each sample distinct by tissue, developmental stage and BioProject of origin, and expression level per
gene per sample averaged (where possible) across all replicates of that sample (dataset available as Additional file 6: Table S6). Each node (circle)
in the graph represents a sample, and each edge (line) a correlation exceeding a threshold (rho≥ 0.82). The graph contains 82 nodes, connected
by 243 edges. Selected nodes are labelled. Overall, like tissues tend to correlate more strongly with like, irrespective of BioProject of origin. Certain
coloured nodes indicate tissues independently sequenced by multiple BioProjects (listed in Additional file 2: Table S2), including liver (red), spleen
(yellow), lung (orange), adipose (pink), caecal tonsil (light blue) and muscle (green). There are two notable idiosyncrasies: one of the four lung
samples is comparatively dissimilar to the others of its group, as is one of the three caecal tonsil samples. In the latter case, however, the two
most closely correlated caecal tonsil samples are those infected with Campylobacter. Consistent with this, these samples cluster more closely with
immune cells and tissues. The third caecal tonsil sample belongs to a healthy chicken
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were strongly associated with the cell division cycle and
DNA repair (Additional file 15: Table S15). The genes
within this list include the key transcriptional regulator,
FOXM1, and multiple cyclins (CCNA2/B2B3/C/E1/F and
J), and overlap substantially with cell cycle-associated lists
derived from previous cluster analysis [2, 70].
We used the ‘guilt by association’ principle to contextual-

ise individual gene annotations – obtained by protein-level
alignment and of varying quality (see Materials and
Methods) – as there is an a priori expectation that by
virtue of being co-expressed, the genes within a given
cluster have related (that is, tissue- or process-specific)
functions. In this respect, we can increase confidence in
otherwise lower-quality alignments. Some examples and
proposed annotations are summarised in Additional file 13:
Table S13.
The co-expression profile is especially informative for

clusters with few known genes. For instance, cluster 14
contains 210 genes expressed largely in the feather epi-
thelium (Additional file 13: Table S13). 93% of the genes
within this cluster are unannotated, with only 14 genes
having a known function (Table 1). Collectively, the func-
tions of these genes are biologically consistent with an
epithelium-enriched expression profile. Of the 196 unan-
notated genes, 86% can be aligned to feather keratins
(representing 86 of the 96 genes with only an Ensembl ID
and 83 of the 100 genes with only an NCBI RefSeq ID)

(Additional file 13: Table S13). Other unannotated
genes include paralogues of existing genes in the cluster
(ENSGALG00000004358 shares homology with AMZ1,
ENSGALG00000029002 with XG and LOC428538 with
SDR16C5), probable members of the keratin-associated
protein family, which have essential roles in hair shaft
formation [71] (ENSGALG00000018878, ENSGALG00
000044257, LOC101751162, LOC101751279, LOC107
055127, LOC107055128 and LOC107055130), a gene
with homology to the tight junction protein claudin 4
(ENSGALG00000035131) [72], and several transcripts
with homology to uricases (LOC101747367, LOC10
7056676 and LOC107056678), enzymes which degrade
uric acid (the end point of purine metabolism) [73], notable
because purines act as pigments in avian feathers [74].

Annotation of co-expression clusters associated with
innate and acquired immunity and macrophage biology
The most prominent set of genes co-expressed in mac-
rophages was cluster 4 (n = 458 genes; 129 [28%] are un-
annotated), in which > 60% of the genes have their
highest PEM for BMDMs 24 h post-LPS stimulation
(Fig. 4 and Additional file 14: Table S14). This cluster is
internally validated by the presence of transcripts en-
coding numerous known myeloid effectors/receptors
(e.g. C3AR1, CCR2, CD40, CYBB, CLEC5A, DCSTAMP,
NLRC5, METRK, MYD88, TLR4), lysosomal components

Table 1 Genes in cluster 14 with known function

Gene symbol Gene name Protein function References

AMZ1 archaemetzincin 1 metalloprotease, possibly involved in tissue
remodelling to form feather follicles

[141, 142]

ANKK1 (PKK2) ankyrin repeat and kinase domain
containing 1

interacts with keratin filaments [143]

AREG amphiregulin epithelial growth factor [144]

CLDN9 claudin 9 tight junction membrane protein found in
all epithelia

[145]

DLX4 homeobox protein DLX4 homeobox protein that regulates
epithelial-mesenchymal interactions

[146]

EDMTF4 epidermal differentiation protein starting
with MTF motif 4

markers of the feather barbule and members
of the epidermal differentiation complex; this
has a role in integumentary development,
including feather pigmentation

[147–149]

EDMTFH epidermal differentiation protein starting
with MTF and rich in histidine

FK21 feather keratin 21 feather keratins

FK27 feather keratin 27

PNPLA4 patatin-like phospholipase domain-containing
protein 4

enzyme with a role in retinol metabolism
(retinol and related compounds regulate
epithelial cell growth and differentiation)

[150, 151]

RAB38 Ras-related protein RAB38 GTPase involved in melanosome biogenesis
and epithelial pigmentation

[152, 153]

RASSF10 Ras association domain family member 10 tumour suppressor that mediates the
epithelial-mesenchymal transition

[154]

SDR16C5 (RDH-E2) epidermal retinol dehydrogenase 2 overexpressed in psoriatic human skin [155]

XG Xg blood group blood group antigen [156]
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(e.g. CTSB, LAMP1, M6PR) and multiple transcription
factors (BATF3, CEBPB, IRF1, NFE2L2, NRR1H3 [also
known as LXRA], SPI1 [also known as PU.1], STAT1,
TFEC) that are also macrophage-enriched in mouse and
human [75]. Their co-expression strongly indicates that
basic macrophage transcriptional regulation is conserved
between birds and mammals. Accordingly, the provisional
annotations of genes that lack an informative name in
this cluster, shown in Additional file 13: Table S13, are
given extra weight by their association. Other macro-
phage clusters include cluster 34 (n = 93 genes; 72
[77%] are unannotated) and cluster 37 (n = 79 genes; 16
[20%] are unannotated), in both of which the majority
of genes had their highest PEM for the HD11 immortalised
macrophage cell line (from BioProject PRJEB1406): 98 and
90%, respectively (Additional file 14: Table S14). The smal-
lest macrophage-specific cluster was cluster 84 (n = 26
genes; 19 [73%] are unannotated), in which every gene had
its highest PEM for BMDMs treated with CSF1 (from
BioProject PRJEB7662) (Additional file 14: Table S14).
The CSF1R gene was contained within cluster 27

(n = 129 genes, of which 32 [25%] are unannotated),
which had an expression profile shared by both dendritic
cells and macrophages. 36% of the genes in cluster 27 had
their highest PEM for dendritic cells and 26% for untreated
BMDMs (both samples from BioProject PRJEB7475), with
the remaining 26% for BMDMs treated with CSF1 (from
BioProject PRJEB7662) (Additional file 14: Table S14). This
cluster also contained the lipopolysaccharide receptor and
commonly used monocyte marker, CD14, several genes
(C1QA/B/C, MARCO, P2RY12/13, and STAB1) that are

associated with tissue-specific macrophage populations in
mice [76], and a single myeloid-associated transcription
factor, MAFB, which is required for tissue macrophage
development in mice [77]. The cells referred to as den-
dritic cells are bone marrow cells grown in GM-CSF
(CSF2), rather than CSF1. As noted in previous analyses
of mouse [78] and human [79] transcriptomes, cells dif-
ferentiated in GM-CSF have much more in common
with macrophages than with classical dendritic cells
dependent upon FLT3-ligand.
The clusters associated with the acquired immune

response, predominantly B and T cells, are somewhat
smaller and poorly-annotated (clusters 20, 21, 22, 29
and 78). Cluster 21, expressed most highly in spleen,
contains TIMD4 (ENSGALG00000003876), which pro-
motes T-cell expansion and survival [80], and is enriched
with B cell-associated genes, including the B cell transcrip-
tion factors BATF, IRF4, PAX5, RUNX3, and SPIC, as well
as the class II trans-activator CIITA, class II subunit CD74
and the class II MHC gene BLB2. The thymus-enriched
cluster 29 contains CD4, the recombination activating
genes RAG1 and RAG2, and the T cell transcription factors
LEF1, RORC and TCF7.

Integrating gene expression and protein-protein
interaction networks
Biological systems can be functionally organised into
many different (and intersecting) networks based on the
nature of their interaction, including – aside from gene
co-expression networks – metabolic/biochemical net-
works, signal transduction networks, regulatory networks,

Fig. 4 Expression profile of the macrophage-specific cluster 4. Histogram shows the average expression level of the 458 genes in the cluster,
where expression level per gene is calculated as the median TPM across all replicates, per BioProject, per tissue. The expression level dataset is
available as Additional file 6: Table S6
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and protein-protein interaction (PPI) networks [81]. Data
from different networks can be integrated: for instance,
subunits of the same protein complex are known to be
co-expressed [82], with those genes present in both a
co-expression and PPI network having a high probability
of performing similar functions [83]. We therefore de-
termined the set of genes present in both the same
co-expression cluster and a PPI network (Additional file 16:
Table S16), obtaining chicken PPI data by mapping human
PPIs to orthologous chicken genes (see Materials and
Methods). The PPI and co-expression data are mutually
supportive. For example, there were 32 PPIs among the
genes in the macrophage-specific cluster 4. These include
STAT1 (signal transducer and activator of transcription
1-alpha/beta) – a critical mediator of the pro-inflammatory
response of macrophages to LPS [84] – and the transcrip-
tion factors ATF3, a known inducer of STAT1 [85], and
SPI1/PU.1, which is essential for macrophage differentiation
[86]. Also in the network are the tyrosine kinase LYN,
which is activated alongside STAT1 in response to IL5 (a
key mediator of eosinophil activation [87]), and the adaptor
protein GRB2, which facilitates the activation of ERK by
tyrosine kinases [88] (ERK signalling is essential to macro-
phage development [89]). In addition, the network con-
tained SOCS3, a negative regulator of cytokine signalling
that inhibits the nuclear translocation of STAT1 in response
to IFN stimulation [90], with this stimulation being a key
constituent of classical macrophage activation [91].

Integrating gene expression and promoter expression
networks
Relatively few RNA-seq datasets were available for chicken
embryonic development. Lizio et al. [53] have recently
analysed the time course of chicken development using
Cap Analysis of Gene Expression (CAGE). Their dataset
complements a CAGE-based analysis of gene expression
in multiple tissues of the mouse during embryonic de-
velopment [92]. Network analysis of the mouse dataset
revealed a signature of the expansion of the tissue
macrophage populations during embryonic develop-
ment, and the inverse relationship between cell prolifer-
ation and tissue-specific differentiation in each organ
[93]. Analysis of a macrophage-specific transgene in
birds revealed that, as in mammals, macrophages are
first produced by the yolk sac, progressively infiltrate
the embryo and expand in number to become a major
cell population in every organ [33, 94]. The expression
atlas we have developed provides a complementary re-
source for adult tissues and includes a time course of em-
bryonic development. By combining the atlas with the
CAGE data, it would be possible to infer the developmen-
tal time course of organ systems in the chicken. We ob-
tained the chicken CAGE data of Lizio et al. [53] and
clustered the promoter-based expression levels in the same

manner as for the RNA-seq atlas. Figure 5 shows the
resulting network graph, and the average expression pro-
files of a subset of clusters. Additional file 17: Table S17
provides a full list of promoters in each of the co-ex-
pression clusters and their average expression profiles.
As discussed by Lizio, et al. [53], the embryonic CAGE
data identify transcription start sites for many
tissue-specific and regulated genes, including develop-
mental regulators such as brachyury. The intersection
of the CAGE and RNA-seq clusters is presented in
Additional file 18: Table S18. Not surprisingly, the largest
promoter cluster overlapped substantially with cluster 1 in
the RNA-seq atlas which was embryo-enriched in expres-
sion. It contained numerous developmental regulators,
anabolic/cell cycle, and mitochondria-associated genes
with an average profile of down-regulation during devel-
opment (Fig. 5). Aside from the whole embryo profiles,
the CAGE data contains several additional samples, in-
cluding bone marrow-derived mesenchymal stem cells
(MSC), aortic smooth muscle cells (ASMC), hepatocytes,
extra-embryonic tissues and both leg and wing buds. Each
of the samples was enriched for specific promoters that
also varied during development and accordingly defined
clusters. Clusters 2 and 10 of the CAGE data were
enriched in MSC and ASMC, and contained many
mesenchyme-associated genes including multiple colla-
gens and other connective tissue-associated transcripts.
CAGE clusters 4 and 9 were hepatocyte-enriched and
most likely track the development of the liver during
development. Cluster 4, shown in Fig. 5, contains the
transcription factor HNF1A, and many of the tran-
scripts within it encode secreted proteins such as comple-
ment components and clotting factors. CAGE cluster 5
(Fig. 5) contains the muscle-specific transcription fac-
tors MYOD1, MYOG and SOX2, and numerous skeletal
muscle-associated genes in common with cluster 16
from the RNA-seq atlas, and increases in expression
throughout development. The transcripts within cluster
5 are not expressed in the aortic smooth muscle cells.
CAGE clusters 7, 16, 18 and 19 contained transcripts
that were expressed transiently at different stages of
embryonic development, including multiple members
of the HOX and CDX families. CAGE clusters 8 and 25
both contained promoters of multiple genes that are
expressed specifically in macrophages in the RNA-seq
atlas (clusters 4 and 27). The average expression profiles
are shown in Fig. 5, with representative genes indicated.
The macrophage-specific transcription factor SPI1, and
most other macrophage-enriched genes within CAGE clus-
ters 8 and 25, fall within the largest macrophage-associated
clusters (4, 27 and 31) within the RNA-seq atlas. Interest-
ingly, CAGE cluster 25 appears to be enriched for genes
expressed specifically in brain macrophages (microglia),
including CSF1R, C1QA, C1QB, C1QC, CTSS, DOCK2,
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HAVCR1 LAPTM5, LY86, MPEG1, and P2RY13 [95],
which in mice appear to develop from yolk sac progeni-
tors rather than definitive haematopoiesis [96]. Several
other microglia/macrophage-associated transcripts, not-
ably CX3CR1, P2RY12, TIMD4, and TREM2, are detect-
able in the CAGE data at the same embryonic stage, but
did not cluster because their expression differs in the cell
populations. In each of the macrophage-associated clus-
ters, there were numerous promoters currently with unin-
formative annotation, which by inference are likely to be
macrophage-related. Consistent with the location of CSF1R
mRNA and the CSF1R-reporter gene in the chicken [33],
CSF1R and SPI1 were both first detectable in the embryo at
between HH12 and HH14 (day 2), and both increased in
parallel during embryonic development. Figure 6 shows
the ZENBU (http://fantom.gsc.riken.jp/zenbu/) view of
the chicken CSF1R locus, identifying the transcription

start site downstream of the PDGFRB locus, and the
time course of appearance of CSF1R transcripts in the
embryo and their expression in isolated cells. The rea-
son that CAGE clusters 8 and 25 genes separate in the
dataset is that they were also detected at high levels in
“mesenchymal stem cells” and to a varying extent in “he-
patocytes” (Fig. 5). In mice, macrophages were shown to
be a major contaminant of bone marrow-derived osteo-
blast cell cultures [97]. Based upon this cluster analysis in
the embryo (which reveals separate mesenchyme and
hepatocyte-specific clusters), and the atlas data, where
these genes were clearly macrophage-enriched, the ex-
pression of macrophage-associated genes is almost cer-
tainly a reflection of the presence of large numbers of
macrophages in these cell populations. Indeed, the set of
promoters active in “mesenchymal stem cells” was found
to be enriched for binding sites for SPI1 and CEBPA,

Fig. 5 The panel on the left shows the clustered nodes for the main element in the layout graph (upper section). Nodes allocated to the same
cluster are the same colour. The panel on the right shows the average expression profiles for five clusters highlighting the different phases of
chick embryo development, and key genes for each cluster are shown in the boxes. The layout of these clusters within the main element is
shown in the lower part of the left panel. Node colour matches the colour of the bars on the histograms. The X-axis shows the different samples
(blue – embryo developmental time course from 1.5 h to day 20 after fertilisation (HH45); green – extraembryonic tissues; yellow – limb buds;
orange – hepatocytes; red – bone marrow derived mesenchymal stem cells; dark red – aortic smooth muscle cells. Full details of each sample
can be found in Lizio, et al. [53]. Y axis shows average tagsPM for transcription start sites in the cluster for each sample
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transcription factors that can induce the transdifferentia-
tion of lymphoid precursors into macrophages [98].

Discussion
RNA-seq is a multi-step process of reverse transcription,
amplification, fragmentation, purification, adaptor ligation
and sequencing, with each step subject to error [99]. Such
laboratory-specific variation is also independent of intrin-
sic sequencing biases, which can influence the nucleotide
composition of the reads [100] (leading to mismatches be-
tween the sequenced read and the original RNA fragment
[101]), the GC content of the reads [102], and the sequen-
cing error rate [11].
Despite all of these constraints, Fig. 3 shows that in a

sample-to-sample network graph of many independently
sequenced tissues, the signal of co-expression clearly out-
weighs the noise.
The critical step in reducing the noise, and making

the datasets comparable, was to down-size the RNA-
seq libraries so that the depth of coverage of the tran-
scriptome was the same in each case. This has the
effect of removing a great deal of the stochastic detec-
tion of more lowly-expressed transcripts. Figure 2 and

Additional file 9: Table S9 show that the random sampling
used to down-size does not substantially alter the relative
expression estimates of any two genes within any given
sample, with equivalent expression profiles reconstructed
for each of 100 random samples. Combined with the use
of Kallisto to quantify expression, which maps a common
depth of k-mers to a standardised reference transcriptome,
the method we have developed effectively ensured that
each RNA-seq library was exploring an equivalent tran-
scriptomic space.
The success of the aggregation of public domain data

in terms of genome annotation is evident from the ana-
lysis of the membership of co-expression clusters in
Additional file 13: Table S13. Each cluster clearly contains
genes of known function, shows evidence of very strong
GO enrichment, and as noted in similar array-based
studies [2, 26] commonly contains the transcription fac-
tors that regulate the other members of the cluster. On
that basis, it would be reasonable to provisionally assign
the same GO terms to genes of unknown function, at least
within the larger clusters. For example, the genes within
cluster 1 that are not currently functionally annotated or
assigned a clear orthologue are likely to be involved in

Fig. 6 ZENBU (http://fantom.gsc.riken.jp/zenbu/) view of the chicken CSF1R locus, identifying the transcription start site downstream of the
PDGFRB locus (a), and the time course of appearance of CSF1R transcripts in the embryo and their expression in isolated cells (b)
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some way in the cell cycle. Indeed, the provisional annota-
tions of many of them shown in Additional file 13: Table
S13 indicate this is very likely to be the case. Similarly, the
genes we have identified that were enriched in innate and
acquired immune cells are likely to be associated with her-
itable variation in disease resistance/susceptibility.
Detailed examination of individual clusters can provide

significant biological insights. Cluster 8, enriched in trachea,
and with the second highest expression in lung, was
strongly enriched with GO terms associated with cilium,
microtubule binding, motor activity and the actin cytoskel-
eton (Additional file 15: Table S15), and includes, for ex-
ample, multiple members of the cilia and flagella-associated
protein (CFAP), dynein regulatory complex (DRC) and
other dynein-related gene families. Mutations in many of
these genes have been associated with human ciliopathies
[103]. This cluster also contained the transcription factor
FOXJ1, which is essential for the formation of motile cilia
in mice [104]. Provisional annotations of genes of unknown
function in this cluster are consistent with the overall en-
richment for genes associated with motility. The presence
of the epithelial transcription factors ELF5 and PAX9 in this
cluster suggests that both genes could have a role in regula-
tion of this key gene set, providing a possible reason for the
embryonic lethality of the knockouts of each gene
[105, 106]. Interestingly, KIAA0586 (also known as TAL-
PID3) is not found in cluster 8 but in a separate cluster –
number 139 – containing only 13 genes. The TALPID3
protein encodes a centromeric component, and mutation
affects the formation of primary, non-motile cilia and sig-
naling by the morphogen sonic hedgehog [107, 108].
Many of the genes that are apparently co-regulated with
TALPID3 have been associated in some way with regula-
tory functions of primary cilia, including CEP120 which,
like KIAA0596, is mutated in human Joubert syndrome
[109]. Other members of the cluster may be candidate
interactors with TALPID3.
The validity of the approach, and of the clusters gener-

ated, was established by comparing tissue- and function-
specific clusters obtained by an alternate method of quan-
tifying RNA expression levels, CAGE, using a public data-
set of chicken embryo development. This showed that
tissue-specific developmental gene expression can be de-
tected using whole embryos (as we have previously shown
for mouse [93]), and that the genes in the developmental
stage clusters matched those found in the adult tissue
atlas.
The clustering we have presented is based upon an ar-

bitrary correlation threshold. For every gene of interest,
it can be informative to identify its transcriptional compan-
ions. To this end, as we have done previously for human
[2], pig [26], sheep [27] and mouse [28], we have made the
current version of this atlas available as a searchable
database using the gene annotation portal BioGPS [110]

(http://www.biogps.org/chickenatlas), where one can utilise
a simple “find correlated” function to identify genes with
similar expression profiles. In turn, this resource allows a
rapid comparative assessment of the expression of a gene
of interest in mammals and birds and the extent to which
functional information is likely to be transferable across
species.

Conclusion
Expression profiles obtained from public RNA-seq data-
sets – despite being generated by different laboratories
using different methodologies – can be made compar-
able to each other by randomly down-sampling to a
common depth and then quantifying expression against
a reference transcriptome. Using this method, we gener-
ated a comprehensive atlas of mRNA expression for the
domestic chicken. The advantage of the aggregation
method that we have applied is that it can be extended
with new data from tissues and cell types we have not
currently included. The larger the dataset, and the
greater the transcriptional space sampled, the more
stringent the correlations that will be generated and the
more likely they are to produce new biological insights.

Methods
Animals
To obtain bone marrow-derived macrophages, nine chick-
ens of approximately 8 weeks of age (3 female and 3 male
Ross 308 broilers, and 3 female CSF1R-MacApple trans-
genic NOVOgen Brown layers) were euthanized by cer-
vical dislocation and confirmed dead by decapitation.
Likewise were euthanized 9 female and 14 male broiler
chickens of an Aviagen pedigree line, each 5 weeks of age,
to obtain the caecal tonsils. All animal work was conducted
in accordance with guidelines of the Roslin Institute and
the University of Edinburgh and carried out under the reg-
ulations of the Animals (Scientific Procedures) Act 1986
under Home Office project license PPL 60/4420. Approval
was obtained from the Roslin Institute’s and the University
of Edinburgh’s Protocols and Ethics Committees.

Macrophage cell culture and RNA isolation
Bone marrow-derived macrophage (BMDM) culture and
challenge in vivo were performed as previously described
[111]. Chicken bone marrow was cultured for 7 days with
350 ng/μl chicken CSF1 on Sterilin plastic to differentiate
BMDMs. Adherent cells were then transferred to tissue cul-
ture plastic and cells plated at 80% confluence. BMDMs
were challenged with the addition of LPS at 100 ng/ml to
culture medium and then harvested after 0 (null condition),
and 24 h. Cells were harvested in TRIzol® (15,596,018;
Thermo Fisher Scientific) and RNA extraction per-
formed with the RNeasy Mini Kit (74,106; Qiagen Hilden,
Germany) according to manufacturer’s instructions.

Bush et al. BMC Genomics  (2018) 19:594 Page 11 of 19

http://www.biogps.org/chickenatlas


Collection of campylobacter-infected caecal tonsils
The 23 birds from which caecal tonsils were harvested
were housed within a non-bio-secure environment re-
ferred to as a sib-test environment, intended to resemble
broader commercial conditions. A detailed description of
the environmental parameters and management practices
can be found in [112]. Briefly, birds were fed a standard
(maize-based) feed ration in the form of a starter, grower
and finisher diet in line with industry practice. All birds
throughout the study received the same vaccinations as
per a commercial regimen and were reared under the
same management practices. Birds were naturally ex-
posed to Campylobacter spp. under these conditions.
Caeca and caecal tonsil samples were collected in RNA-
later (AM7021; Thermo Fisher Scientific, Waltham,
USA). Campylobacter load in caeca was determined by
selective culture as previously described [113]. Seven
serial ten-fold dilutions of caecal content were prepared
in phosphate-buffered saline and 100 μl plated to
mCCDA (modified cefoperazone-deoxycholate agar) sup-
plemented with cefoperazone (32 mg/L) and amphotericin
B (10 mg/L; Oxoid), followed by incubation for 48 h under
microaerophilic conditions (5% O2, 5% CO2, and 90%
N2) at 41C. Dilutions were plated in duplicate and col-
onies with morphology typical of Campylobacter detected
in all samples. RNA was extracted from the caecal tonsils
using the RNeasy Mini Kit (74,106; Qiagen Hilden,
Germany) according to manufacturer’s instructions. As
chickens were exposed naturally rather than being expli-
citly challenged with Campylobacter, bacterial load varied
considerably between individuals. Accordingly, tonsil
samples were partitioned into two broad subsets: those
from chickens whose caecum has high Campylobacter load
(> = 10,000 CFU/g), and those with low Campylobacter
load (< 10,000 CFU/g).

RNA-sequencing
For both BMDM and caecal tonsil samples, library prep-
aration was performed by Edinburgh Genomics using ei-
ther the Illumina TruSeq total RNA library preparation
protocol (Ilumina; Part: 15031048, Revision E) or the
Illumina TruSeq mRNA (poly-A selected) library prepar-
ation protocol (Ilumina; Part: 15031047, Revision E).
Total RNA (for BMDMs) and mRNA (for caecal tonsils)
was, in both cases, sequenced by Edinburgh Genomics at
a depth of > 40 million strand-specific 75 bp paired-end
reads per sample, using an Illumina HiSeq 4000. The raw
data is deposited in the European Nucleotide Archive
under accessions PRJEB22373 (BMDMs) and PRJEB22580
(caecal tonsils).

Public RNA-seq datasets
Publicly accessible datasets used in this study are described
in Additional file 1: Table S1. The NCBI BioProject and

Sequence Read Archive (SRA) sample IDs for these data-
sets are given in Additional file 6: Table S6. All public data-
sets for this study are available via the SRA, a public
repository for sequence data maintained by the Inter-
national Nucleotide Sequence Database Collaboration
(INSDC) and accessible from the websites of its con-
stituent members: known as the SRA if via the National
Center for Biotechnology Information (NCBI) (www.
ncbi.nlm.nih.gov/sra), the DRA (DDBJ Read Archive) if
via the DNA Data Bank of Japan (DDBJ) (http://trace.
ddbj.nig.ac.jp/dra/), and the European Nucleotide Arch-
ive (ENA) if via the European Bioinformatics Institute
(EBI) (www.ebi.ac.uk/ena) [114]. For retrieving the raw
files used in this study or for expanding this work with
new datasets from novel tissues, note that data are directly
accessible in fastq format from the ENA and DDBJ but
only in a binary .sra format from the NCBI. Decompiling
the latter into fastq files – using the fastq-dump tool
within the SRA Toolkit (https://trace.ncbi.nlm.nih.gov/
Traces/sra/?view=software) – is far slower than analysing
fastq files with Kallisto, and so forms a bottleneck in the
expression atlas creation pipeline. For this reason, obtain-
ing fastq files in bulk from NCBI is not recommended un-
less necessary.

Defining a reference transcriptome and quantifying
expression
Prior to expression level quantification, all RNA-seq
datasets were randomly down-sampled to 10 million
reads using seqtk (https://github.com/lh3/seqtk, down-
loaded 29th November 2016) with parameter -s 100 (to
seed the random number generator). Expression level
was then estimated, as transcripts per million (TPM),
using the high-speed quantification tool Kallisto v0.43.1
[60] and default parameters. For datasets comprising
single-end reads, we used parameters -l 100 -s 10; estimates
of the average fragment length and standard deviation of
the fragment length, respectively. Kallisto quantifies expres-
sion at the transcript level by building an index of k-mers
from a set of reference transcripts and then mapping the
RNA-seq reads to it, matching k-mers generated from the
reads with the k-mers present in the index. Transcript-level
TPM estimates are then summarised to the gene level. A
critical aspect of this method is in selecting an appropriate
set of reference transcripts for which expression is quanti-
fied. An appropriate value of k for the index is also required
because if k is too large relative to read length, there is a
higher chance the k-mers of the reads will contain errors
(as read quality decreases towards the 3′ end of reads [4]).
If the reads generate erroneous k-mers, they will not match
the k-mers of the index. We used a value of k = 21, which
lies – approximately – between half the length of the
shortest read and a third the length of the longest read.
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As a reference transcriptome, we obtained from
Ensembl v89 the set of GalGal5 protein-coding tran-
scripts, parsing the batch release (ftp://ftp.ensembl.org/
pub/release-89/fasta/gallus_gallus/cds/Gallus_gallus.Gallus_
gallus-5.0.cds.all.fa.gz, accessed 21st June 2017) to retain
only those transcripts with the ‘protein-coding’ biotype
(n = 28,768 transcripts, representing 10,846 genes). To
this was added the CDS of 28,466 NCBI mRNA RefSeqs
that had neither been assigned Ensembl transcript IDs,
nor whose sequence was already present in the Ensembl
release (under any other identifier). To reduce the likeli-
hood of spurious read mapping, CDS < 300 bp were ex-
cluded from analysis. Erroneous expression level estimates
are more likely when fewer possible reads can be derived
from a gene, i.e. if the CDS is short [59]. While this ap-
proach arguably improves accuracy, it unavoidably ex-
cludes members of certain families, for instance the
gallinacins [115], antimicrobial peptides known for their
short chain lengths [116].
Although the Ensembl and NCBI sets of transcripts

overlap, there are many unique entries in each. For ex-
ample, RefSeqs XM_015294055 and XM_015294059 are
both predicted transcripts of the macrophage-marker
gene CD163 [117], although Ensembl refers to this gene
only by the numerical ID ‘418303’. RefSeq records begin-
ning with ‘XM’ are produced by the NCBI genome annota-
tion pipeline and can lack transcript or protein homology
support; by contrast, ‘NM’ records are validated [118]. Con-
sequently, neither of the CD163 RefSeqs are assigned
Ensembl transcript IDs, and so they are excluded from the
Ensembl batch release.
The RefSeq mRNA set also includes predictions of

novel transcript sequences for existing Ensembl genes.
For instance, the chicken BF1 gene (classical MHC class
1; Ensembl gene ID ENSGALG00000033932) has 7 tran-
scripts (Ensembl v89), encoding proteins of length 228,
323, 345, 346, 350, 354 and 360 amino acids (aa). How-
ever, BF1 has only 3 associated mRNA RefSeqs, 1 vali-
dated and 2 predicted: NM_001044683, XM_015294995,
and XM_015294996. These RefSeqs do not necessarily
encode different proteins to those present in Ensembl –
rather, the RefSeq mRNAs incorporate untranslated re-
gions (UTRs) and so can encapsulate Ensembl CDS. For
instance, the validated RefSeq mRNA NM_001044683
encodes the same 360aa protein as Ensembl CDS
ENSGALT00000066783 (i.e. the same transcript model
is independently available from both resources), but the
RefSeq nucleotide sequence extends 17 bases upstream
(the 5’ UTR) and 146 bases downstream (the 3’ UTR) of
the coding ORF. By contrast, XM_015294995 encodes a
putative 356aa peptide (XP_015150481) and XM_0152
94996 a 349aa peptide (XP_015150482), neither of which
are available from Ensembl. As the XM_015294996
mRNA – an automated prediction – fully incorporates

ENSGALT00000086848 (the CDS encoding the 228aa
BF1 protein), we considered the sequence better sup-
ported by the Ensembl model, as Ensembl takes a conser-
vative approach to annotation [119], and the predicted
peptide spurious. By contrast, the XM_015294995 mRNA
does not contain any existing Ensembl CDS and so en-
codes a protein absent from Ensembl.
Overall, we retained RefSeq ‘XM’ mRNAs only if they

can be assigned to a gene not yet present in the Ensembl
annotation, or, if that gene is present, they do not in-
corporate a CDS from any of that gene’s Ensembl tran-
script models. UTRs were trimmed from each RefSeq
mRNA by excluding all sequence outside the longest
ORF. This combined set of Ensembl and RefSeq tran-
scripts constitutes a standardised RNA space against
which expression can be quantified, as in [59].
After quantifying expression with this initial transcrip-

tome, a revised transcriptome was created, excluding
those transcripts whose average TPM was < 1 in all tis-
sues (Additional file 5: Table S5), or which were only de-
tectable in one tissue (as these may be artefacts of
differential sequencing depth). Tissues whose distribu-
tion of TPM estimates does not comply with Zipf ’s law
(see below) were not counted. The revised transcriptome
contains 28,276 Ensembl transcripts (representing
10,826 Ensembl genes) and 26,694 NCBI transcripts
(which account for only 4665 existing Ensembl genes).

Compliance of RNA-seq datasets with Zipf’s law
In a correctly prepared RNA-seq dataset, a minority of
genes will produce the majority of reads and so its distri-
bution of gene-level TPM estimates should comply, to a
reasonable approximation, with Zipf ’s law (which states
that the probability of an observation is inversely pro-
portional to its rank). A custom Perl script was used to
identify, per sample, the number of unique TPM values
and the number of genes with a TPM at or exceeding
this level. After excluding, for robustness, data from the
first and last order of magnitude (as in [120]) and all
values of TPM< 5 (which have a higher likelihood of
transcriptional noise), the data was log-transformed and
a linear regression model fitted using R v3.2.0 [121].
Samples whose exponents deviated too greatly from − 1
(by ±20%, i.e. if the exponent is < − 0.8 or > − 1.2) were
considered erroneous.

Tissue specificity
For each gene, we calculated a preferential expression
measure (PEM) in a manner similar to [65]. PEM relates
the average expression of that gene in a given tissue to
the average expression of that gene in all tissues. For
each gene i, then for tissue ti, PEM(ti) = S-A, where S =
expression of gene i in tissue ti, and A = arithmetic mean
expression of gene i across the set of all tissues. Prior to
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calculation, all TPM values < 1 were considered to be 1,
and a log2-transformation applied. This is to ensure that
genes with expression indistinguishable from noise
(TPM < 1) will have a PEM of 0. Each gene will have a
distribution of PEM values, one for each tissue in the
meta-datasets. Genes with higher PEM values for a given
tissue are more tissue-specific in their expression profile.

Gene ontology (GO) term enrichment
GO term enrichment was assessed using the R package
topGO [122], which utilises the ‘weight’ algorithm to ac-
count for the nested structure of the GO tree [123].
topGO requires a reference set of GO terms, which was
built manually from the GalGal5 set (obtained from
Ensembl BioMart v89 [124]) and filtered to remove those
terms with evidence codes NAS (non-traceable author
statement) or ND (no biological data available), and those
assigned to fewer than 10 genes in total. Significantly
enriched GO terms (p < 0.05) are reported only if the ob-
served number per tissue exceeds the expected by 2-fold
or greater.

Gene annotation
Unannotated genes in GalGal5 – those with only an
Ensembl placeholder ID, rather than an HGNC name – are
annotated by reference to the NCBI non-redundant (nr)
peptide database v77 [125], with each annotation assigned a
quality category of 1 to 8 (highest to lowest quality, respect-
ively), as previously described [27]. For each unannotated
gene, we took the longest encoded peptide and obtained
the set of blastp alignments [126] against NCBI nr, at a
scoring threshold of p < = 1e− 25. These alignments are a set
of possible gene descriptions, of which only one can be se-
lected as the annotation of that gene. The lowest quality
category, 8, is the blastp hit with the lowest E-value. All
subsequent quality categories require higher-quality hits,
which: (a) have a % identity within the aligned region of >
= 90%, (b) have an alignment length > = 90% of the length
of the query protein, (c) have an alignment length > = 50
amino acids, and (d) have no gaps. Hits to proteins labelled
either ‘low quality’, ‘hypothetical’, ‘unnamed’, ‘uncharacterized’
or ‘putative’ are excluded, as are those having a third-party
annotation (as these can be by inference and not experi-
ment). Quality category 7 is the best-scoring (i.e. lowest
E-value) of these higher quality hits. Category 6 is as above,
but with at least one identifiable hit to the human prote-
ome. Category 5 requires that the set of alignments span at
least 4 different genera (excluding Gallus). At this point, if
> = 75% of the alignments have the same description, the
gene is named for the associated HGNC name (according
to ftp://ftp.ebi.ac.uk/pub/databases/genenames/new/tsv/
locus_types/gene_with_protein_product.txt, downloaded
24th August 2016). However, as NCBI nr aggregates mul-
tiple sources of data, gene descriptions have numerous

synonyms and so it is not always possible to automatically
assign an HGNC symbol. The highest quality categories, 1
to 4, not only meet the above criteria but have degrees of
reciprocal % identity to the human proteome. The highest
quality category, 1, is if there is also a near-perfect match to
an existing, related, peptide (alignment length > = 90% of
the length of a human protein). Other quality categories, in
descending order, are: 2 (alignment length > = 75% of the
length of a human protein), 3 (> = 50%), and 4 (< 50%).
Human protein sequences were obtained from
genebuild GRCh38.p8 (ftp://ftp.ncbi.nlm.nih.gov/genomes/
all/GCF/000/001/405/GCF_000001405.34_GRCh38.p8/GCF_
000001405.34_GRCh38.p8_protein.faa.gz, downloaded 30th
August 2016).

Network analysis
Network analysis was performed using Graphia Profes-
sional (Kajeka Ltd., Edinburgh, UK), a commercial version
of BioLayout Express3D [67, 68]. Graphia Professional de-
termines the similarities between individual expression
profiles by building a correlation matrix for both gene-
to-gene and sample-to-sample comparisons. This matrix
is then filtered to remove all correlations below a certain
threshold (for the gene-to-gene comparison in the RNA-
seq atlas, Pearson’s r < 0.8). A network graph is constructed
by connecting nodes (genes) with edges (correlations above
the threshold), and its local structure interpreted by apply-
ing the Markov clustering (MCL) algorithm [69] at an infla-
tion value (which determines cluster granularity) of 2.2,
consistent with a previous study [27].

Protein-protein interactions
Protein-protein interaction data was obtained from the
IID (Integrated Interactions Database) version 2017–04
(http://iid.ophid.utoronto.ca/iid, accessed 25th July 2017)
[127], a resource which combines computationally pre-
dicted PPIs with experimentally determined PPIs drawn
from multiple databases. These include BIND (Biomo-
lecular Interaction Network Database) [128], BioGRID
(Biological General Repository for Interaction Datasets)
[129], DIP (Database of Interacting Proteins) [130], HPRD
(Human Protein Reference Database) [131], IntAct [132],
I2D (Interologous Interaction Database) [133], InnateDB
[134] and MINT (Molecular Interaction Database) [135].
The format of the PPI data is as a list of UniProt IDs, with
one of three evidence types for the interaction: ‘exp’ (ex-
perimentally determined in this species), ‘pred’ (an in silico
prediction from one of four previous studies [136–139])
and ‘ortho’ (predicted by mapping experimentally deter-
mined PPIs from another species to orthologous protein
pairs in this species). As chicken PPI data is unavailable,
we obtained human PPIs from the IID, and considered
only those PPIs that (a) involve genes that each have a
one-to-one orthologue to the chicken with an orthology
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confidence score of 1 (using data from Ensembl Compara
[140], a score of 1 indicates compliance with the gene tree),
a reciprocal % gene identity of > = 75%, a whole genome
alignment score of > = 75%, and a gene order conservation
score of > = 75% (indicating a high degree of contiguity
around the gene of interest), (b) have UniProt IDs that are
unambiguously assigned to only one human gene ID (and
thereby only one orthologous chicken gene ID), and (c)
have PPI evidence type ‘exp’ or ‘pred’.

Availability of datasets
To test whether down-sampling quantitatively alters the ex-
pression profile of an RNA-seq dataset, we randomly
down-sampled each of the 18 BMDM datasets (+/− LPS)
to 10 million reads 100 times, using seqtk seeded with a
random integer between 0 and 10,000. These sets of ex-
pression estimates are available as Dataset S1, hosted on
the University of Edinburgh DataShare portal (https://
doi.org/10.7488/ds/2137). The meta-atlas of chicken gene
expression is available in full as Additional file 6: Table S6
and via the cross-species annotation portal BioGPS (http://
biogps.org/dataset/BDS_00031/chicken-atlas/). To compare
genes between species and to visualise expression profiles,
BioGPS requires that each gene have an Entrez ID, al-
though this is not the case for all genes in GalGal5. The ex-
pression profiles of those genes without Entrez IDs can be
found in Additional file 6: Table S6.

Analysis of chicken developmental samples
The expression data derived from CAGE [53] were ob-
tained from http://fantom.gsc.riken.jp/5/suppl/Lizio_e-
t_al_2017/data; the expression file is named galGal5.
cage_peak_tpm.osc.txt.gz and the annotation file galGal5.-
cage_peak_ann.txt. The annotation and expression files
were emerged based on chromosomal location of the pro-
moter. All promoters where no sample exceeded 10 tags
per million (tagsPM) were excluded from the analysis. The
expression data were then entered into Graphia Profes-
sional (as described above), using a correlation coefficient
threshold of 0.75. Twenty-two thousand eight hundred
thirty-nine nodes joined by 5,035,102 edges were entered
into the analysis and clustered with an MCL inflation value
of 2.2, resulting in 132 clusters of at least 10 nodes.

Additional files

Additional file 1: Table S1. Data sources for creating an RNA-seq
meta-atlas. (XLSX 16 kb)

Additional file 2: Table S2. Independent datasets sequencing the same
tissue/cell type. (XLSX 8 kb)

Additional file 3: Table S3. Exponents of the log-log plots after plotting
the reverse cumulative distribution of TPM per gene on a log-log scale.
(XLSX 21 kb)

Additional file 4: Table S4. Number of genes with detectable
expression, per tissue, after the first iteration of Kallisto. (XLSX 11 kb)

Additional file 5: Table S5. Transcripts not detectably expressed
(at > 1 TPM) in any tissue, after the first iteration of Kallisto. (XLSX 91 kb)

Additional file 6: Table S6. Chicken RNA-seq meta-dataset, after the
second (and final) iteration of Kallisto. (XLSX 23600 kb)

Additional file 7: Table S7. Proportion of RNA-seq reads retained by
down-sampling the LPS-stimulated BMDM datasets. (XLSX 12 kb)

Additional file 8: Table S8. Number of detectably expressed genes after
randomly down-sampling the LPS-stimulated BMDM datasets. (XLSX 13 kb)

Additional file 9: Table S9. Range of expression estimates, and absolute
difference between largest and smallest estimate, after randomly down-
sampling the LPS-stimulated BMDM datasets. (XLSX 8074 kb)

Additional file 10: Table S10. GO term enrichment for those subsets of
genes whose highest PEM is for a given tissue. (XLSX 63 kb)

Additional file 11: Table S11. All-against-all correlation matrix for each
tissue in the meta-dataset. (XLSX 79 kb)

Additional file 12: Table S12. Tissues whose expression vectors are
most strongly correlated with each other. (XLSX 18 kb)

Additional file 13: Table S13. Clusters of co-expressed genes (obtained
via network analysis of the RNA-seq meta-dataset), including candidate
gene names for unannotated GalGal5 protein-coding genes. (XLSX 1432 kb)

Additional file 14: Table S14. Proportion of genes in each co-expression
cluster whose highest PEM is for a given tissue. (XLSX 19 kb)

Additional file 15: Table S15. GO term enrichment for co-expression
clusters containing > = 100 genes. (XLSX 42 kb)

Additional file 16: Table S16. Correlation of expression profiles for
genes with a known protein-protein interaction. (XLSX 4202 kb)

Additional file 17: Table S17. Clusters of co-expressed CAGE tags,
obtained via network analysis of the Lizio, et al. dataset [53]. (XLSX 3452 kb)

Additional file 18: Table S18. Comparison of co-expression clusters
between the RNA-seq atlas and the Lizio, et al. CAGE dataset [53].
(XLSX 108 kb)
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