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Summary   

When the demand for diagnostic tests exceeds capacity, the use of a clinical prediction rule to 

prioritize diagnostic testing can have meaningful impact on population level outcomes, 

including delaying and lowering the infection peak, and reducing healthcare burden.  
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Abstract:  

Background: Prompt identification of infections is critical for slowing the spread of 

infectious diseases. However, diagnostic testing shortages are common in emerging diseases, 

low resource settings, and during outbreaks. This forces difficult decisions regarding who 

receives a test, often without knowing the implications of those decisions on population-level 

transmission dynamics. Clinical prediction rules (CPRs) are commonly used tools to guide 

clinical decisions.  

Methods: Using early SARS-CoV-2 as an example, we used data from electronic health 

records to develop a parsimonious 5-variable CPR to identify those who are most likely to 

test positive. To consider the implications of gains in daily case detection at the population 

level, we incorporated testing using the CPR into a compartmentalized model of SARS-CoV-

2.  

Results: We found that applying this CPR (AUC: 0.69 (95% CI: 0.68 - 0.70)) to prioritize 

testing increased the proportion of those testing positive in settings of limited testing 

capacity. We found that prioritized testing led to a delayed and lowered infection peak (i.e., 

“flattens the curve”), with the greatest impact at lower values of the effective reproductive 

number (such as with concurrent community mitigation efforts), and when higher proportions 

of infectious persons seek testing. Additionally, prioritized testing resulted in reductions in 

overall infections as well as hospital and intensive care unit (ICU) burden. 

Conclusion: We highlight the population-level benefits of evidence-based allocation of 

limited diagnostic capacity.  
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Introduction 

The ongoing COVID-19 pandemic has demonstrated the importance of rapid 

identification of infections in managing an epidemic, as it allows for rapid isolation of cases, 

contact tracing and quarantining of contacts, thereby limiting onward transmission. 

However, as seen at the onset of the current pandemic, diagnostic testing capacity is often 

limited in the emergence of novel infections, in low resource settings, or during outbreaks 

[1–3].When diagnostic testing is unavailable, clinical case definitions are used instead in 

clinical management and public health response [4].  The rationing of diagnostic testing may 

result in those with more severe disease or at higher risks of complications receiving tests, 

as definitive diagnosis is critical to guide care [5].  However, because of their symptoms, 

severely ill patients may also be less mobile, thereby limiting the indirect benefit of their 

diagnostic testing on reducing onward transmission. Therefore, tools are needed to guide 

clinicians in the face of limited testing capacity.  

 Clinical prediction rules (CPRs) are commonly used tools to help to guide clinical 

management decisions, such as who should undergo testing or receive limited clinical 

resources. They provide standardization and consistency in care between physicians, as well 

as improved diagnostic accuracy [6]. Some widely used CPRs include the Centor criteria [7] 

for diagnosis and treatment of strep pharyngitis, the Ottawa ankle rule [8] for appropriate 

use of X-ray in setting of ankle trauma, and the CURB65 score [9] for triage of patients with 

pneumonia. As CPRs are usually developed to improve patient care, their evaluation has 

been focused on their impact on patient-level outcomes; the impact of CPRs on population 

health, including on transmission dynamics of infectious pathogens, has not been widely 

studied.  



 

 

 Compartmental models such as the susceptible-exposed-infected-removed (SEIR) 

model, are often used to describe disease dynamics through a population. They combine 

epidemiological information (e.g. transmissibility, duration of infectiousness, reproductive 

number) to provide a picture of the population-level disease dynamics over time [10,11], to 

our knowledge, compartmental models have not yet been used to evaluate the impact of 

CPRs on population-level public health outcomes. 

 Many diagnostic models for SARS-CoV-2 now exist [12], each specific to a given 

population and time, typically focused on achieving optimal patient care. Using a single 

health system in Utah as a proof-of-concept, we developed a CPR and incorporated it into 

an SEIR model of the ongoing SARS-CoV-2 pandemic to evaluate the population-level impact 

that could have been achieved by using a CPR to prioritize testing early in the pandemic, 

when testing capacity was limited. Many countries, including the United States, have 

experienced shortages in diagnostic testing capacity, and these shortages will likely continue 

in many settings worldwide [13–15], and well as in future outbreaks of emerging pathogens. 

Our primary objective was to measure the impact that prioritized testing (using the CPR) 

could have had on the course of the SARS-CoV-2 pandemic, including the magnitude and 

timing of the outbreak peak as well as the associated impact on hospitalization and 

intensive care unit (ICU) burden. Additionally, we determined the conditions (e.g., test 

availability, test seeking volume, effective reproductive number) in which prioritized testing 

would have resulted in the greatest reduction of SARS-CoV-2 infections and hospitalizations. 

Potential benefits of CPR-guided testing continue to be relevant for surges in the SARS-CoV-

2 pandemic, for future emerging infections, and for outbreaks of common infections (e.g., 

cholera, measles) in settings with limited diagnostic capacity. 



 

 

 

Materials and Methods 

Clinical prediction rule 

All patients tested for SARS-CoV-2 in the University of Utah Health (UHealth) 

system were eligible for our study. Data were gathered from a period where testing eligibility 

was based on presenting with at least one of cough, fever, shortness of breath, or a high risk 

of exposure given recent travel or contact with a laboratory-confirmed case (March 1, 2020 – 

April 6, 2020). We use the phrase test eligible to describe any person seeking a test who 

satisfies these conditions. We considered age, gender, state ranked area deprivation index, 

smoking status, reported symptoms, healthcare worker status, travel history, and exposure to 

a confirmed SARS-CoV-2 case as predictive variables. Random forest regression and logistic 

regression models were considered for our CPR. Our final CPR was a logistic regression 

model using the top 5 predictors to output the probability of an individual testing positive for 

SARS-CoV-2. Full details on data processing, the predictive variables, and the construction 

of the CPR are available in the Supplementary Materials S1. This study was reviewed by the 

University of Utah Institutional Review Board (IRB) and determined to be exempt. 

 

Modeling daily testing 

We first explored the effects of prioritized versus indiscriminate testing per day (Fig. 

1A). On a given day, we assumed a certain number, Neligible, of people seek testing and are 

test eligible (have cough, fever, shortness of breath, or known exposure and seek testing). Of 

those who seek testing, a certain proportion q would test positive for SARS-CoV-2 if given a 

test and the rest, (1-q), would test negative. We assumed a limited number, Ntests, of SARS-

CoV-2 tests were available daily. Using simulations (details in Supplementary Material S2), 



 

 

we measured the proportion of test eligible, SARS-CoV-2 positive patients who received 

testing under the two testing regimes: prioritized and indiscriminate testing. 

 

SEIR modeling 

We also considered the effect of prioritized testing on disease spread in the population 

over longer time scales (months-to-years).  We incorporated the same processes described 

above into a stochastic SEIR model parametrized for COVID-19. On each modeled day, we 

simulated the steps shown in Fig. 1B, with parameters as in Table 1. Further simulation 

details are in Supplementary Materials S3.  

We ran simulations assuming a total population of 3.2 million, the approximate 

population of the state of Utah [16]. We assumed an initial condition of 15 people in the 

infectious class and all others in the susceptible class. We ran our simulations for a period of 

2 years. For each set of parameters considered, we ran 1000 stochastic simulations and then 

calculated the mean value of each of the total susceptible (S+TS), exposed (E+TE), infectious 

(I+ TI), and removed (R+ TR) groups, as well as 95% prediction intervals.  

We then calculated several metrics including the timing of the peak of the mean 

infection curve; the peak value of the mean infection curve; and the mean total number of 

infections by the end of the simulation. These metrics allowed us to compare expected 

outcomes between the models with indiscriminate testing and prioritized testing.  

 To highlight the associated implications for healthcare demand, we also modeled the 

daily occupancy of hospital beds and ICU beds (details in Supplmentary Material S3) We 

then calculated the mean number of people-days (i.e., the number of people on a given day) 

where demand for hospitalization exceeds Utah’s capacity of 4,869 hospital beds and the 

number of people-days where demand for ICU beds exceeds Utah’s capacity of 687 ICU beds 



 

 

[18,19].  Note that these numbers are for total hospital and ICU beds, not those set aside for 

COVID-19 patients, and thus provide an upper bound for hospital capacity. 

All analyses and simulations were conducted using R statistical software (version 

3.6.0, [20]). All code is archived and available online at doi:10.5281/zenodo.3924186. 

Results  

During the period March 1 – April 6, 2020, 1,983 patients were tested for SARS-

CoV-2 at UHealth. After removing observations with missing covariate data, we obtained an 

analytic sample size of 1,928. Our final parsimonious 5-variable CPR had a cross-validated 

AUC of 0.69 (95% CI: 0.68 - 0.70). In all the results that follow, we used this 5-variable 

CPR. We explored using additional variables but found this only marginally improved 

predictive ability (AUC up to 0.71; Fig. S1 and Table S2), at the expense of requiring much 

greater data entry effort by clinicians. We also considered alternative versions of the CPR in 

light of varying predictor availability in different clinical contexts. We explored models 

excluding symptoms, including vital signs, and including a race/ethnicity variable (Table S1). 

Again, these did not meaningfully improve predictive ability (AUC up to 0.72; Table S2). 

Finally, we explored using random forest regression to fit the models, but logistic regression 

estimates had consistently higher AUCs.  

 When comparing indiscriminate testing to prioritized testing, the absolute difference 

in the number of people infected with COVID-19 who were tested was greatest for 

intermediate levels of testing availability, achieving the greatest benefit to disease detection 

when between 40-60% of test eligible people received testing (vertical difference between 

solid lines in Fig. 2). However, the proportional increase in the number of people infected 

with COVID-19 who were tested was greatest for low testing capacity, with the largest fold 

changes seen when <20% of test eligible people received testing (dotted line in Fig. 2). For 



 

 

example, if the rate of SARS-CoV-2 positivity among test eligible people was 5% and there 

was test capacity for only 10% of those test eligible people, we would expect to see a nearly 

3-fold increase in the number of patients testing positive on a given day if using prioritized 

testing instead of indiscriminate testing (Fig. 2A). These results were sensitive to the 

proportion of SARS-CoV-2 positive patients who are test eligible, with greater differences 

between prioritized and random testing strategies seen for low rates of SARS-CoV-2 

positivity (compare Fig. 2A-2E). Results were robust to the total number of test eligible 

persons.  

 Using our stochastic SEIR compartmental model, we show that prioritized testing 

delays the timing and reduces the prevalence at the infection peak and reduces final size of 

the pandemic (Fig. 3, Table 2). For our base parameter set, prioritized testing as compared 

with indiscriminate testing resulted in a 30 day delay in the timing of the infection peak and a 

22% decrease in the peak number of infections.  

The differences in the timing and numbers of infections between a model with 

prioritized versus indiscriminate testing were greatest for lower values of the effective 

reproductive number, Re (Fig. 3, Table 2). When alternate CPRs with similar AUC values 

were considered, results varied only marginally (Table S2). Alternate CPRs with higher AUC 

values did not necessarily perform better on all metrics (Table S3).  Increasing the proportion 

of infectious test eligible people (wI) had a positive impact on the magnitude of the 

differences between the indiscriminate and prioritized testing models (Fig. 3, Table 2). 

Increasing the number of tests available (Ntests) increased the differences for low values of 

Ntests but then had reduced benefits for higher values (Table 2), consistent with Fig. 2. 

Varying the delay in test results,    from 0 to 4 days, we observed only small differences in 

overall disease dynamics (Table 2). Increasing   from 0.2 to 0.5 (i.e., those awaiting test 

results isolate less effectively) did not notably increase the effect of varying   (        )  



 

 

 Finally, we explored the impact of prioritized testing on hospital and ICU bed 

occupancy, basing our parameters on the outbreak in Utah. We demonstrated that prioritized 

testing resulted in reductions in the number of people-days (i.e., sum of the number of people 

on each day needing a hospital/ICU bed) where demand exceeded capacity for both hospital 

and ICU beds (Table 2). For our base parameter set, prioritized testing as compared with 

indiscriminate testing resulted in 63% and 96% reductions in the number of people-days 

above hospital and ICU capacity, respectively.  

Discussion  

The availability of diagnostic testing may be limited during either the initial phase of 

an outbreak with an emerging pathogen, or even in later phases in under-resourced settings 

resulting in rationing of diagnostic tests, which can have unintended population-level 

implications. Using SARS-CoV-2 in Utah as a proof-of-concept, we found that a CPR to 

prioritize testing positively impacts both the number of laboratory-confirmed cases per day, 

as well as long-term disease dynamics when testing is scarce. We incorporated our model of 

prioritized testing into an SEIR model and showed the value of our CPR, with appreciable 

delays in the timing and height of the infection peak, decreases in the total number of 

infections, and reductions in the number of people-days above hospital and ICU capacity. 

This novel combination of analytic methods allowed us to highlight both the individual- and 

population-level benefits of the CPR.  

In spite of our CPR having only moderate discriminatory performance (AUC=0.69), 

our results show that prioritizing diagnostic testing, even based on less-than-perfect CPRs, 

still has a meaningful impact on individual and population disease burden. Furthermore, 

future predictive models built following more extensive and improved data collection (e.g. 



 

 

standardized collection by clinicians over a longer time) may improve CPR performance, 

thereby further improving the impact of prioritized testing on community disease burden.  

When considering the individual-level impact of the CPR on test-eligible individuals, 

we found that prioritized testing yielded the greatest absolute gains for intermediate testing 

capacity (capacity to test between 40-60% of test eligible people), and highest proportional 

gains for low testing capacity. Improved diagnostic triage through prioritized testing leads to 

diagnosis of individuals earlier in their course of disease, with potential for benefit through 

earlier initiation of therapies or medical monitoring, and isolation or contact-tracing 

precautions [21].  

At the population level, we found notable impact of prioritized testing on COVID-19 

dynamics, leading to reductions in infections, hospitalizations, and ICU utilization, as well as 

delaying the infection peak, providing more time for health systems to prepare for the surge. 

The magnitude of this impact was sensitive to several key parameters. For example, when Re 

was lowered, as may happen with the introduction of other public health interventions such as 

social distancing, the effects of prioritized testing increased. This suggests a synergistic effect 

between prioritized testing and other non-pharmaceutical interventions, since implementing 

prioritized testing concurrently with other non-pharmaceutical interventions that reduce Re, 

can help to maximize potential gains. Increasing the proportion of infectious people who seek 

testing (wI) increases the effects of prioritized testing because of the indirect benefit 

(reduction of Re) of isolating those individuals quickly. This may occur in populations with a 

higher proportion of symptomatic individuals, such as older populations [22] or those with 

other known risk factors [23]. Alternatively, the proportion of infectious individuals seeking 

testing could be increased intentionally through interventions such as contact tracing or 

campaigns to encourage test-seeking behavior.  



 

 

For any given level of testing, when SARS-CoV-2 is prevalent and comprises a large 

fraction of the test eligible population, either testing strategy can be impactful in reducing 

transmission by speeding up isolation. For any given level of testing, when SARS-CoV-2 is 

prevalent but only a small fraction of the test eligible population, prioritized testing using the 

CPR leads to greater population level benefit. Thus, in settings with both SARS-CoV-2 and 

high prevalence of influenza-like illness (e.g., a possible fall and winter scenario), prioritized 

testing may be of increased value. 

Use of prioritized testing is most useful in situations with limited test capacity, as the 

benefits of prioritized testing become negligible when test demand does not exceed test 

availability. While some health systems had increased their testing capacity to meet demands, 

as the US experiences new surge in cases demand for testing has continued to increase. 

Further, many countries and regions with lower resources may continue to have limited 

capacity for testing. Investment in a system of prioritized testing may be more cost-effective 

than the manufacturing or purchasing of more tests to meet demand. Additionally, this 

approach can be useful in future pandemic preparedness as a similar approach implemented 

in a timely manner may help maximize finite testing resources during the initial stages of a 

future outbreak, until adequate, affordable testing is available.  

Our study has several limitations. Our CPR was derived using data from a single 

health system servicing primarily non-Hispanic white patients, with test eligibility criteria 

that followed CDC guidance from early in the pandemic; thus, as with other diagnostic CPR 

for SARS-CoV-2 [12], our CPR should not be considered as generalizable and requires 

validation in other settings. For different populations or for later time periods in Utah, the 

CPR should be updated with the most appropriate available data. Furthermore, specific 

population subgroups (age, gender, etc.) may benefit from individualized CPRs, and this was 

not explored in this analysis. Instead, we highlight the generalizability of the approach we 



 

 

have presented, and that the individual and population level impacts of prioritized testing are 

robust to the specific CPR used (Table S3). Secondly, there are several logistical challenges. 

Implementation of such a prioritization system would require its incorporation into a 

telephone or web-based triage, or through a health worker-based assessment. Additionally, 

our model assumes that all individuals seeking testing would present at the same time. In 

most clinical settings, the implementation of such a CPR would involve the use of a 

probability threshold, set based on data from the previous day(s) and the expected number of 

test eligible people. The optimal setting of this threshold, given stochastic testing demands 

and infection dynamics, would be an area for future exploration during clinical trials. Third, 

we did not consider the implications of the sensitivity and specificity of SARS-CoV-2 tests; 

low sensitivity and specificity in the diagnostic tests would reduce the utility of testing in 

general, and thus also of prioritized testing. Finally, our SEIR model was chosen as a tool to 

demonstrate the relative impact of the CPR using a generalizable framework familiar to our 

intended audience, and thus omitted explicit consideration of some SARS-CoV-2 

transmission mechanisms (e.g., superspreader events). As knowledge about any emerging 

pathogen continues to evolve, additional details which could help with detailed forecasting 

can and should be included for specific populations, appropriate for a specific time and place. 

 The limited availability of SARS-CoV-2 testing has hampered disease mitigation 

efforts in many locations. By incorporating a diagnostic CPR into a transmission dynamics 

model, we have demonstrated the potential efficacy of prioritized testing for delaying and 

reducing peak infections and the consequent healthcare demand. By highlighting parameter 

regimes in which these effects are greatest, we have suggested situations in which it may be 

most efficacious to consider using a CPR to prioritize testing of testing shortages caused by 

the emergence of a novel infectious disease such as SARS-CoV-2. 
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Figure captions: 

Fig. 1. Effects of prioritized testing on daily testing outcomes and incorporation into an SEIR 

model. (A) Schematic comparing the testing of a subset of test eligible people using 

either indiscriminate testing or prioritized testing. Red figures would test positive for 

SARS-CoV-2 and blue figures would test negative. Gray figures are not seeking tests. 

For prioritized testing, people are arranged and then tested according to their 

probability of testing positive, as determined by the clinical prediction rule. (B) Visual 

depiction of how prioritized testing was incorporated into the daily stochastic SEIR 

model. Step 1: People in each compartment seek testing with probability wS, wE, wI, 

and wR. Individuals waiting for test results are in states TS, TE, TI, TR.  Step 2: 

Following testing, daily SEIR dynamics occur with transmission rate β, incubation 

rate σ, and removal rate γ. Those waiting for test results (states TS, TE, TI, TR) have 

reduced transmission by a factor of    Step 3: A proportion of those in states TS, TE, 

TI, TR receive their test results, after an average delay of   days.  

Fig. 2. Effect of prioritized testing compared to indiscriminate testing on the percentage of 

SARS-CoV-2 positive, test eligible people, who are tested. The horizontal axis allows 

for comparison between different testing capacities. The vertical axis refers to the 

percent of SARS-CoV-2 positive, test eligible people. Dotted lines denote the fold 

change between the grey and green lines. The percent of SARS-CoV-2 positive 

people (proportion q) of those who are test eligible is 5% in (A), 25% in (B), 50% in 

(C), and 75% in (D). 

Fig. 3. Comparison of SEIR curves between models with prioritized versus indiscriminate 

testing for decreasing values of the effective reproductive number, Re, (A)-(E), and 

decreasing rates of test seeking among infectious individuals wI, (F)-(H). Solid line 

are the mean of 1000 stochastic simulations with prioritized testing, and the dotted 



 

 

lines are the mean for the model with indiscriminate testing. Shaded regions denote 

corresponding middle 95
th

 percentiles of simulations. (A) Re = 2.5, (B) Re = 2.25, (C) 

Re = 2.0, (D) Re = 1.75, (E) Re = 1.5, (F) wI = 0.029, (F) wI = 0072, (F) wI = 0.144. 

*Note that (D) and (G) have the same parameters but have both been included to 

show sequential change as we vary Re and wI. 

Fig. 4. Comparison of simulated demand for daily hospital and ICU occupancy between 

models with prioritized versus indiscriminate testing. The solid line are the mean of 

1000 stochastic simulations with prioritized testing, and the dotted lines are the mean 

for the model with indiscriminate testing. Re decreases from 2.5 to 1.5 in increments 

of 0.25 in plots (A) through (E).  

 

 

 

 

  



 

 

Table 1. Summary of the parameters and their sources, where available, as used in our 

stochastic SEIR model. The final column depicts the range of values presented for our 

sensitivity analysis. For full details on model parametrization, see Supplementary Material 

S4. 

Symbol Interpretation Value Source(s) 
Other values 

considered 

wS 
Proportion of 

individuals in states 

S,E,I,R who are test 

eligible each day 

0.0013 

Estimated. 

Details in 

S4 

- 

wE 0.0013 - 

wI 0.072 0.029–0.144 

wR 0.00084 - 

Ntests 
Number of tests 

available daily 
1000 - 500, 3000, 5000 

σ Incubation rate 1/5.2 (18,19) - 

γ 
Recovery (“removal”) 

rate 

Uniform random 

variable over 1/7 to 1/4 
(20–23) - 

Re 
Effective reproductive 

number 
1.75 - 1.5–2.5  

β 
Frequency dependent 

transmission rate 
γ* Re (24) - 

  
Average test result 

delay 
2 days - 0–4 

  

Reduction in 

transmission due to 

isolation 

0.2 (i.e., isolation 

reduces transmission by  

80%) 

(27) - 

  



 

 

Table 2. Effects of prioritized testing on the SEIR infection dynamics over a range of 

parameter values. All parameter values are as stated in the text, except where stated otherwise 

in this table. Each column compares the mean results from 1000 stochastic simulations of the 

model with prioritized testing to one with indiscriminate testing. Bolded entries denote the 

results for the base parameter set described in the text (i.e., Re =1.75, wI = 0.072, Ntests=1000, 

 =2), and are repeated for reference in each subsection. NA values exist where hospital or 

ICU demand did not exceed capacity for either the prioritized or indiscriminate testing model.  

 Delay in peak 
timing (days) 

Reduction in 
peak height 
(people) (%) 

Reduction in 
total infections 
(people) 

Reduction in 
people-days 
above hospital 
capacity (%) 

Reduction in 
people-days 
above ICU 
capacity (%) 

Re  

2.5 8 21,192 (7%) 6,478 (0%) 21,619 (5%) 145,802 (72%) 

2.25 10  27,197 (12%)  9,891 (0%) 35,371 (10%) 138,734 (76%) 

2.0 13 24,418 (14%) 17,081 (1%) 48,960 (20%) 128,623 (83%) 

1.75 30  25,592 (22%) 38,415 (2%)  62,794 (63%) 108,918 (96%) 

1.5 36 22,855 (43%) 101,938 (5%)  NA 45,747 (100%) 

wI  

0.029 10 12,592 (9%) 29,584 (1%) 27,768 (20%)  108,691 (88%) 

0.072 30  25,592 (22%) 38,415 (2%)  62,794 (63%) 108,918 (96%) 

0.144 45  49,559 (74%) 54,434 (2%) 40,246 (100%) 98,663 (100%) 

Ntests  

500 21 20,832 (15%) 24,751 (1%) 45,297 (33%) 111,538 (90%) 

1000 30 25,592 (22%) 38,415 (2%) 62,794 (63%) 108,918 (96%) 

3000 21 24,499 (46%) 141,657 (6%) NA 49,329 (100%) 

5000 4 2,910 (8%) 127,200 (7%) NA NA 

   

0 25 25,734 (23%) 38,314 (2%) 63,136 (73%) 107,319 (97%) 

2 30 25,592 (22%) 38,415 (2%) 62,794 (63%) 108,918 (96%) 

4 23 24,646 (21%) 40,993 (2%) 61,139 (63%) 108.912 (95%) 
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