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Abstract

Background: The Paracoccus sp. strain isolated from sludge was identified and evaluated for catalytic activity in the
degradation of penicillin G.

Results: High degradation efficiency and synergistic catalytic effects of the whole cell and visible light without
additional catalysts were observed. The key factors influencing the degradation and kinetics of penicillin G were
investigated. The results showed the phenylacetic acid, which was produced during penicillin G biodegradation,
exhibited stronger inhibiting effects on KDSPL-02. However, this effect was reduced by visible light irradiation
without any additional photocatalyst; furthermore, the rate of penicillin G biodegradation was accelerated, reaching
a 100% rate in 12 h at a penicillin G concentration of 1.2 g/L. Four key intermediates produced during penicillin G
degradation were isolated and identified by LC–MS, 1H NMR, and 13C NMR. Enzymes involved in the PAA pathway
were proposed from a genomic analysis of KDSPL-02.

Conclusions: These results provide a new method for bio-degrading of penicillin or other antibiotic pollutants
using photoaccelerating biocatalysts with greater efficiency and more environmentally friendly conditions.
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Introduction
In recent years, the irrational use of antibiotics has led to
worldwide environmental pollution attributed to clinical
prescriptions, animal husbandry abuse and fermentation
fungi residue [1–3]. Among various antibiotics, penicillin
G is popular and widely used in humans and animals [4–
7]. Penicillin G has the highest activity among natural an-
tibiotics and more than 11,000 tons are produced annually
in 20 countries [8, 9]. However, with increased use, peni-
cillin G contamination has been widely detected in surface
water, groundwater, sewage water, and sometimes in
drinking water [10, 11]. Penicillin G and its intermediates
could cause potential secondary water pollution [12, 13].

Penicillin is unstable in the environment; its degradation
intermediate metabolite penicilloic acid can cause allergic
reactions [14]. Other degradation products, such as
amino-penicillanic acid, reversibly synthesizes penicillin
and other stable β-lactams [15–17]. Furthermore, a thia-
zole intermediate degradation product has potential envir-
onmental pollution risks [18]. Thus, the full mineralized
degradation of penicillin into inorganic substances is of
great significance [19, 20].
With respect to biodegradation mechanisms, most β-

lactam antibiotic degradation studies have focused on
the separation and characterization of key intermediate
metabolites and not the whole pathway, including the
mineralization products [21–24]. HPLC-mass spectrom-
etry has typically been used as the primary detection
method; however, such a tool cannot absolutely confirm
the structure of degradation products or fully clarify the
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changes in the degradation processes [25]. A
characterization of the structure of intermediates will as-
sist in characterizing and developing functional degrad-
ation enzymes. Therefore, more accurate structural
analyses are necessary, such as 1H NMR and 13C NMR
spectroscopy, to confirm the structure of degradation
products in the biodegradation of antibiotics.
Regarding the technology for β-lactam antibiotic deg-

radation, various methods such as nanofiltration [26],
ozonation [27, 28], biodegradation [21], surface adsorption
[29], advanced oxidation [19, 30] and photocatalytic pro-
cesses [22, 31] have been reported to remove β-lactam an-
tibiotics. However, biodegradation typically results in
incomplete mineralization; furthermore, low degradation
efficiency has been observed by several authors [32, 33].
Mineralization degradation of antibiotic residues occur at
different scales, including in wastewater, antibiotic myce-
lium, and other ecological environments.
The combination of biodegradation and photocatalysis

is a promising technology that can achieve the complete
mineralization of contaminants [34–37]. The process is
dependent on typically independent biocatalytic and
photocatalytic reactions. Although the coupling of these
two processes has been studied for antibiotic degrad-
ation, almost all reported methods have required addi-
tive materials or fibrous structures, which are
economically prohibitive and practically difficult to
achieve [37]. The current research on combined photo-
catalysis and biodegradation is relatively new and there
are still many unresolved issues in its practical applica-
tions, such as the high costs of photocatalysts and car-
riers and light reflection and occlusion in wastewaters.
One of the most promising ways to overcome these
problems is to simplify the photo-biodegradation system
by focusing on biocatalysts rather than photocatalysts.
In this work, we used penicillin G as a model contamin-

ant for the biocatalytic mineralized degradation of penicil-
lin G under visible light irradiation without any
photocatalyst. Whole Paracoccus sp. strain cells isolated
from sludge contaminated by antibiotics were utilized as
biocatalysts; this strain has been shown to solely use peni-
cillin G as an energy and carbon source. The effect of het-
erogeneous photocatalysis on the improvement in
biodegradation efficiency of penicillin G was evaluated.
Penicillin G degradation products were assessed and iden-
tified using HPLC, LC–MS, 1H NMR, and 13C NMR. This
study describes an efficient photo-assisted biodegradation
system that can be used for the complete mineralization
and degradation of penicillin in the environment.

Materials and methods
Materials
Sludge samples were collected from the district of Shi-
jiazhuang, China. Penicillin G was provided by North

China Pharmaceutical Group Corporation, China. All
other chemicals used in this study were analytical grade
and commercially available without further purification
unless otherwise noted. Wastewater contained penicillin
G was derived from North China Pharmaceutical Group
Corporation.

Culture medium
The base mineral media (BMM) consisted of 1.60 g of
K2HPO4, 0.40 g of KH2PO4, 0.20 g of MgSO4·7H2O,
0.03 g of CaCl2·2H2O, 0.02 g of FeCl3·6H2O, 0.50 g of
NH4NO3, and 0.50 g of yeast extract per litre of water.
The growth medium (GM) consisted of 2.40 g of yeast

extract per litre of water in the base of BMM medium.
The final pH was adjusted to 7.0.
The fermentation medium (FM) was composed of the

following: 10 mL of industrial liquid sugar; 2.40 g of yeast
extract, 1.60 g of K2HPO4, 0.40 g of KH2PO4, 0.20 g of
MgSO4•7H2O, 0.03 g of CaCl2•2H2O, 0.02 g of
FeCl3•6H2O, 0.50 g of NH4NO3 per litre of water; and
45mg L− 1 penicillin G as the inducer.

Paracoccus sp. KDSPL-02 cultivation using penicillin as the
sole carbon and energy source
To test whether strain KDSPL-02 can using penicillin as
the sole carbon and energy source, varies carbon sources
such as glucose (1.0 g/L), sucrose (1.0 g/L), maltose (1.0
g/L) and starch (1.0 g/L), were tested in addition to peni-
cillin (0.1 g/L) in BMM. As a control, the base mineral
media contained no carbon sources and comprised
NH4NO3 (1 g/L), NaCl (0.5 g/L), K2HPO4 (0.5 g/L),
MgSO4 (0.5 g/L), and FeSO4 (0.01 g/L).

Optimization of Paracoccus sp. KDSPL-02 whole cell
fermentation
To accumulate high titres for the biodegradation of
penicillin G. the fermentation of strain KDSPL-02 was
optimized. Inoculation medium was prepared with 0.01
mg of nickel chloride hexahydrate, 0.02 mg of sodium
molybdate dihydrate, 0.01 mg of cobalt chloride, 0.1 mg
of zinc sulphate heptahydrate, 0.005 mg of riboflavin,
and 0.01 mg of pyridoxal hydrochloride per litre of
water. The pH before autoclaving was within 6.8–7.0
(adjusted with 12% ammonia solution). Flasks were inoc-
ulated with the bacteria and placed on an orbital shaker.
The agitation velocity was 200 rpm, and the volume of
the flask was 250 mL. The activity (U) of penicillin G de-
graded by whole KDSPL-02 cells was defined as g/g·h,
i.e., the wet cell of one gram degrading penicillin (g) over
1 hr. All experiments were conducted in triplicate bio-
degradation reactors and triplicate no-cell control reac-
tors in dark to prevent photodegradation.

Wang et al. Journal of Biological Engineering           (2021) 15:25 Page 2 of 10



Penicillin G degradation by whole KDSPL-02 cells under
visible light irradiation
A suspension solution (0.2 mL) of whole KDSPL-02 cells
with a degradation activity of 2.0–7.0 U was added to a
250-mL conical flask containing a 100-mL solution of
0.8–1.6 g L− 1 penicillin G. The treatment was carried
out at 120 rpm at 32 °C under visible light irradiation.
Initially, persistent organic compounds were converted
into more easily photodegradable compounds, thereby
promoting photodegradation. The photocatalytic degrad-
ation of penicillin G was carried out in an annular re-
actor under visible light or LED irradiation with a
medium mercury lamp (TQ 718 Z1 700 W) purchased
from Heraeus at the reactor centre. Irradiation below
290 nm was filtered by a Duran cooling tube surround-
ing the lamp. The reaction was monitored via HPLC at
1 h intervals. Degradation was completed in approxi-
mately 12–14 h. Degradation intermediates were sepa-
rated by HPLC.

Phenylacetic acid inhibition test
To verify whether phenylacetic acid has an inhibitory
effect on KSDPL-02, we conducted a phenylacetic
acid inhibition test. Various concentrations of pheny-
lacetic acid (0.01 g/L, 0.05 g/L, 0.1 g/L, and 0.2 g/L)
were added to culture medium, and changes in
OD600 were used to characterize the inhibition of
phenylacetic acid.
Furthermore, the degradation of phenylacetic acid by

KDSPL-02 under light and non-light conditions was in-
vestigated. Culture medium was modified with 0.1 g/L of
phenylacetic acid to investigate the clearance rate of
phenylacetic acid at different times (0, 2, 4, 6, 8, 10, and
12 h) under light and non-light conditions.

Analytic methods
The light absorption properties were measured using
UV–vis diffuse reflectance spectrophotometer (DRS,
JASCO, UV-550) with a wavelength range of 200–900
nm. A 300W xenon lamp (λ > 290 nm, PLS-
SXE300CUV, Perfectlight Instruments Co. Ltd., Beijing)
was used as light source, and the average light intensity
was 78.5mw/cm − 2 (UV-A radiation meter). LC-MS
data were measured with Thermo Scientific ISQ QD.
1HNMR and 13CNMR were recorded on a Bruker
Avance II 500 spectrometer in CDCl3 unless stated
otherwise, using tetramethylsilane as an internal refer-
ence, operated at 500.13MHz for 1H, and 125MHz for
13C. J values are given in Hz. Penicillin and intermediate
concentrations were measured via HPLC (Dionex and
Agilent) with an UltimateR XB C18 column (4.6 × 250
mm, 5 μm) at a flow rate of 1.0 mLmin-1, column
temperature of 30 °C, mobile phase of methanol and
phosphate (0.1 M potassium dihydrogen phosphate, pH

3.5) at a ratio of 50:50, injection volume of 20 μL, and
detection wavelength of 225 nm.

Results and discussion
Paracoccus sp. KDSPL-02 can use penicillin G as the sole
carbon and energy source
First, the growth of KDSPL-02 when using penicillin as
the sole carbon and energy source was investigated. As
shown in Fig. 1, when using glucose, sucrose or starch as
the single carbon source, the growth of KDSPL-02 was
better, and the OD600 after 6 h of growth reached 1.2,
0.9 and 0.9, respectively. When penicillin was used as
the sole carbon and energy source, the growth of KDSP
L-02 was relatively poor with the OD600 reaching 0.4
after 6 h of growth. Although the growth status of KDSP
L-02 was poor when using penicillin, this showed that
KDSPL-02 could still survive.
Most microorganisms are not known to use antibi-

otics as sole carbon and energy sources; co-
metabolism is often required to maintain growth [38].
In our study, the strain KDSPL-02 could advanta-
geously use penicillin as the sole carbon and energy
source. This ability is necessary for degrading antibi-
otics. The biomineralization of an antibiotic is the
complete metabolism of the antibiotic, i.e., bacterial
cells first decompose the antibiotic into small molecu-
lar intermediate degradation products that can be
used by the bacteria through specific degradative en-
zymes. These intermediate degradation products then
pass the central bacterial metabolic pathway for
breakdown into carbon dioxide and water to realize
the complete degradation of antibiotics.

Fig. 1 the growth of KDSPL-02 when using varies substance
(glucose, sucrose, starch or penicillin G) as the sole carbon and
energy source

Wang et al. Journal of Biological Engineering           (2021) 15:25 Page 3 of 10



Optimization of penicillin biotransformation by
Paracoccus sp. KDSPL-02
Because penicillin hydrolyses in water, penicillin bio-
transformation in solution cannot be directly measured.
Hence, all experiments included control treatment reac-
tors that contained no cells. Only hydrolysis occurred in
the control reactors, whereas both hydrolysis and bio-
transformation occurred in the bacterial treatment reac-
tors. Observed differences in penicillin concentrations
with the control reactors were then attributed to
biotransformation.

Effects of Paracoccus sp. KDSPL-02 cell dry weight on
penicillin biotransformation
The biodegradation conditions were optimized by
single-factor tests under different conditions, such as
Paracoccus sp. KDSPL-02 cell dry weight (5 g/L- 20 g/L).
The research result showed that the Paracoccus sp.
KDSPL-02 cell dry weight was related to the degradation
efficiency. The degradation rate increased steadily with
increasing cell dry weight. When the cell activity was
above 10 g/L, the degradation rate reached to 100%
within 12 h (Fig. 2a).

Effects of the concentration of the substrate on penicillin
biotransformation
The degradation also depended strongly on the concen-
tration of the substrate. As the initial concentration of
penicillin G increased (from 0.4 g L− 1 to 5.2 g L− 1), the
degradation ability of the strain lost gradually (Fig. 2b).
The degradation rate of penicillin G was approximately
100% in the beginning, and then decreased as the con-
centration of penicillin G increased, becoming inhibited
above 2.0 g L− 1. The initial highest concentration of
penicillin G optimized was 0.8–1.6 g L− 1.
Earlier reports on penicillin G biodegradation by dif-

ferent bacterial strains are summarized in Table S1. The
100% degradation rate presented in this study was com-
parable to or higher than those in previous studies. For
instance, Phanerochate chrysosporium tolerates high
penicillin G concentrations up to 2000mg L− 1 but can
only achieve a degradation efficiency of 61.4% [39]. Fur-
thermore, the penicillin G degradation efficiencies of
Klebsiella pneumoniae Z-1, Actinobacillus pleuropneu-
moniae, and Achromobacter sp. CCM 2428 reach 99.9%
or nearly 100% at penicillin G concentrations below 300
and 500 mg L− 1, respectively, but an increase in toler-
ance limits the degradation ability [40–42]. Compared

Fig. 2 Effect of cell dry weight of KDSPL-02 whole cell (a), initial penicillin G concentration (b), temperature (c), and pH (d) on degradation rate
by Paracoccus sp. KDSPL-02
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with the above bacterial strains, KDSPL-02 has signifi-
cant advantages. The free cells completely eliminated
penicillin G when its initial concentration was 1.2 g L− 1;
the cells retained their degradation efficiency to 2.0 g
L− 1, and the final degradation product was benzoic acid.

Effects of temperature and pH on penicillin
biotransformation
Biodegradation conditions were optimized by single-
factor tests at a temperature range from 25 °C to 40 °C
and a pH range from 4.0 to 10.0. To eliminate interfer-
ence from penicillin hydrolysis on the detection of peni-
cillin biodegradation, we investigated the hydrolysis of
penicillin under different conditions.
The temperature and pH of the degradation reaction

are two important factors. The degradation rate steadily
increased as the temperature increased from 25 °C to
30 °C. When the temperature was raised to 40 °C, deg-
radation efficiency declined. At 1.2 g L− 1, penicillin G
was almost completely degraded by whole-cell catalysis
from 30 °C–35 °C (Fig. 2c).
Because pH changes with degradation, the initial

pH of the degradation solution containing penicillin
strongly impacted the reaction rate. The effect of the
initial pH is plotted in Fig. 2d. The data shows that
the degradation rate was lowest at pH 5.0, which indi-
cated that the KDSPL-02 cell enzymes did not func-
tion well under acidic conditions. The degradation
activity was higher at pH 9.0, indicating that KDSPL-
02 whole-cell catalytic degradation of penicillin G oc-
curred under neutral or weakly alkaline conditions, as
confirmed in previous studies (Anwar et al., 2009).
The highest degradation rate was achieved from pH
7.0–9.0, which indicated that KDSPL-02 was func-
tional over a wide pH range. Additionally, we found
that penicillin was unstable in aqueous alkaline solu-
tion (when the pH is greater than 8.0) and obvious
hydrolysis will occur. Hydrolysis was not observed in
acidic (pH 4.0–7.0), neutral (pH 7.0) and weakly alka-
line (pH 7.0–8.0) environments.

Pathway analysis of penicillin G biodegradation by
Parococcus sp. KDSPL-02
The process of penicillin G degradation via biocatalysis
is generally very complex, a few intermediates were
shown by HPLC when penicillin G was treated with
whole cell KDSPL-02 (Fig. S1). Penicillin G in the
medium solution without whole cell KDSPL-02 was not
shown obvious degradation detected by HPLC. In
addition, the number of intermediates and the values
varied with penicillin G concentration. Three peaks ap-
peared in the HPLC when the concentration was below
0.8 g L− 1, and the change of each component with the
reaction carrying out shown in Fig. 3a. While the

concentration of penicillin G was at 1.6 g L− 1, five com-
ponents exhibited in the HPLC, and the conversions
were shown in Fig. 3b.
All intermediates attributed to peaks in HPLC were

isolated and collected to yield purified samples. The
structures of the compounds were determined via 1H
NMR, 13C NMR, and LC–MS. The intermediate com-
pounds corresponding to peak 2 and 3 had the same
mass spectrum, the molecular ion peak [M + 1]+ (m/z)
was 353.2, and no fragment signal peaks showed a
difference in LC–MS (Fig. S2a). Moreover, their 1H
NMR and 13C NMR spectra were highly similar, be-
longing to potassium 2-(carboxy(2-phenylacetamido)-
methyl)-5,5-dimethylthiazolidine-4-carboxylate (peni-
cilloic acid)(2) and potassium 2-(4-carboxy-5,5-
dimethylthiazolidin-2-yl)-2-(2-phenylacetamido) acet-
ate (potassium penicilloic acid)(3) (Fig. S3a-b). The
former is the product formed by opening the ring of
β-lactam in penicillin G, while the latter is its isomer
that was formed through the exchange of an H+ with
potassium ion. The compound corresponding to peak
4 is simple. The LC–MS showed that the molecular
ion peak [M + 1]+ (m/z) was 137.3 (Fig. S2b), and 1H
NMR and 13C NMR indicated the presence of a ben-
zene ring in its structure. Thus, this peak was
belonged to phenylacetic acid (4) (Fig. S4a-b). For the
species corresponding to peak No. 5, LC–MS showed
a molecular ion peak [M + 1]+ of 235.1 (Fig. S2c) [13].
Moreover, the characteristic structure of 5,5-
dimethylthiazolidine contained in penicillin G was still
present in its 1H NMR and 13C NMR spectra (Fig.
S4a-b). Thus, this peak in HPLC belonged to the po-
tassium salt of 2-(amino(carboxyl)methyl)-5,5-
dimethylthiazolidine-4-carboxylic acid (5) and potas-
sium 2-amino-2-(4-carboxy-5,5-dimethylthiazolindin-2-
yl) acetate (6).
According to the HPLC, MS and HMR analysis of

the intermediates, the possible pathway of complete
degradation process catalyzed by KDSPL-02 whole
cells was proposed, as shown in Fig. 4. β-Lactam
hydrolase initially catalyzed penicillin G to open the
β-lactam ring, forming intermediate penicilloic acid,
which was simultaneously and reversibly converted
with intermediate potassium penicilloic acid. After-
ward, the open ring compounds were hydrolyzed by
amide hydrolase to form phenylacetic acid and com-
pound 5 and compound 6. Phenylacetic acid was oxi-
dized by oxidases in the cell through oxophenylacetic
acid 7 which coincide with the peak 150.1 in the MS
of penicilloic acid degradation mixture to form inor-
ganic mineralizers. Compound 5, which coincide with
the peak 271.1 in the MS of its degradation mixture,
was initially converted to the corresponding α-keto
acid 8, which then underwent further decarboxylation,
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oxidation, and hydrolysis to yield small inorganic
compounds.

Light enhancing the penicillin biodegradation efficiency
of Paracoccus sp. KDSPL-02
KDSPL-02 was a more effective catalyst of penicillin G
degradation under the optimized conditions. Using the
same methods for the treatment of penicillin G in

solution, wastewater contained penicillin G was treated.
The results showed that 0.8–1.6 g L− 1 penicillin G was
almost degraded completely by whole-cell catalysis at
30 °C. However, in the degradation of penicillin G, in
solution or wastewater, the overall reaction rate was sub-
ject to secondary reactions. To improve the biodegrad-
ation efficiency, visible light irradiation was used to
enhance the biocatalytic degradation.

Fig. 3 Conversion of penicillin G biodegradation at initial penicillin G concentrations of 0.8 g L− 1 (a) and 1.6 g L− 1 (b)

Fig. 4 Proposed penicillin G biodegradation pathway by Paracoccus sp. KDSPL-02
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Changes in species concentrations with treatment
time during the degradation of penicillin G with an
initial concentration of 1.2 g L− 1 are shown by HPLC
data in Fig. 5a. Penicillin G concentration decreased
rapidly with degradation reaction. Peak No. 1 (penicil-
lin G) completely disappeared after 5 h at an initial
concentration below 1.2 g L− 1. However, the conver-
sion rate of penicilloic acid intermediate was slow
and required 24 h. Phenylacetic acid and compound 5
intermediates degraded more rapidly than penicilloic
acid within 18 h. In the degradation process, the rate-
limiting reaction was the conversion of penicilloic
acid into phenylacetic acid and compound 5. To im-
prove the degradation kinetics, we tested auxiliary
strategies. The results indicated that visible light
markedly accelerated the rate-limiting reaction. Based
on HPLC data (Fig. 5b), the degradation time de-
creased from 24 h to 18 h. The effect of photocatalysis
on penicillin G degradation was further studied. The
data shown in Table 1 indicates that synergistic ca-
talysis can accelerate the rate of the treatment, i.e.,
the conversion of penicilloic acid or the conversion of
phenylacetic acid and compound 5 into small inor-
ganic molecules. Regarding the heating effect of vis-
ible light, the same results were obtained when
homogeneous LED lights, such as green and blue,
were substituted for visible light. Therefore, the heat-
ing effect was not a major factor in the degradation
process.
Previous studies reported penicillin degradation by

soil microorganism which shown that penicillin was
first catalyzed by beta-lactamase to form penicilloic
and then hydrolyzed by penicillin acylase. In this
study, the degradation pathway of penicillin was
similar with the degradation pathway reported in ref-
erence [38]. Furthermore, our previous report exhib-
ited the penicillin V degradation by Ochrobactrum
tritici X-2. In similar with the degradation pathway

here, penicillin V was first degraded by beta-
lactamase and then degraded by penicillin acylase
[43]. In most recently, several research using β-
lactamase to realize penicillin biodegradation. Al-
though it is exhibited high efficiency, the degradation
pathway is relatively simple, and only achieve the
hydroxylation of penicillin without further
mineralization degradation [44, 45]. Our present
work was using light irradiation to stimulate the
catalytic efficiency of whole cell of KDSPL-02 and
also our work realized the mineralization degradation
of penicillin.

Phenylacetic acid removal during visible light treatment
Phenylacetic acid intermediate often accumulates, es-
pecially when treating high concentrations of penicil-
lin G, and exhibits a strong inhibitory effect that
could inhibit the growth of the strain as shown in
Fig. 6a. Although the function of visible light in co-
catalysis was not clearly elucidated, the mechanism by
which it induces oxidation was determined. Thus, we
speculated that visible light enhances the oxidation of
phenylacetic acid to reduce biodegradation inhibition.
Experimental results (Fig. 6b) indicated that the rate
of phenylacetic acid oxidation can be accelerated by
visible light.
Photocatalysts are important components in trad-

itional photobiological degradation processes. In our
study, the penicillin treatment process was accom-
plished using light-irradiation assisted biocatalysts
without other photocatalysts. Penicillin was biode-
graded by enzymes from KDSPL-02. Light irradiation
played an important role to accelerate the biodegrad-
ation rate of KDSPL-02. We speculated that several
enzyme candidates in the oxidation process could re-
spond to light irradiation. The traditional photocataly-
sis process requires a photo-oxidant. In the process of
photooxidation, the substrate usually transforms to a

Fig. 5 Conversion of penicillin G biodegradation at an initial penicillin G concentration of 1.2 g L− 1 (a) and using co-catalysis of KDSPL-02 whole
cell and light degradation at an initial penicillin G concentration of 1.2 g L− 1 (b)
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hyper-oxidation product [37]. These hyper-oxidation
products cannot be further eliminated, which may
cause secondary pollution. Due to the unique light
sensitivity of KDSPL-02, penicillin biodegradation ac-
tivated by light was achieved. Because no additional
photocatalysts were added in the combined biodeg-
radation and photocatalysis process, the process for
separation was simplified, which reduced production
costs. This process is more efficient and environmen-
tally friendly.
Further research could greatly expand the scope of ap-

plication of the bacterial strain, especially in the treat-
ment of antibiotic waste water, industrial bacterial
residue, and rivers around pharmaceutical factories. In
terms of the biodegradative inhibition of benzoic acid in
KDSPL-02, in situ product removal has shown advan-
tages in improving production [46, 47], Further research
is warranted to determine whether these advantages are
applicable to biodegradation.
The whole genome of KDSPL-02 was analysed. The

PPA pathway from bacteria can degrade phenylacetic acid,
and the degradation product can be introduced to the
central metabolism of microorganisms for mineralization
[48]. In genomic mining,. Enzymes PaaN and PaaD were
both found in the genome of KDSPL-02. The genomic

information will be shown in our future report. We specu-
lated that light irradiation could promote the transcription
and expression of these enzymes to further accelerate the
biodegradation rate of phenylacetic acid.

Conclusions
We identified and enriched the bacterial strain Paracoccus
sp. KDSPL-02. The optimal conditions for penicillin
biotransformation were as follows: 30 °C, pH 8.0, and an
initial penicillin G concentration of 0.8–1.2 g L− 1. Penicil-
lin G was completely degraded within 24 h at a concentra-
tion of 1.2 g L− 1. Even when the initial concentration
increased above 1.6 g L− 1, thorough degradation was
obtained via synergistic photocatalysis with whole cell
KDSPL-02, which accelerated the rate-limiting transform-
ation of penicilloic acid intermediate into phenylacetic
acid and 2-(amino(carboxyl)methyl)-5,5-dimethylthiazoli-
dine-4-carboxylic acid, respectively. The high degradation
performance could be attributed to the enhanced oxida-
tion of phenylacetic acid by photocatalysis to reduce bio-
degradation inhibition. The novel heterogeneous
photocatalysis of whole cell KDSPL-02 could provide a
new method for the treatment of residual antibiotics and
provide important experimental data on penicillin behav-
iour in nature.

Table 1 Effect of co-catalysis of KDSPL-02 whole cell and light degradation

Concentration (g/L) Temperature (°C) Degradation time(h) Degradation rate (%)

Blank 0.8 31 18 100

1.2 32 24 99.9

Xenon light 0.8 30 13 100

1.2 32 18 99.9

Green light 0.8 31 12 100

1.2 33 18 100

Blue light 0.8 31 13 100

1.2 32 18 99.8

Fig. 6 Effect of visible light inducing catalysis on phenylacetic acid oxidation
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Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s13036-021-00275-4.

Additional file 1: Table S1. Degradation capability of Penicillin G by
different strain species as reported from previous literatures and this
study. Fig. S1a-c: Structure of the identified metabolites of peak Nos. 2
(a), 3 (a), 4 (b), and 5 (c) by LC–MS analysis. Peak Nos. 2 and 3 in HPLC:
Potassium 2-(carboxy(2-phenylacetamido)methyl)-5,5-
dimethylthiazolidine-4-carboxylate and potassium 2-(4-carboxy-5,5-
dimethylthiazolidin-2-yl)-2-(2-phenylacetamido) acetate. Peak No. 4 in
HPLC: Phenylacetic acid. Peak No. 5 in HPLC: Mixture of two isomers, 2-
(amino(carboxyl)methyl)-5,5-dimethylthiazolidine-4-carboxylic acid. Fig.
S2a-b: 1H NMR (a) and 13C NMR (b) spectra of potassium 2-(carboxy(2-
phenylacetamido)methyl)-5,5-dimethylthiazolidine-4-carboxylate and
potassium 2-(4-carboxy-5,5-dimethylthiazolidin-2-yl)-2-(2-
phenylacetamido) acetate. 1H NMR (500 MHz, D2O) δ:7.34–7.45 (m, 10H);
5.07–5.06 (d, J = 3 Hz, 1H); 5.05–5.06 (d, J = 6 Hz, 1H); 4.79–4.78 (d, J = 3 Hz,
2H), 4.25–4.24 (d, J = 6 Hz, 1H); 3.81–3.80 (d, J = 4.0 Hz, 2H); 3.72–3.70 (d,
J = 12 Hz, 1H); 3.43–3.42 (d, J = 3.5 Hz, 2H); 1.57 (s, 3H); 1.51 (s, 3H); 1.23
(s,3H); 1.05 (s, 3H).13C NMR (125 MHz, D2O) δ:176.17, 175.58, 175.24,
174.93, 174.86, 174.30, 135.01, 134.50, 129.65(2C), 129.49(2C), 129.27(2C),
129.04(2C), 127.61, 127.42, 75.84, 75.28, 67.00, 66.02, 60.01, 58.61, 58.45,
55.24, 42.51, 42.46, 27.98, 27.75, 26.75, 26.33. LC–MS (m/z): 391.3[M + 1]+

(cald. For C16H19KN2O5S, 390.1), 353.2[M` + 1]+ (cald for C16H20N2O5S,
352.1). Fig. S3a-b: 1H NMR (a) and 13C NMR (b) spectra of phenylacetic
acid. 1H NMR (500 MHz, D2O) δppm: 7.42–7.32 (m, 5H); 3.73 (s,
2H).13CNMR (125 MHz, D2O) δppm: 177.01, 134.17, 129.38(2C), 128.79(2C),
127.27, 40.54. LC–MS (m/z): 137.3[M + 1]+ (cald. For C8H8O2, 136.05). Fig.
S4a-b: 1H NMR (a) and 13C NMR (b) spectra of 5,5-dimethylthiazolidine.
1H NMR (500 MHz, D2O) δ: 5.06–5.05 (d, J = 4.5 Hz, 1H); 4.85–4.83 (d, J =
10.0 Hz, 1H); 3.97–3.96 (d, J = 4.0 Hz, 1H); 3.64–3.62 (d, J = 10.0 Hz, 1H); 3.56
(s, 2H); 3.47 (s, 1H); 3.19 (s,1H); 1.45 (s, 3H); 1.44 (s, 3H); 1.19 (s, 3H); 1.13(s,
3H). 13C NMR (125 MHz, D2O) δ: 176.34, 174.38, 171.85, 171.20, 74.47,
74.00, 63.59, 63.29, 59.31, 58.68, 56.80, 56.39, 29.29, 26.06, 26.02, 25.94. LC–
MS (m/z): 235.1 [M + 1]+ (cald for C8H14N2O4S, 234.07).
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