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Objective. Due to the molecular heterogeneity of gastric cancer, only minor patients respond to immunotherapeutic schemes. This
study is aimed at developing an immune-based gene signature for risk stratification and immunotherapeutic efficacy assessment in
gastric cancer. Methods. An immune-based gene signature was developed in gastric cancer by LASSO method in the training set.
The predictive performance was validated in the external datasets. KEGG pathways related to risk scores were assessed by GSEA.
Based on multivariate Cox regression analysis, a nomogram was established. Sensitivity to chemotherapy drugs was evaluated
between high- and low-risk samples. The relationships of risk scores with infiltration levels of immune cells, stromal scores,
immune scores, immune cell subgroups, and overall response to anti-PD-L1 therapy were determined. Results. Our results
showed that high risk scores were indicative of undesirable survival outcomes both in the training set (p < 0:0001) and the
validation set (p = 0:002). Moreover, this signature could independently predict patients’ survival (HR: 2.656 (1.919-3.676) and
p < 0:001). Subgroup analysis confirmed the sensitivity of this signature in predicting prognosis (all p < 0:05). Cancer-related
pathways were primarily enriched in high-risk samples, such as MAPK and TGF-β pathways (p < 0:05). By incorporating stage
and the risk score, we established a nomogram for predicting one-, three-, and five-year survival probability. Patients with
high-risk scores were more sensitive to chemotherapy drugs (p < 0:05). There was heterogeneity in immune cells between
high- and low-risk samples (p < 0:05). Samples with progressive disease exhibited the highest risk score, and those with
complete response had the lowest risk score (p < 0:05). Conclusion. This immune-based gene signature might be representative
of a promising prognostic classifier for predicting risk stratification and immunotherapeutic efficacy in gastric cancer, assisting
personalized therapy and follow-up plan.

1. Introduction

Gastric cancer represents the primary reason for cancer-
related deaths globally, despite its declining prevalence in
recent years [1–3]. Most of the patients are diagnosed at an
advanced stage. The 5-year overall survival (OS) is <40%,
and the median survival time after recurrence is simply 8
months [4]. As a heterogeneous malignancy, survival dura-
tion widely varies towards subjects with the same clinico-

pathological characteristics as well as therapeutic schemes.
The present staging system alone cannot be predictive of out-
comes. Thus, it is of necessity to exploit novel prognostic
classifier for predicting risk stratification.

Recently, immunotherapies against CTLA4, PD-1, and
PD-L1 inhibitors have displayed efficient therapeutic out-
comes for cancer patients [5, 6]. Despite the durable efficacy
of immunotherapy against advanced gastric cancer, only
minor subjects may respond to this therapy [7, 8]. Because
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of the extensive molecular heterogeneity of gastric cancer,
immunotherapy requires to be made for individual patient,
thereby eliciting the optimal therapeutic effects [9]. Increas-
ing evidence underlines the clinical significance of tumor
immune microenvironment on immunotherapy [10–12].
Nevertheless, there is lack of immune-related signatures for
predicting which gastric cancer patients will respond to
immunotherapy. Here, this study developed and externally
verified an immune-based gene signature for gastric cancer,
which may become a promising clinical tool for risk
stratification and immunotherapeutic efficacy prediction in
gastric cancer.

2. Materials and Methods

2.1. Data Collection. Level 3 transcriptome data (HTSeq-
FPKM) and clinical information of gastric cancer patients
were downloaded from The Cancer Genome Atlas (TCGA)
database via the Genomic Data Commons (https://portal
.gdc.cancer.gov). Furthermore, the gene expression profiles
and corresponding clinical data of gastric cancer were
retrieved from the GSE66229 dataset of the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/
geo/) [13], which were background corrected and normal-
ized by quartile through robust multiarray average algo-
rithm. If a gene symbol corresponded to multiple probes,
the mean value was utilized as its expression value. Gene
expression data of gastric cancer were also obtained from
an immunotherapy cohort (Imvigor210) [14]. Exclusion cri-
teria of our study population were as follows: (1) patients
with survival time of 0; (2) patients with incomplete clinical
information. TCGA dataset (n = 350) was applied as the
training set, while the GSE66229 (n = 300) and Imvigor210
(n = 298) datasets were utilized as the validation set.

2.2. Differential Expression Analysis of Immune-Related
Genes (IRGs). IRGs were extracted from the ImmPort
database (https://immport.niaid.nih.gov). Then, IRGs were
overlapped from TCGA, GSE66229, and Imvigor210 datasets
for next analyses (Supplementary Table 1). Differentially
expressed IRGs with ∣log fold change ðFCÞ ∣ >1 and false
discovery rate ðFDRÞ < 0:05 were screened between gastric
cancer and normal tissues in TCGA dataset utilizing the
limma package [15].

2.3. Functional Annotation Analysis. Biological functions of
differentially expressed IRGs were annotated through the
clusterProfiler package, containing Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses [16]. GO terms were com-
posed of biological process (BP), cellular component (CC),
and molecular function (MF). Terms with FDR < 0:05 were
indicative of significant enrichment.

2.4. Construction of an Immune-Related Gene Model. The
correlations between IRGs and prognosis of gastric cancer
were assessed in the training set utilizing the coxph pack-
age. Genes with p value < 0.05 were chosen as prognosis-
related IRGs. The least absolute shrinkage and selector
operation (LASSO) regression analysis was conducted by

applying the glmnet package, followed by tenfold cross-
verification [17]. The risk score was determined according
to regression coefficient and expression of specified IRGs.
The formula of risk score = risk score =∑ðregression
coefficient of gene × expression of signature geneÞ. Based on
the median value of risk scores, subjects were divided into
high- and low-risk subgroups. Kaplan-Meier curves of overall
survival (OS) were conducted via the survival package,
followed by log-rank test. Receiver operating characteristic
(ROC) curves of one-, three-, and five-year survival duration
were established by the survivalROC package. Furthermore,
we compared the predictive efficacy of this signature with
the immune-related prognostic signatures constructed by Li
and He [18] and Tian et al. [19] by ROC curves. Univariate
Cox regression analysis was carried out to determine the asso-
ciations of survival duration with age, gender, grade, stage,
TNM, and risk score according to hazard ratio (HR), 95% con-
fidence interval (CI), and p value. Afterwards, multivariate
Cox regression analysis was presented for evaluating whether
these variables independently predicted the prognosis.

2.5. Subgroup Analysis. Patients were separated into different
subgroups according to age (age > 65 and age < 65), gen-
der (female and male), grade (G1-2 and G3), T (T1-2
and T3-4), N (N0 and N1-3), M (M0 and M1), and stage
(stage I-II and stage III-IV). In different subgroups, Kaplan-
Meier curves of OS were implemented between high- and
low-risk patients.

2.6. Gene Set Enrichment Analysis (GSEA). GSEA was
employed to probe KEGG pathways positively correlated to
high- or low-risk scores. The gene sets were retrieved from
the Molecular Signatures Database [20]. The number of per-
mutations was set as 1000, and pathways with FDR < 0:25
were identified.

2.7. Nomogram. After determining independent prognostic
factors, this study constructed a nomogram for predicting
one-, three-, and five-year survival duration. The efficacy of
this model was under evaluation by ROCs of one-, three-,
and five-year survival duration. Moreover, calibration plots
were depicted for comparing the model-predicted one-,
three-, and five-year survival with the actual survival proba-
bility by employing the rms package.

2.8. Analysis of Sensitivity to Chemotherapy Drugs. This
study assessed the sensitivity of gastric cancer samples in the
training set to chemotherapy drugs by the Genomics of Drug
Sensitivity in Cancer (GDSC; https://www.cancerrxgene.org/)
database that is the largest public resource for drug sensitivity
in cancer cells and molecular biomarkers of drug responses
[21]. Furthermore, the half-maximal inhibitory concentration
(IC50) values were calculated via the pRRophetic package [22].

2.9. Connectivity Map (CMap). Abnormally expressed genes
were screened between high- and low-risk subgroups in the
training set by applying the limma package [15]. The criteria
were as follows: ∣FC ∣ >1:5 and FDR < 0:05. Based on the up-
and downregulated genes, underlying small molecule
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Figure 1: Differentially expressed immune-related genes and their immune functions in gastric cancer in TCGA dataset. (a) Volcano plot for
visualizing the expression of immune-related genes in gastric cancer and normal samples. Red dots indicate upregulation, green dots indicate
downregulation, and black dots indicate nonsignificance. (b) Hierarchical clustering analysis of differentially expressed immune-related genes
in gastric cancer and normal tissues. (c) GO and (d) KEGG enrichment analysis of differentially expressed immune-related genes.
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compounds were predicted through the CMap (http://portals
.broadinstitute.org/cmap/) database that is a tool that has been
widely applied for studying drug repositioning as well as side
effect prediction [23]. Shared mechanisms of action were eval-
uated by employing mode-of-action analyses.

2.10. Genetic Mutation Analysis. Somatic mutation data of
437 gastric cancer samples were obtained from TCGA data-
base. The mutation types and frequencies were determined
through the MutSigCV algorithm [24]. The top five muta-
tion genes were extracted, and patients were separated into
wild-type and mutation subgroups. The predictive efficacy
of this signature was assessed in each subgroup.

2.11. CIBERSORT. CIBERSORT (http://cibersort.stanford
.edu/) is an algorithm to characterize cell compositions of
complex tissues based on gene expression profiles [25].
CIBERSORT tool was employed to infer the composition
ratio of 22 tumor-infiltrating immune cells in gastric cancer
samples through deconvolution algorithm.

2.12. Estimation of Stromal and Immune Cells in Malignant
Tumors Using Expression Data (ESTIMATE). ESTIMATE
can use gene expression signatures to infer the fractions of
stromal and immune cells in tumor tissues [26]. This study
evaluated the stromal scores and immune scores between

the high- and low-risk gastric cancer groups based on gene
expression profiles through the ESTIMATE package.

2.13. Immunohistochemistry. Paraffin-embedded sections of
5 paired gastric cancer and adjacent normal tissues were col-
lected from Heilongjiang Provincial Hospital. Each patient
signed a written informed statement. This study gained the
approval of the Ethics Committee of Heilongjiang Provincial
Hospital (2020061). All specimens were fixed through 10%
formalin for 48h and sectioned into 5μm thickness. The sec-
tions were incubated by primary antibodies against APOD
(1/100; ab108191; Abcam, USA), CTLA4 (1/100; ab237712),
CXCR4 (1/100; ab197203), DKK1 (1/100; ab109416), INHBA
(1/100; ab97705), NPR1 (1/100; ab40817), PENK (1/100;
ab22619), PROC (1/100; ab17771), RBP4 (1/100; ab188230),
S100A12 (1/100; ab196740), and STC1 (1/100; ab229477)
overnight at 4°C and incubated by HRP-labeled secondary
antibodies for 30min at room temperature. Afterwards, the
sections were stained by hematoxylin and investigated under
a microscope.

2.14. Statistical Analysis. Statistical analysis was carried out
by applying R 3.6.3 (https://www.r-project.org/). Compari-
sons between two groups were analyzed by the Wilcoxon
test. Multiple comparisons were assessed through the

Table 1: Prognosis-related immune-related genes in gastric cancer.

ID HR 95% CI lowest 95% CI highest p value

INHBA 1.243952 1.045644 1.479870 0.013751

F2R 1.234062 1.044292 1.458318 0.013561

PGF 1.178581 1.00036 1.388554 0.049499

PDGFRB 1.221756 1.033238 1.444669 0.019162

FABP4 1.201410 1.045077 1.381128 0.009884

GHR 1.249665 1.079721 1.446358 0.002804

STC1 1.318622 1.117481 1.555969 0.001055

NRP1 1.377816 1.159051 1.637872 0.00028

CTLA4 0.835463 0.705530 0.989325 0.037123

SLC22A17 1.237162 1.060073 1.443834 0.006932

AGT 1.208708 1.018537 1.434385 0.029987

GCG 1.176646 1.040025 1.331215 0.009790

CARD11 1.185447 1.004931 1.398390 0.043558

RNASE2 1.236653 1.042710 1.466669 0.014667

PENK 1.148276 1.003847 1.313485 0.043806

CXCR4 1.280472 1.085135 1.510972 0.003418

AGTR1 1.149173 1.000137 1.320418 0.049775

S100A12 1.171564 1.006071 1.364281 0.041564

PROC 1.211598 1.036397 1.416415 0.016014

OGN 1.173089 1.004497 1.369978 0.043732

DKK1 1.175657 1.006877 1.372728 0.040693

RBP4 1.212545 1.036249 1.418834 0.016210

APOD 1.333790 1.127181 1.578271 0.000796

Abbreviations: HR: hazard ratio; CI: confidence interval.
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Kruskal-Wallis test. p value < 0.05 was indicative of statisti-
cal significance.

3. Results

3.1. Immune-Related Genes in Gastric Cancer. 216 IRGs were
differentially expressed in gastric cancer compared to normal
samples from TCGA dataset. The detailed information of these
IRGs is listed in Supplementary Table 2. Among them, 50 IRGs
were downregulated and 166 were upregulated in gastric cancer
(Figures 1(a) and 1(b)). Functional enrichment analysis
confirmed their complex immune functions (Figures 1(c)
and 1(d)). Various immune pathways were significantly
enriched like chemokine, cytokine, antigen processing and
presentation, IL-17 pathways.

3.2. Establishment of an Immune-Related Prognostic Signature
for Gastric Cancer. We firstly screened 23 prognosis-related
IRGs for gastric cancer with p value < 0.05 (Table 1). Then,

a LASSO regression model was constructed based on the 13
prognostic IRGs (Figures 2(a) and 2(b)). The risk score
was calculated, as follows: 0.0163595534614718∗ INHBA
expression+0.112976565411344∗STC1 expression+0.09392
80691660978∗NRP1 expression+ (−0.2540793422499)∗CTL
A4 expression+0.0724948304927518∗GCG expression+0.05
36048393713446∗RNASE2+0.0187605064028966∗PENK+
0.190660002104556∗CXCR4+0.0522712129657809∗S100A
12 expression+0.12694740939673∗PROC expression+0.063
1625200474562∗DKK1 expression+0.00494872423672059∗
RBP4 expression+0.0414384058727867∗APOD expression.
Patients were separated into high- and low-risk groups in line
with the median value of risk scores (Figure 2(c)). We found
that in the high-risk group, there were more patients with dead
status compared to the low-risk group (Figure 2(d)). Subjects
with high-risk scores exhibited pessimistic clinical outcomes
in comparison to those with low-risk scores (p < 0:0001;
Figure 2(e)). The area under the curves (AUCs) of one year,
three years, and five years were separately 0.671, 0.748, and

Age

Gender

Grade

Stage

T

M

N

riskScore

0.033

0.125

0.182

0.002

0.083

0.172

0.022

<0.001

p value

1.021 (1.002−1.042)

1.403 (0.910−2.161)

1.297 (0.885−1.900)

1.465 (1.154−1.861)

1.244 (0.972−1.592)

1.658 (0.803−3.424)

1.235 (1.031−1.478)

2.656 (1.919−3.676)

Hazard ratio

Hazard ratio
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

(i)

Age

Stage

N

riskScore

0.003

0.009

0.924

<0.001

p value

1.032 (1.011−1.053)

1.527 (1.112−2.097)

1.012 (0.799−1.281)

2.861 (2.018−4.056)

Hazard ratio

Hazard ratio
0 1 2 3 4

(j)

Figure 2: Establishment of an immune gene-based signature for predicting prognosis of gastric cancer in the training set. (a) Selection of
variables in LASSO regression model by tenfold cross-verification. (b) Partial likelihood deviance for each λ in LASSO regression model.
(c) Ranking of risk scores for gastric cancer patients. (d) Survival status of each patient. (e) Kaplan-Meier curves for OS between the
high- and low-risk groups. (f) ROCs of one-, three-, and five-year survival based on this signature. ROCs of one-, three-, and five-year
survival based on the immune-related signature constructed by (g) Li et al. and (h) Tian et al. (i) Univariate and (j) multivariate Cox
regression analysis of the risk score and other clinicopathological characteristics.
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0.827 (Figure 2(f)). Compared to the immune-related prognos-
tic signatures constructed by Li and He [18] (Figure 2(g)) and
Tian et al. [19] (Figure 2(h)), this signature had higher predic-
tive efficacy towards gastric cancer prognosis. The correlations
of risk score with clinical characteristics were evaluated among
gastric cancer subjects. As a result, this risk score displayed dis-
tinct associations with stage (p = 0:0106) and T (p = 0:0272) in
gastric cancer (Table 2). Univariate Cox regression analysis
demonstrated that age (p = 0:033, HR: 1.021; 95% CI: 1.002-
1.042), stage (p = 0:002, HR: 1.465; 95% CI: 1.154-1.861), N
(p = 0:022, HR: 1.235; 95% CI: 1.031-1.478), and risk score
(p < 0:001, HR: 2.656; 95% CI: 1.919-3.676) were risk factors
of gastric cancer prognosis (Figure 2(i)). To verify their inde-
pendency of predicting prognosis, multivariate Cox regression
analysis was presented. In Figure 2(j), age (p = 0:003, HR:
1.032; 95% CI: 1.011-1.053), stage (p = 0:009, HR: 1.527; 95%
CI: 1.112-2.097), and risk score (p < 0:001, HR: 2.861; 95%
CI: 2.018-4.056) independently predicted the clinical outcomes
of gastric cancer.

3.3. External Validation of the Immune-Related Prognostic
Signature for Gastric Cancer. To verify the predictive perfor-
mance of this risk score, we employed the GSE66229 and
Imvigor210 datasets. According to the formula of risk score,
we calculated the risk score of each patient in the GSE66229

dataset. Patients were divided into the high- and low-risk
groups on the basis of the median value of risk scores
(Figures 3(a) and 3(b)). High risk scores were indicative of
undesirable prognosis for gastric cancer patients (p = 0:002;
Figure 3(c)). The AUCs of one year, three years, and five
years were separately 0.619, 0.608, and 0.626 (Figure 3(d)),
confirming the well performance for predicting patients’
survival outcomes. In Table 3, the risk score exhibited signif-
icant associations with stage (p = 0:0073), T (p < 0:0001),
and M (p = 0:0437) among patients. According to univariate
Cox regression analysis, stage (p < 0:001, HR: 2.215; 95% CI:
1.826-2.686), T (p < 0:001, HR: 1.767; 95% CI: 1.417-2.204),
N (p < 0:001, HR: 1.953; 95% CI: 1.631-2.340), M (p < 0:001,
HR: 3.806; 95% CI: 2.460-5.888), and risk score (p < 0:001,
HR: 2.161; 95% CI: 1.428-3.269) could be risk factors of
gastric cancer (Figure 3(e)). Following validation using mul-
tivariate Cox regression analysis, stage (p = 0:026, HR: 1.590;
95% CI: 1.058-2.389), M (p = 0:024, HR: 1.805; 95% CI:
1.080-3.017), and risk score (p = 0:006, HR: 1.888; 95% CI:
1.196-2.980) were independently related to poor prognosis
(Figure 3(f)). In the Imvigor210 dataset, patients were
divided into high- and low-risk groups according to the
median value (Figures 3(g) and 3(h)). After validation, high
risk scores were indicative of awful prognosis for gastric can-
cer patients (p < 0:0001; Figure 3(i)). By external validation,

Table 2: Clinical characteristics of patients in the high- and low-risk groups from the training set.

Characteristics High risk (N = 175) Low risk (N = 175) Total (N = 350) p value

Age
<65 78 72 150

0.5892
≥65 97 103 200

Stage

Stage I 16 33 49

0.0106
Stage II 59 52 111

Stage III 76 79 155

Stage IV 24 11 35

T

T1 3 13 16

0.0272

T2 43 31 74

T3 75 86 161

T4 50 45 95

Tx 4 0 4

M

M0 150 162 312

0.1705M1 15 8 23

Mx 10 5 15

N

N0 41 63 104

0.0884

N1 50 43 93

N2 38 34 72

N3 40 31 71

Nx 6 4 10

Gender
Female 60 64 124

0.7374
Male 115 111 226

Grade

G1 5 4 9

0.7498
G2 59 66 125

G3 106 101 207

Gx 5 4 9
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Figure 3: External validation of the immune-related prognostic signature for gastric cancer. (a) Ranking of risk scores and (b) survival status
for patients in the GSE66229 dataset. (c) Kaplan-Meier curves for OS between the high- and low-risk groups in the GSE66229 dataset. (d)
ROCs for one year, three years, and five years in the GSE66229 dataset. (e) Univariate and (f) multivariate Cox regression analyses of the risk
score and other clinical characteristics in the GSE66229 dataset. (g) Ranking of risk scores and (h) survival status for patients in the
Imvigor210 dataset. (i) Kaplan-Meier curves for OS between the high- and low-risk groups in the Imvigor210 dataset.
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this signature was a promising tool for predicting prognosis
of gastric cancer.

3.4. The Immune-Related Signature Can Be Predictive of
Survival for Gastric Cancer with Different Clinicopathological
Features. To detect the sensitivity of this signature for predict-
ing prognosis, we presented Kaplan-Meier curves of OS
between high- and low-risk gastric cancer groups in different
subgroups. Our data showed that patients with high risk scores
exhibited poorer survival duration in comparison to those
with low risk scores in age > 65 (p = 0:0011, Figure 4(a)) and
age < 65 (p < 0:0001, Figure 4(b)); female (p = 0:0001,
Figure 4(c)) and male (p = 0:0005, Figure 4(d)); G1-2
(p = 0:0322, Figure 4(e)) and G3 (p < 0:0001, Figure 4(f));
T1-2 (p < 0:0001, Figure 4(g)) and T3-4 (p = 0:0021,
Figure 4(h)); N0 (p = 0:0011, Figure 4(i)) and N1-3
(p = 0:0005, Figure 4(j)); M0 (p < 0:0001, Figure 4(k)) and M1
(p = 0:1664, Figure 4(l)); stage I-II (p = 0:0002, Figure 4(m))
and stage III-IV (p = 0:0028, Figure 4(n)).

3.5. Signaling Pathways Related to the Risk Score. The
relationships of the risk score and signaling pathways were
investigated by GSEA. In the training set, ECM receptor
interaction, focal adhesion, MAPK signaling pathway,
pathways in cancer, and TGF-β signaling pathway were
positively related to the high-risk scores (Figure 5(a)).
Meanwhile, base excision repair, DNA replication, nucleo-
tide excision repair, and pyrimidine metabolism were
enriched in low-risk samples (Figure 5(b)). Above results
were confirmed in the GSE66229 dataset (Figures 5(c)
and 5(d)).

3.6. Construction of a Nomogram Based on the Risk Score for
Gastric Cancer. In the training set, we established a nomo-
gram for predicting one-, three-, and five-year survival by
integrating independent variables including stage and the
risk score (Figure 6(a)). The C-index was 0.683 in the train-
ing set and 0.711 in the GSE66229 dataset (Figure 6(b)).
AUCs of one year, three years, and five years were separately
0.695, 0.728, and 0.764 in the training set, showing that
the nomogram exhibited better predictive performance
(Figure 6(c)). In the GSE66229 dataset, AUCs of one year,
three years, and five years were 0.760, 0.758, and 0.792, respec-
tively (Figure 6(d)). Calibration curves confirmed that
nomogram-predicted one- (Figure 6(e)), three- (Figure 6(f)),
and five-year (Figure 6(g)) survival was highly consistent with
the actual one-, three-, and five-year survival. The similar
consequences were observed in the GSE66229 dataset
(Figures 6(h)–6(j)). Thus, this nomogram displayed the well
predictive performance.

3.7. Assessment of Sensitivity to Chemotherapy Drugs and
Prediction of Small Molecular Compounds Based on the Risk
Score. A.770041 (p = 0:001116), ABT.263 (p = 0:007174),
AMG.706 (p = 5:61E − 06), AP.24534 (p = 3:16E − 08),
AS601245 (p = 9:27E − 05), Bicalutamide (p = 4:51E − 05),
BMS.536924 (p = 0:002514), and AZD6482 (p = 4:55E − 12)
exhibited higher estimated IC50 values in the low-risk samples
compared to the high-risk samples from the training set
(Figure 7(a)), indicating that high-risk samples weremore sen-
sitive to these chemotherapy drugs. With the criteria of ∣FC ∣
>1:5 and adjusted p < 0:05, we screened 33 downregulated
and 1484 upregulated genes in high-risk compared to low-
risk gastric cancer samples (Supplementary Table 3). Based

Table 3: Clinical characteristics of patients in the high- and low-risk groups from the GSE66229 dataset.

Characteristics High risk (N = 150) Low risk (N = 150) Total (N = 300) p value

Age
<65 87 74 161

0.1647
≥65 63 76 139

Stage

Stage I 9 21 30

0.0073

Stage II 40 56 96

Stage III 55 40 95

Stage IV 45 32 77

NA 1 1 2

T

T2 75 111 186

<0.0001T3 60 31 91

T4 14 7 21

NA 1 1 2

M
M0 131 142 273

0.0437
M1 19 8 27

N

N0 14 24 38

0.1309
N1 62 69 131

N2 47 33 80

N3 27 24 51

Gender
Female 53 48 101

0.6251
Male 97 102 199
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on these genes, we predicted potential small compounds
through the CMap database. In Table 4, 26 small molecular
drugs were listed with p < 0:05. Furthermore, we analyzed the
shared mechanisms of action of predicted small molecular
compounds (Figure 7(b)). Cyclooxygenase inhibitor was
shared by indoprofen and SC-560. Sodium channel blocker
was shared by disopyramide and flecainide.

3.8. The Risk Score Can Predict Prognosis of Gastric Cancer
with Different Gene Mutations. We assessed gene variations
in gastric cancer samples. As a result, we found that 405
sample mutations occurred among 437 samples (92.68%)
in Figure 8(a). TTN (53%), TP53 (46%), MUC16 (32%),
LRP1B (27%), and SYNE1 (25%) were the top five mutated
genes. The predictive efficacy of this signature was further
evaluated in mutant and wild-type gastric cancer samples.
Our data demonstrated that patients with high risk scores
were indicative of undesirable survival duration in compari-
son to those with low risk scores in different subgroups
including TP53 mutation (p < 0:0001, Figure 8(b)) and
TP53 wild-type (p = 0:0018, Figure 8(c)); TTN mutation
(p < 0:0001, Figure 8(d)) and TTN wild-type (p = 0:0025,
Figure 8(e)); MUC16 mutation (p = 0:0015, Figure 8(f))
and MUC16 wild-type (p < 0:0001, Figure 8(g)); LRP1B
mutation (p = 0:00067, Figure 8(h)) and LRP1B wild-type
(p = 0:00021, Figure 8(i)); SYNE1 mutation (p = 0:025,
Figure 8(j)) and LRP1B wild-type (p < 0:0001, Figure 8(k)).

3.9. The Risk Score Can Be Predictive of Immunotherapy
Efficacy. The relationships between the risk score and the
infiltration of immune cells were evaluated in gastric cancer
samples. High risk scores were characterized by increased

infiltration levels of B cells naïve, T cells CD4 memory rest-
ing, monocytes, and macrophages M2 (Figure 9(a)).
Meanwhile, low risk scores had the characteristics of ele-
vated infiltration levels of T cells CD8, T cells CD4 memory
activated, T cells follicular helper, and macrophages M1.
Furthermore, stromal scores were significantly elevated in
the high-risk group compared to the low-risk group
(p = 1:1e − 12; Figure 9(b)). However, there were no signifi-
cant differences in immune scores between the high- and
low-risk groups (p = 0:52). Then, we assessed whether this
risk score can be applied to predict the efficacy of anti-PD-
L1 immunotherapy in the Imvigor210 dataset. Our data
showed that this risk score had the distinct associations with
immune cell (IC) subgroups (p = 0:00018; Figure 9(c)).
Among them, IC2+ cells had the lowest risk score. More-
over, we found that the risk score was in relation to overall
responses to the anti-PD-L1 immunotherapy (p = 0:0035;
Figure 9(d)). Samples with progressive disease exhibited
the highest risk score, and those with complete response had
the lowest risk score. Collectively, this immune-related signa-
ture can be utilized to assess immunotherapy efficacy and pre-
dict which patients could benefit from immunotherapy.

3.10. Validation of Genes in the Prognostic Model in Gastric
Cancer. Immunohistochemistry was presented for validating
the expression of genes in the prognostic model in 5 paired
gastric cancer and normal tissues. Our data confirmed that
APOD, CTLA4, CXCR4, DKK1, INHBA, NPR1, PENK,
PROC, RBP4, S100A12, and STC1 were abnormally
expressed in gastric cancer compared to normal tissues
(Figure 10).
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Figure 4: The immune-related signature can be predictive of survival of gastric cancer patients with different clinicopathological features.
Kaplan-Meier curves of OS between the high- and low-risk groups for patients with (a) age > 65 and (b) age < 65; (c) female and (d) male; (e)
G1-2 and (f) G3; (g) T1-2 and (h) T3-4; (i) N0 and (j) N1-3; (k) M0 and (l) M1; (m) stage I-II and (n) stage III-IV.
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Figure 5: KEGG signaling pathways related to the risk score by GSEA. (a, b) Enriched signaling pathways in the high- and low-risk gastric
cancer samples in the training set. (c, d) Enriched signaling pathways in the high- and low-risk gastric cancer samples in the GSE66229 dataset.
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Figure 6: Establishment of a risk score-based nomogram for predicting prognosis of gastric cancer. The nomogram that integrates the risk score
and stage for predicting one-, three-, and five-year survival probability in the (a) training set and the (b) GSE66229 dataset. ROCs of one-, three-, and
five-year survival based on the nomogram in (c) the training set and (d) the GSE66229 dataset. Calibration curves showing the relationships between
nomogram-predicted one-, three-, and five-year survival and actual survival duration in (e–g) the training set and (h–j) the GSE66229 dataset.
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Figure 7: Assessment of sensitivity of chemotherapy drugs and prediction of small molecular compounds based on the risk score. (a) Box
plots for estimated IC50 values of A.770041, ABT.263, AMG.706, AP.24534, AS601245, Bicalutamide, BMS.536924, and AZD6482 in
high- and low-risk gastric cancer samples. (b) Mechanisms of action shared by small molecular inhibitors.
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4. Discussion

Gastric cancer, a heterogeneous malignancy, is characterized
by diverse molecular and histological subtypes [27]. Immu-
notherapy may exert durable efficacy against advanced gas-
tric cancer. However, only minor patients benefit from this
therapy. Here, this study developed an immune-based gene
signature for gastric cancer, which may be utilized for risk
stratification and predictive of the response to immunother-
apy. This prognostic classifier might possess the potential to
assist oncologists make personalized therapeutic scheme and
follow-up plan.

Dysregulation of gene expression that is modulated by
various regulators may induce human malignancies [28].
Gene expression profiles of immune signatures within gas-
tric cancer could discover markers of immunotherapy as
well as survival outcomes. This study comprehensively ana-
lyzed abnormally expressed IRGs in gastric cancer. Our
functional enrichment analysis confirmed their complex
immune functions. Based on LASSO method, an immune-
based gene signature was established, containing INHBA,
STC1, NRP1, CTLA4, GCG, RNASE2, PENK, CXCR4,
S100A12, PROC, DKK1, RBP4, and APOD. Compared with
the immune-related prognostic signatures constructed by Li

and He [18] and Tian et al. [19], this signature exhibited
higher predictive efficacy for gastric cancer prognosis. Fol-
lowing external verification, high risk scores were indicative
of undesirable survival outcomes. Our multivariable Cox
regression and subgroup analyses confirmed the indepen-
dency of this signature as a risk factor. We analyzed the bio-
logical functions behind the model in more depth. Our
GSEA results demonstrated that ECM receptor interaction,
focal adhesion, MAPK signaling pathway, pathways in can-
cer, and TGF-β signaling pathway were positively related
to the high-risk scores while base excision repair, DNA
replication, nucleotide excision repair, and pyrimidine
metabolism were enriched in low-risk samples, indicating
that varying prognosis among patients might be related to
pathways. For example, ECM may provide support as well
as maintain normal epithelial architecture [29]. Yang et al.
found that ECM receptor interaction signatures such as
CD36, COL5A2, and ITGB5 displayed distinct correlations
to clinical outcomes of gastric cancer subjects [30]. Our data
demonstrated that stage and the risk score were independent
risk factors for gastric cancer, which were incorporated into
the nomogram. Following verification, this nomogram could
provide personalized prediction for one-, three-, or five-year
survival duration.

Table 4: Prediction of potential small molecular components based on the risk scores.

Rank CMap name Mean N Enrichment p Specificity Percent nonnull

1 Lomustine -0.804 4 -0.949 <0.0001 0 100

2 Oxybenzone -0.454 4 -0.851 0.00093 0.0141 75

3 Trifluridine 0.291 4 0.819 0.00187 0.0421 50

4 Diethylstilbestrol -0.493 6 -0.693 0.00209 0.0082 66

5 Prestwick-642 -0.336 4 -0.814 0.00223 0.0276 50

6 Chlorhexidine -0.514 5 -0.71 0.00445 0.015 80

7 Indoprofen -0.351 4 -0.765 0.00627 0.0333 50

8 Prestwick-857 -0.366 4 -0.762 0.00656 0.0127 50

9 Bromperidol 0.463 3 0.838 0.00831 0 66

10 Chenodeoxycholic acid -0.381 4 -0.712 0.014 0.0923 50

11 STOCK1N-35874 -0.566 2 -0.915 0.01467 0.0331 100

12 Perhexiline 0.487 4 0.693 0.01862 0.1088 75

13 Pseudopelletierine 0.365 4 0.69 0.01908 0.0184 50

14 Hydrochlorothiazide -0.446 5 -0.622 0.02005 0.0229 60

15 PHA-00767505E -0.404 4 -0.687 0.02071 0.0127 75

16 Mometasone -0.484 4 -0.68 0.02312 0.0342 75

17 Ciclopirox 0.39 4 0.679 0.02316 0.1594 75

18 0173570-0000 0.425 6 0.569 0.02384 0.1429 66

19 Eticlopride -0.348 4 -0.676 0.02463 0.0758 50

20 Puromycin 0.441 4 0.663 0.02906 0.3258 75

21 Calcium pantothenate 0.379 4 0.662 0.02962 0.0413 50

22 Pimozide 0.426 4 0.659 0.03093 0.1457 75

23 Clopamide -0.46 4 -0.657 0.03191 0.0284 75

24 Flumequine 0.476 4 0.647 0.03686 0.0567 75

25 Harpagoside -0.178 4 -0.642 0.03945 0.0764 50

26 5194442 0.231 4 0.632 0.04559 0.0903 75
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The present staging system alone cannot be predictive of
which patients with stage II or III could benefit from adju-
vant chemotherapy [31]. This signature could be utilized
for predicting the sensitivity to chemotherapy drugs.
Patients with high risk scores were more likely to benefit
from A.770041, ABT.263, AMG.706, AP.24534, AS601245,
Bicalutamide, BMS.536924, and AZD6482 adjuvant chemo-
therapy. Furthermore, based on the risk score, we probed the
underlying small molecular compounds against gastric can-
cer such as indoprofen, SC-560, disopyramide, and flecai-
nide. Their therapeutic effects are worth exploring further.
Genetic mutation frequently occurred in gastric cancer.

Among 437 gastric cancer samples, 92.68% different types
of mutations occurred. The most common mutation genes
were TTN (53%), TP53 (46%), MUC16 (32%), LRP1B
(27%), and SYNE1 (25%). We found that both in wild-type
and mutation subgroups, this signature can be accurately
predictive of subjects’ outcomes, confirming its stability
and extensibility.

Cell ingredients in the tumor microenvironment display
key clinicopathologic implications for prediction of progno-
sis as well as therapeutic efficacy in gastric cancer [12].
Immune response may be epigenetically regulated in gastric
cancer [32]. Here, we evaluated the correlations of risk
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Figure 8: The risk score can be predictive of prognosis of gastric cancer patients with different gene mutations. (a) Landscape of gene
variations in gastric cancer samples. The mutation type is identified by a unique color. Kaplan-Meier OS curves of high- and low-risk
gastric cancer patients in different subgroups of (b) TP53 mutation and (c) TP53 wild-type; (d) TTN mutation and (e) TTN wild-type;
(f) MUC16 mutation and (g) MUC16 wild-type; (h) LRP1B mutation and (i) LRP1B wild-type; (j) SYNE1 mutation and (k) LRP1B
wild-type.
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Figure 9: Assessment of the risk score in predicting the efficacy of immunotherapy. (a) Box plots for the relationships of the risk score with
infiltration levels of immune cells in gastric cancer samples. ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001; ns: not significant. (b) Violin plots for the
associations of the risk score with stromal and immune scores. (c) Violin plots for the risk scores in different immune cell subgroups
(IC0, IC1, and IC2+) in the Imvigor210 dataset. (d) Violin plots for the relationships of the risk core with immunotherapy efficacy (CR:
complete response; PD: progressive disease; PR: partial response; SD: stable disease).
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scores with the infiltration levels of immune cells. High risk
scores were characterized by increased infiltration levels of B
cells naïve, T cells CD4 memory resting, monocytes, and
macrophages M2, while low risk scores had the characteris-
tics of increased infiltration levels of T cells CD8, T cells
CD4 memory activated, T cells follicular helper, and macro-
phages M1 in gastric cancer tissues. Furthermore, high-risk
samples displayed elevated stromal scores. Mao et al. have
demonstrated that stromal scores may be a prognostic index
for gastric cancer, which are in relation to tumor immune
microenvironment [33]. More importantly, we found that
the risk score was in relation to overall responses to the
anti-PD-L1 immunotherapy. Samples with progressive
disease exhibited the highest risk score, and those with
complete response had the lowest risk score. These data
suggested that gastric cancer patients with low risk score
exhibited high response to anti-PD-L1 immunotherapy.
Hence, compared with previous gene models, this signature
could be utilized for predicting the response to immunother-
apy [34, 35].

Despite this, there are some disadvantages in our study.
First of all, although the immune-based gene signature
exhibited the well performance in predicting gastric cancer
prognosis in different datasets, we will further validate the
predictive efficacy of this signature in prospective cohorts.
Secondly, more experiments should be carried out for inves-
tigating the therapeutic effects of the small molecular agents
against gastric cancer. Thirdly, the interactions of this signa-

ture with tumor microenvironment will be further validated
in the coculture system.

5. Conclusion

This study proposed and externally verified the reproducible
immune-based gene signature for predicting risk stratifica-
tion as well as immunotherapeutic efficacy of gastric cancer,
which might assist oncologists make personalized immuno-
therapy scheme for each subject.
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Figure 10: Immunohistochemistry for detecting the expression of APOD, CTLA4, CXCR4, DKK1, INHBA, NPR1, PENK, PROC, RBP4,
S100A12, and STC1 in 5 paired gastric cancer and normal tissues. Bar = 20μm. Magnification, ×200.
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