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Abstract 

Background: Age estimation from panoramic radiographs is a fundamental task in 
forensic sciences. Previous age assessment studies mainly focused on juvenile rather 
than elderly populations (> 25 years old). Most proposed studies were statistical or 
scoring-based, requiring wet-lab experiments and professional skills, and suffering from 
low reliability.

Result: Based on Soft Stagewise Regression Network (SSR-Net), we developed 
DENSEN to estimate the chronological age for both juvenile and older adults, based 
on their orthopantomograms (OPTs, also known as orthopantomographs, pantomo-
grams, or panoramic radiographs). We collected 1903 clinical panoramic radiographs of 
individuals between 3 and 85 years old to train and validate the model. We evaluated 
the model by the mean absolute error (MAE) between the estimated age and ground 
truth. For different age groups, 3–11 (children), 12–18 (teens), 19–25 (young adults), 
and 25+ (adults), DENSEN produced MAEs as 0.6885, 0.7615, 1.3502, and 2.8770, 
respectively. Our results imply that the model works in situations where genders are 
unknown. Moreover, DENSEN has lower errors for the adult group (> 25 years) than 
other methods. The proposed model is memory compact, consuming about 1.0 MB of 
memory overhead.

Conclusions: We introduced a novel deep learning approach DENSEN to estimate a 
subject’s age from a panoramic radiograph for the first time. Our approach required 
less laboratory work compared with existing methods. The package we developed is 
an open-source tool and applies to all different age groups.

Keywords: Soft Stagewise Regression Network, Chronological age estimation, 
Forensic anthropology, Orthopantomogram
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Background
Chronological age estimation presents a key feature in forensic anthropology and 
evidence, especially in criminal investigations or disasters [8, 16, 19, 38, 55, 56, 64, 
66]. Despite the rapid advance of DNA sequencing technologies [41], Age determina-
tion with DNA methods is nontrivial. Due to higher juvenile criminals and diverse 
reduced or full age of criminal responsibility around different legal systems, children 
and teenagers’ age estimation through morphological methods is insufficient [10, 61].

Several studies focus on the relationship between epiphyseal closure and chrono-
logical age [21]. There are many factors related to epiphyseal fusion, such as gender, 
genetics (race), and geography [15, 57]. Due to the uncompleted skeletal develop-
ment, the bone age assessment method is merely used to estimate immature indi-
viduals [25, 46]. Developmental skull sutures are unreliable indicators for adult age 
estimation due to inaccuracies and unstable.

Dental tissues may provide vital clues in identifying an unknown deceased person 
in the field of archeology, paleoanthropology, and forensics [27, 45, 48, 50, 52, 59]. As 
the most rigid tissues in the human body, teeth resist more chemical and mechani-
cal stress and can be preserved under variable environments for a long time [20, 43]. 
Many morphological methods based on tooth changes, such as amino acid racemiza-
tion, are time-consuming and destructive and neglect the considerations of topology, 
anthropogenic, and geological evolution [27]. Non-invasive clinical and radiological 
examinations of dental issues are universal methods for chronological age estimation 
[62].

Some studies estimated the ages involving weighty medical examinations, relying 
on statistical methods [13, 36, 44, 66]. Demirjian estimated the chronological age of 
the seventh tooth from the left side of the mandible. Moores proposed a way to esti-
mate the age with 14 stages of mineralization for developing single or multi-rooted 
teeth [13]. However, these methods are relatively time-consuming and rely on manual 
processes whose results are affected by the observer subjectivity.

With the continuous development of data science, deep learning has been applied 
to clinical medicine and imaging research, achieving comparable or higher accuracy 
than practitioners’. Currently, some studies have used deep learning methods for 
pediatric estimation by analyzing the hand and wrist bone radiographs [3, 12, 22, 24, 
26, 35, 36, 40, 60, 65].

Some studies have also applied deep learning research [1, 9, 11, 33, 44, 47, 53, 63]. (1) 
Walter de Back estimated age with Bayesian CNNs and makes a satisfactory result. With 
the dataset covering individuals from 5 to 25 years old, the proposed model resulted in 
higher MAE for the 22–25 years old group [12]. (2) Jaeyoung Kim [30] employed a cur-
riculum learning strategy in developing an automatic chronological age estimation sys-
tem for all age groups using panoramic dental X-ray. The performance of the model in 
group 19+ was still unsatisfying, with MAE 4.398. (3) Another deep learning method, 
DANet, proposed in the latest study, is unsuitable for the elderly population [63]. The 
author claimed that the performance of the network deteriorated when the experiment 
was expanded to include older participants. It is difficult to assess age accurately when 
people are older than 25 because permanent teeth will completely be formed during this 
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time [51]. These algorithms are the latest methods and the state-of-the-art methods on 
OPT processing at present.

We proposed DENSEN; a regression model derived from Soft Stagewise Regression 
Network (SSR-Net) for age estimation of panoramic radiographs. We used CNNs to 
establish an automated and accurate forensic age assessment approach. For verifying the 
reliability of the model, we also used other CNN-based methods that have reported out-
standing performance in the latest computer vision research to compare.

Results
We adopt mean absolute error (MAE) as a criterion to evaluate the model. Below x and 
y are D dimensional vectors, and xi denotes the value on the i-th dimension of x. D is the 
number of samples, x is the predicted age, and y is the ground truth age.

Most published methods trained gender-specific models to improve accuracy. How-
ever, in many scenarios, the individuals’ gender is unknown. To address this issue, we 
omitted sex-related features in our model. To explore the predictors’ performance at dif-
ferent ages, we divided the test set into four age groups 3–11 (children), 12–18 (teens), 
19–25 (young adults), and 25+ (adults), respectively. Due to the research was conducted 
in Hong Kong, we chose 11 and 18 as age boundaries in accordance with the local laws 
of Hong Kong. Relevant provisions are shown on the official website of the government 
(https:// www. smart id. gov. hk/ en/ Repla cement- arran gement- for- Child ren- holdi ng- old- 
form- of- smart- ident ity- cards/ index. html)

Performance of DENSEN

Figure 1a–d display the performance of the DENSEN for the four age groups. The figures 
show that the predictor works ideally in children and teens groups with MAEs 0.6885 
and 0.7615, respectively. However, MAEs increase in the young adult and adult groups 
to MAE 1.3502 and 2.8770, respectively. It is challenging to predict age for the elder 
groups, especially in the adult group, because their permanent teeth are fully formed, 
leaving fewer features extracted.

Performance of Bayesian CNNs Net and DANet

Figure  2a–d show the performance of Bayesian CNN Net in these four groups. The 
Fig. 2a suggests that there is generally a high correlation between the ground truth ages 
and predicted ones in the children group with MAE 0.5847. In the teens group, there is 
a slight increase in MAE (MAE = 0.8834). Figure 2c, d present the model with difficulty 
handling the age estimation in young adults (MAE = 1.7232) and adult (MAE = 6.7267) 
groups.

Figure 3a–d present DANet performance in the four age groups. The MAEs generated 
by the DANet are 0.5208, 0.7105, 2.0225, 4.5547 for children, teens, young adults, and 
adult groups, respectively. The results display that the model estimates age accurately in 

(1)L =

D

i=1

|xi − yi|

https://www.smartid.gov.hk/en/Replacement-arrangement-for-Children-holding-old-form-of-smart-identity-cards/index.html
https://www.smartid.gov.hk/en/Replacement-arrangement-for-Children-holding-old-form-of-smart-identity-cards/index.html
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the children group and teen group. However, in the young adult and adult groups, the 
model works with unfitted MAE 2.0225 and 4.5547, respectively.

Comparison and further exploration

The statistical results of the three CNN networks applied in our work are listed in 
Table  1. As presented in Table  1, there is a similar trend that these three networks 
perform relatively accurately in the early stage. DENSEN is comparable with other 
related CNN methods (mentioned in Methods 2.3) with MAE 0.6183, 0.7615, 1.3502, 
and 2.8770 in the four age groups, respectively.

Compared with the other two CNN methods, DENSEN demonstrates higher 
accuracy (MAE = 2.8770) in the adult group. Besides, the model size generated by 
DENSEN takes only 1.0 MB memory, less than the other two models. DENSEN is 
more competitive to be applied to devices that have limited memory space.

Besides,we supplemented the baseline experiments with several machine learning 
methods and the results are presented in Additional file 1.

To further explore the deep learning method’s effect in tackling the age estimation 
problem, we analyzed the saliency map to detect the focused image region, as pre-
sented in Fig. 4a–d. Firstly, we randomly chose images within the four groups. Then 

Fig. 1 Performance of DENSEN in children, teens, young adults and adults groups. a–d display the 
performance of the DENSEN for the four age groups. The figures show that the predictor works ideally in 
children and teens groups with MAEs of 0.6885 and 0.7615, respectively. MAEs increase in the young adult 
and adult groups to MAE 1.3502 and 2.8770, respectively
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we feed the images into DENSEN. Secondly, after calculating the last linear layer’s 
gradient, we feed the photos into a previous convolutional layer to visualize the sali-
ency map’s learned features. Finally, we observed that the red region provides more 
features to the model than the blue region. The most formative regions in these maps 
are located in the teeth area. The molars contribute the most in the elder groups. 
Unexpectedly, the maxillary sinus and nasal septum regions are labeled as markers in 
the model.

Discussion
According to the FBI records, as of 2020, there were 365,348 National Crime Informa-
tion Center entries for missing children in the United States [4]. Many social services, 
such as the AMBER Alert system in the US and Canada, provide up-to-date information 
searching for missing vulnerable children [18].

Some studies used multiple technologies, including artificial intelligence and digital 
image processing, to create age-progression photos. Nevertheless, some studies implied 
that age progressions do not benefit more [2, 6, 28, 29, 32, 39, 34]. Recent findings esti-
mated that over 30% of the world’s children haven’t registered or registered with doubted 

Fig. 2 Performance of Bayesian CNN in children, teens, young adults and adults groups. a–d show the 
performance of Bayesian CNN Net in these four groups. a suggests that there is generally a high correlation 
between the ground truth ages and predicted ones in the children group with MAE 0.5847. In the teen 
group, there is a slight increase in MAE (MAE = 0.8834). c and d present the model with difficulty handling 
the age estimation in young adults (MAE = 1.7232) and adult (MAE = 6.7267) groups
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age documentation [49]. Thus, estimation of an individual’s age has an essential value in 
establishing an anthropological profile.

Forensic dentistry has great applicability in forensic identification by studying specific 
characteristics. Chronological age estimation from OPTs is of vital importance in crimi-
nal investigations or disasters. For most areas globally, OPT might be an appropriate way 
because it is rapidly cost-effective and convenient [5]. However, existing methods mainly 
focused on estimating juvenile rather than elderly adults (>25years old). Most studies 
were based on statistical or scoring-based methods, requiring wet-lab experiments and 
prior professional knowledge.

Fig. 3 Performance of DANet in children, teens, young adults and adults groups. a–d present DANet 
performance in the four age groups. The MAEs generated by the DANet are 0.5208, 0.7105, 2.0225, and 4.5547 
for children, teens, young adults, and adult groups, respectively. The results display that the model estimates 
age accurately in the children group and teen group. However, in the young adult and adult groups, the 
model works with unfitted MAE 2.0225 and 4.5547, respectively

Table 1 Performance comparison between DENSEN with state-of-the-art approaches

Age group (yo) 3–11 (children) 12–18 (teens) 19–25 
(young 
adults)

25+ (adults) Model size (MB)

DENSEN 0.6885 0.7615 1.3502 2.8770 1.0

Bayesian CNNs Net 0.5847 0.8834 1.7232 6.7267 22.8

DANet 0.5208 0.7105 2.0225 4.5547 97.6
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Currently, the utilization of smartphones in clinical and biological research is increas-
ing. Joonchul Shin developed a Smart Forensic Phone system for estimating age from 
bloodstain in 2017 [58]. Khurram proposed a software named Deepgender for smart-
phones to classify gender in 2019 [23]. Our results implied that the DENSEN method 
might be competitive to utilize memory shortage devices than other CNN Net due to 
its compact. Based on the smaller model size, our model could apply to memory-limited 
devices. Besides, we performed several deep learning networks to tackle the chronologi-
cal age estimation problem. We successfully applied the CNN to estimate the ages rela-
tively accurately using a DENSEN. Our study is the first use of DENSEN to predict age 
estimation from dental images.

The DENSEN is inspired by SSR-Net and DEX. Age estimation is recast as a multi-
class classification issue in DEX, and the classification results are transformed into 
regression by computing the predicted value as the age. Additionally, we adopt the dou-
ble stream approaches motivated by the complementary 2-stream structure proposed 
by Yang et al. [67]. The difference between these two streams is the activation function 

Fig. 4 Saliency maps of children, teens, young adults and adults groups. Werandomly chose images within 
the four groups. Then we feed the images into DENSEN. After calculating thelast linear layer’s gradient, we 
feed the photos into a previous convolutional layer to visualize the saliencymap’s learned features
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(RELU vs. Tanh) and the difference in pooling (average vs. maximum). Feature fusion 
will be performed on the dual-stream output between each stage.

We still need to improve the age assessment system’s accuracy, especially in young 
adults and adults. (1) Firstly, our next objective is to enlarge the size of origin dental 
X-ray images and control the quality of the images. (2) Secondly, we will package our 
dental network into mobile applications in the future that enables forensic to complete 
the identification work conveniently. At present, gender characteristics are not consid-
ered in our complete process design. The main reason is that some of the medical images 
we collected have unknown gender labels. In the process of actual forensic identifica-
tion, appraisers often encounter cases with unknown gender. Our method can solve this 
problem well. We will collect more gender-specific data in the next iteration and provide 
an interface for gender characteristics so that the DENSEN can be compatible with a 
broader range of application scenarios. (3) Thirdly, the unexpected regions in the sali-
ency maps also worth further study. Then we will check if these regions match with the 
dental doctor’s opinions. We speculate that these regions can be used in a particular age 
group as labeled markers to improve the model’s accuracy.

Conclusions
We introduced a novel deep learning approach DENSEN to estimate a subject’s age 
from a panoramicradiograph for the first time. In comparison to current techniques, the 
DENSEN needs less laboratory time and it is an open-source model that can be adopted 
by people of all ages groups. The DENSEN approach estimated age accurately and effi-
ciently from dental X-ray images at first and is useful in lightweight forensic applications.

Table 2 The gender distribution

Male Female Unknown Total

Train 882 750 15 1647

Test 122 132 2 256

Total 1004 882 17 1903

Fig. 5 Number of participants according to ages in train set (a) and test set (b)
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Methods
Data preprocessing

In this work, the orthopantomograms (OPTs) are from the Clinical Research Center of 
Shaanxi Province for Dental and Maxillofacial Diseases & Department of Implant Den-
tistry, College of Stomatology, Xi’an Jiaotong University. OPT is also known as an ortho-
pantomograph, pantomogram, or panoramic radiograph[31].

All images were anonymized to protect the confidential information of the par-
ticipants. All photos and experiments involved were in line with the institutional and 
national research committees’ ethical standards and the Helsinki Declaration.

Limited by the sampling source, we manually removed severely distorted images. 
These lesions and deformities would introduce pathological noise and cover the target 
information in the image itself. After quality control of the images, we have 1,903 valid 
dental photos left. We randomly divided the images into the training set and the test set 
with a random size of 0.865, which results in 1647 images and 256 images, respectively.

Table 2 lists the distribution of the images according to gender. Figure 5a, b show that 
the data unevenly distributes according to the age both on the training set and test set.

For preprocessing of OPTs, we used data augmentation to save the computing 
resources and improve the training set. Data augmentation effectively improves the 
model’s robustness, generating new data through some transformation based on train-
ing data. Using augmentation, we enlarged the size of the training set to improve our 
model’s generalization.

We adopt two methods to enhance our dental OPTs, filtering augmentation and slid-
ing augmentation. Filtering augmentation mainly uses sharpening, passivization, and 
edge hardening against different image quality levels. Sliding augmentation reduces the 
impact of critical elements’ location in the input image.

Fig. 6 Sliding augmentation

Table 3 Data augmentation transformations used to improve the training set

Transformation Factor

Resize (447, 447) pixels

Rotation (− 1, 1) degrees

Translation X (− 5, 5) pixels

Translation Y (− 5, 5) pixels

Zoom (0.9, 1.1)

Brightness (0.5, 1.0)



Page 10 of 14Wang et al. BMC Bioinformatics          (2022) 23:426 

The Fig.  6 displays the visualization results of sliding augmentation. Table 3  presents 
the detailed factors used in our case, including resizing pixels, rotating the images in dif-
ferent degrees, translating the coordinates of x and y, zooming the image in size from 0.9 
to 1.1, and changing the brightness of images.

Multi‑classes regression network for DENSEN

We employed a CNN network DENSEN derived from SSR-Net [40]. DENSEN produced 
a lightweight model size related to portable devices. DENSEN and SSR-Net are both 
inspired from DEX [7, 14, 37, 42, 54]. Age estimation is recast as a multi-class classifica-
tion issue in DEX, and the classification results are transformed into regression by com-
puting the predicted value as the age. One disadvantage of DEX is that it necessitates a 
huge number of neurons, one for each age class. The product of the number of features 
and the number of neurons determines the number of connections in the final fully con-
nected layer.

DENSEN performed multiclasses regression to address the age estimation issue and 
then turned the classification results into regression by calculating the expected values. 
The network adopts a coarse-to-fine strategy and divides the classification into multiple 
stages. Each of the stages monitors the decision of the previous stage for a better evalu-
ation of age. Meanwhile, each stage consists of a few classes and requires few neurons. 
Moreover, DENSEN adopts the dynamic range to address the quantization problems of 
the age.

Stagewise Regression

We divided all age datasets into K stages uniformly.

Fig. 7 Structure of DENSEN. a shows that the network adopts a 2-stream model similar to its initial network 
architecture. There are two heterogeneous streams. For both streams, the basic building block is composed 
of convolution layers, batch normalization, non-linear activation, and pooling layers. b presents different 
activation functions (ReLU versus Tanh) and pooling (average versus maximum) adopted for each stream
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Let sk as the number of bins for the k-th stage. At each stage, DENSEN trains a net-
work Fk that produces the distribution −→p (k) = 

(

p
(k)
0 , p

(k)
1 , . . . , p

(k)
sk−1

)

 and the then age (ỹ) 

prediction could be formulated as follows for stagewise regression [67].

We set three stages (K=3) in total. There are three bins for either stage 
( s1 = s2 = s3 = 3 ). Stage one classifies the dental X-ray image as youth (0-27), middle 
age (28-54), and old age (55-81). For stage two, each bin from stage one is further subdi-
vided into s2 = 3 bins. The rest is inferred by analogy. Thus, the width of the bins in stage 
three is 81/27 = 3 . The advantage of stagewise regression is that the number of classes is 
small at each stage. The small number of classes led to much fewer parameters and built 
a more compact model. The input-dependent dynamic range provides more accurate 
refinement according to the input image [67].

Network Architecture

Figure 7a, b illustrate the overall network architecture of the DENSEN.
We also adopt a 2-stream model the same as its initial network architecture. There are 

two heterogeneous streams. For both streams, the basic building block is composed of 
3× 3 convolution, batch normalization, non-linear activation, and 2× 2 pooling layers. 
Different activation functions (ReLU versus Tanh) and pooling (average versus maxi-
mum) are adopted for each stream to heterogeneous.

Related CNN networks

Bayesian CNN Net and DANet are related CNN-methods in the field of image process-
ing. Here, we adopt these two CNN networks to compare with our DENSEN.

Bayesian CNNs Net

Bayesian CNNs Net offers better robustness against over-fitting on small data than tra-
ditional approaches [17]. Walter de Back applied Bayesian CNNs to automated foren-
sic age estimation based on dental X-ray images. The resulting model predicted the age 
group from 4 to 7 with an MAE of about 1.0 [12]. Due to the shortage of data sources, 
the dataset covers from 5 to 25 years old. Thus, we applied our relatively more compre-
hensive range datasets to this network.

DANet

With more complex architecture, DANet consists of a sequential CNN to predict age. 
The network was used in the latest research to estimate chronological ages from X-ray 
images [63]. The model makes accurate predictions in young subjects with an MAE of 
only 0.6 [63]. Here we also attempt to apply our data to this network.

(2)ỹ =

K
∑

k=1

�p(k) · �µ(k) =

K
∑

k=1

sk−1
∑

i=0

p
(k)
i · i

(

V
∏k

j=1 sj

)
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Abbreviations
SSR-Net  Soft Stagewise Regression Network
OPT  Orthopantomogram
MAE  Mean absolute error
DNA  Deoxyribonucleic acid
CNN  Convolutional neural network
RELU  Rectified linear unit
Tanh  Hyperbolic tangent function
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