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ABSTRACT: With the development of computer application technologies,
intelligent algorithm has been widely used in various fields. In this study, a
coupled Gaussian process regression and feedback neural network (GPR-FNN)
algorithm is proposed, and it is used to predict the performance and emission
characteristics of a six-cylinder heavy-duty diesel/natural gas (NG) dual-fuel
engine. Using the engine speed, torque, NG substitution rate, diesel injection
pressure, and injection timing as inputs, an GPR-FNN model is established to
predict the crank angle corresponding to 50% heat release, brake-specific fuel
consumption, brake thermal efficiency, and carbon monoxide, carbon dioxide,
total unburned hydrocarbon, nitrogen oxides, and soot emissions. Subsequently,
its performance is evaluated using experimental results. The results show that the
regression correlation coefficients of all output parameters are greater than 0.99,
and the mean absolute percentage error is less than 5.9%. In addition, a contour
plot is used to compare the experimental results with the GPR-FNN prediction
data in detail, and the results show that the prediction model has high accuracy. The results of this study can provide new ideas for
the research on diesel/natural gas dual-fuel engines.

1. INTRODUCTION
With the rapid development of human society, a large amount of
nonrenewable fossil fuels are consumed every year,1,2 producing
greenhouse gases that cause frequent occurrence of natural
disasters,3,4 such as global warming, melting glaciers, sea-level
rise, and fires, and cause serious damage to the ecological
balance. Therefore, to reduce greenhouse gas emissions,
countries around the world signed the Paris Agreement, and
the Chinese government proposed carbon peaking goals.5

Internal combustion engines play an important role in many
fields to aid in accelerating the human societal development.6

However, the combustion process of internal combustion
engines releases a variety of harmful gases, such as hydrocarbons,
nitrogen oxides (NOx),

7 particulate matter,8 carbon monoxide
CO, and carbon dioxide (CO2).Therefore, choosing renewable
fuels or low-carbon fuels, such as methanol9,10 and ethanol,11,12

can reduce fuel consumption while achieving clean combustion.
Liu et al.’s10 and Cui et al.’s13 research studies found that adding
highly reactive fuels to methanol can enhance ignition and
further optimize combustion performance.

It was found that natural gas (NG), as an alternative fuel for
engines,14,15 can effectively reduce greenhouse gas emissions
compared to traditional fossil fuels such as diesel, gasoline, and
coal. NG has the advantages of a high hydrogen-to-carbon ratio,
high octane number, abundant resources, and low price. In

recent years, compression-ignition NG engines have attracted
many researchers16,17 because of their advantages such as high
compression ratios.18,19

The automotive industry and researchers have been
conducting various engine tests to improve the engine
performance and reduce emissions without modifying the
existing engines.20,21 However, expensive and time-consuming
experimental methods have prompted artificial intelligence to
become a widely accepted option for solving difficult
problems.22,23 Common advanced machine learning methods
include FNN and GPR and so on.24 Because FNN and GPR
have strong robustness, fault tolerance, and can fully
approximate any complex nonlinear relationship, many
researchers use them to predict the performance and emission
characteristics of engines. Cui et al.25 established the ignition
delay prediction model of three-component toluene using neural
networks and used genetic algorithm and particle swarm
optimization algorithm to optimize the trained network. The
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results showed that the model can accurately predict the ignition
delay time, and the correlation coefficient was higher than
0.9996. Fu et al.26 used an FNN to forecast the engine
performance and emissions of a spark-ignition engine. Taghavi
et al.27 used an FNN−genetic algorithm method to predict the
combustion start point of a homogeneous charge compression−
ignition engine and obtained a good result, which showed that
the prediction accuracy was 0.96166. Alruqi et al.28 used GP to
model the compression−combustion engine fueled by algae
biodiesel−diesel−ether and optimized the performance and
emissions of the engine using Bayesian algorithm. The results
showed that adding ether can improve the braking thermal
efficiency, peak pressure in cylinder, and net heat release rate of
engine. Wang et al.29 compared the accuracy of three machine
learning algorithms to predict emissions and fuel consumption
of a Wanker rotor engine. The results showed that different
models have different advantages, among which the GPR model
had very good generalization ability in scarce data sets.

Many researchers use intelligent algorithms to predict engine
performance and emission characteristics under different
operating conditions30,31 and use optimization algorithms to
find the optimal fuel economy point or Pato boundary32 with
minimum emissions and maximum fuel economy, providing
direction for engine calibration, energy conservation, and
emission reduction. It can be seen that accurate prediction of
engine characteristics plays an important role. However, there
are still many shortcomings in previous research, as shown in the
following: first, in the past, most researchers only used a single
fitting algorithm or compared the prediction accuracy of
different algorithms, but few people combined the advantages
of various fitting algorithms to optimize the algorithm to seek the
maximum determination coefficient and the minimum error.33

Second, the current modeling methods are mainly applied to
light single cylinder engines,34 with relatively few applications in
heavy dual fuel engines and even less in multicylinder heavy
diesel/NG dual fuel engines. Finally, researchers used less data
in the past and lacked a comparison of the impact of different
input states on model predictions.35

Based on the abovementioned limitations, this study
considers engine speed, torque, NG substitution rate (NGSR),
diesel injection pressure (DIP), and diesel injection timing
(DIT) as input parameters of the model and heat release
(CA50), brake-specific fuel consumption (BSFC), brake
thermal efficiency (BTE), CO, CO2, total unburned hydro-
carbon (THC), NOx, and soot as output parameters of the
model. Subsequently, a coupled Gaussian process regression and
feedback neural network (GPR-FNN) prediction model was
built based on a six-cylinder heavy-duty diesel/NG dual-fuel
engine to predict the performance and emission characteristics
of the engine. Finally, the GPR-FNN model was used to predict
those parameters that did not appear in the training set but were
close to the training set data for verification, and contour plots
were used to compare the predicted results with the
experimental results. The innovations highlighted in this study
are summarized as follows:

• An GPR-FNN prediction model was established based on
a six-cylinder heavy-duty diesel/NG dual-fuel engine.

• The parameters affecting engine performance were fully
considered, and the output parameters were relatively
comprehensive.

• For multiparameter inputs, each parameter was output
separately, which improved the accuracy of the GPR-
FNN model predictions.

• Graphs were used to visually compare predicted and
experimental results on performance and emission
characteristics

2. EXPERIMENTAL DEVICE AND METHOD
2.1. Experimental Device. For the experiment, we used a

six-cylinder, 10.338 L displacement, and 265 kW direct-injection
diesel engine. The main technical parameters of the test engine
are presented in Table 1. To achieve diesel/NG dual-fuel

combustion without changing the original diesel supply system,
an NG supply system was added to the periphery. Figure 1
shows the relationship between the test engine, NG supply
system, and peripheral test equipment. During the test, to
facilitate the adjustment of parameters, the INCA V7.0 software
package of ETAS was used to communicate with the ECU, and
the working conditions of the engine were changed by adjusting
parameters such as engine speed, fuel-injection advance angle,
and NG substitution rate. In addition, an eddy current
dynamometer was used to obtain basic information, such as
engine speed, torque, and power. The emissions of NOx, THC,
CO, and CO2 were measured using a Horiba MEXA 7100DEGR
instrument, and soot emissions were measured using an AVL
415SE smoke meter.

The sensitivity and uncertainty analyses of the various
measuring instruments used in this study can be found in ref
36. During the test, to improve the test-data accuracy, cooling
water temperature was controlled at 87 ± 1 °C, and the intake air
temperature was controlled at 24 ± 1 °C. Multiple tests were
performed under the same working conditions to ensure the
stability of the tests. Regular maintenance of the test equipment
and instruments was performed, and the errors of the related
instruments can be seen in ref 37. Among them, the calculation
formulas for NGSR and BTE are expressed in eqs 1 and 2,
respectively.
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where mNG (kg/h) represents natural gas consumption,
mdiesel(kg/h) represents diesel consumption, HNG (J/kg)
represents low calorific value of natural gas, Hdiesel (J/kg)
represents low calorific value of natural gas, and Pe (W)
represents effective power.

Table 1. Main Technical Parameters of the Experimental
Engine

item/unit specifications

number of cylinder 6
displacement/L 10.338
compression ratio 17.5
bore/mm 123
stroke/mm 145
rated power/kW 265 (1900 r/min)
maximum torque/N·m 1700 (1200−1500 r/min)
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Figure 1. Layout of the test.

Table 2. Factors Considered and Their Chosen Levels

levels

factor or input parameters/unit I II III IV V

speed/rpm 1220 1720
torque/N·m 400 800 1200
NG substitution rate/% 65 75 85 95
injection pressure/bar 800 1000 1200 1400 1600
injection timing/(° CA ATDC) -15 −12 −9 −6 −3

Figure 2. Correlation between input and output parameters at different engine speeds: (a) speed = 1220 rpm; (b) speed = 1720 rpm.
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3. GPR-FNN MODEL
3.1. Selection of Input and Output Parameters. This

study chose a multilevel design approach with different factors.38

The different factors and their respective grades are listed in
Table 2. It can be concluded from the table that 600 sets of tests
were conducted under different working conditions. In addition,
the experiment also tested the engine emission and combustion
characteristics at a speed of 1420 rpm, torque of 800 N. m, and
rail pressure of 1400 bar to verify the accuracy of the established
model. Further details are provided in Section 5.

It is well known that the choice of input parameters
significantly affects the accuracy of GPR-FNN fitting data. In
this study, using the engine speed, torque, NGSR, DIP, and DIT
as input parameters, a GPR-FNN model was established to
predict the performance and emission performance of an engine.
Among them, the CA50, BSFC, and BTE were used for engine
performance evaluations, and the CO, CO2, THC, NOx, CH4,
and soot emissions were used as engine emission-performance
indicators.

As the Pearson linear correlation coefficient is the most
commonly used correlation coefficient,39 it was used to
understand the dependence strength of each output feature on
a given input, that is, the sensitivity. In other words, this analysis
could effectively identify changes in the intended target by
changing the input variables alone.40 The Pearson correlation
coefficient is defined using eq 3.
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= =
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( ) ( )
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2

1 b,j b
2

0.5

(3)

where Xa represents columns in matrix A, Yb represents columns
in matrix B, = =X X n( )/i

n
a 1 a,i represents the average of

column Xa, = =Y Y n( )/j
n

b 1 b,j represents the average of
column Yb, and n represents the length of the column.

In this study, the Pearson correlation matrix was used to
calculate the Pearson correlation between the input variables
and the expected output variables of the engine at two speeds,
and the results are shown in Figure 2. In general, the value range
of the Pearson coefficient is between [−1, 1]. When the value of
the Pearson coefficient is less than zero, the correlation is
negative, whereas a value greater than zero indicates a positive
correlation. The closer the absolute value of the Pearson
coefficient is to 1, the more the output is affected by the input.
The closer it is to zero, the less the input affects the output.
When it is equal to zero, the input variables have no effect on the
output response, that is, they are independent of each other.41,42

As shown in Figure 2, the torque, NGSR, DIP, and DIT had
the same effects on the CA50, BSFC, BTE, CO, CO2, THC,
NOx, and soot at different speeds.43−45 For determining the
combustion characteristics of the engine, the DIT is an
important factor. However, for the fuel economy, the NGSR
and DIP are relatively unimportant, and for the emission
characteristics, the DIT exerts a small impact.46

3.2. GPR-FNN Model Structure. 3.2.1. FNN Modeling.
FNN can be used for modeling, classification, estimation, or
optimization. A neural network is an extensive parallel,
interconnected network of simple adaptive units that are
organized to simulate the interaction of biological nervous
systems with real-world objects. An FNN is based on data-driven
methods, such that an appropriate learning algorithm can be
employed to correlate the known input and output data.47

In general, the structure of an FNN mainly consists of three
parts: an input layer, a hidden layer, and an output layer.48 The
hidden layer can contain one or more layers. Because this study
used the engine speed, torque, NGSR, DIP, and DIT as the input
parameters, there were five input layers. To improve the
accuracy of the FNN prediction model, the CA50, BSFC, BTE,
and CO, CO2, THC, NOx, and soot emissions were used as the
output parameters; therefore, the model contained eight

different output layers. In summary, the FNN model established
in this study contained five input layers, eight different output
layers, and two hidden layers, of which the hidden layer size was
15, that is, 8 (5-15-15-1). A schematic of the FNN model
structure is shown in Figure 3. Table 3 lists the detailed FNN
settings.

3.2.2. GPR Modeling. In recent years, GPR has been widely
used in engineering applications because of their effectiveness in
defining arbitrary functions and solving complex problems. GPR
is a supervised learning method based on the Bayesian
framework, which has strict theoretical logic and is very suitable
for dealing with small samples, nonlinear, and other complex
regression problems. The GPR model is widely used in engine
calibration because it is easy to implement and automatically
solve super parameters. In the function space, a GP is completely
described by the mean function and covariance function, so GP
is also denoted as GP(mean,cov), where mean is the mean
function and cov is the covariance function, also known as the
kernel function. Commonly used kernel functions include
exponential kernel, square exponential kernel, etc., whose
definition is as follows:

Exponential kernel function

Figure 3. Schematic of the FNN model structure.

Table 3. Software Parameter Configurations

MATLAB parameter configurations

topology 5 input layers, 8 different outputs, two hidden layers, the hidden
layer size is 15, which is 8 (5-15-15-1)

training
function

gradient descent with momentum (traingdm)

transfer
function

logarithmic sigmoid (logsig)

learning
function

gradient descent with momentum (learngdm)
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where σl represents the characteristic length, σf represents the
standard deviation, xi and xj represent the predicted value, and

=r x x x x( ) ( )i j
T

i j represents the Euclidean distance.
In order to improve the prediction accuracy of the model,

before GPR modeling, kernel parameters and σ were first
optimized automatically using the iterative method, and then the
GPR model was established by assigning the solved parameters
as the initial parameters. Table 4 describes the GP parameters.
3.2.3. Model Coupling. By coupling the two trained models

together, the new model was characterized by the maximum
coefficient of determination (R2) and minimum relative average
absolute error (RAAE). Let the coefficient of GPR be m and the
coefficient of FNN be n and establish the coefficient of bivariate
primary equation so that the equation satisfies [max(R2),min-
(RAAE)] = m × GPR + n × FNN. As can be seen from the
definition of GPR-FNN, Compared to other single fitting
algorithms, this algorithm combines the advantages of other
algorithms and finally makes R2 maximum and the error
minimum. The algorithm has the following advantages: first, the
algorithm optimizes the fitting function itself, making the global
accuracy highest; second, the advantages of each algorithm are
recorded and amplified. Finally, the algorithm can compensate
the points with poor local prediction performance. The
definitions of R2 and RAAE are shown in eqs 6 and 7:
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where yi represents the actual value, ŷi represents the predicted
value, and n represents the total number of samples; STD
represents the standard deviation. Larger R2 means more
accuracy and lower RAAE values indicate more accuracy.

4. FORECAST RESULTS AND ERROR ANALYSIS
4.1. Prediction Results. Based on experiments, a GPR-

FNN was built to predict CA50, BSFC, BTE, and the CO, CO,
THC, NOx, and soot emissions, where speed, torque, NGSR,
DIP, and DIT were used as the input parameters. The R-values

of the output parameters in training, testing, validation, and all
cases were obtained, as presented in Table 5. As observed from
the table, the smallest R-value appeared in the CA50 test, which
was 0.98326, and the largest R-value appeared in the training
dataset of BSFC, which was 0.99738.

Figure 4 shows the fitting of the experimental values of all
output parameters and the predicted values of the GPR-FNN.
The black line represents the best-fitting result. Evidently, the
predicted value is equal to the experimental value, indicating that
the GPR-FNN can accurately predict the experimental result.
According to Figure 4, the overall R-value of all the output
parameters is greater than 0.995. The correlation coefficients R
of CA50, BSFC, BTE, CO, CO2, THC, NOx, and soot were
0.99204, 0.99608, 0.99549, 0.99566, 0.99444, 0.99421, 0.99322,
and 0.99511, respectively. The R-value of BSFC was at most
0.99608, and the R-value of CA50 was 0.99608. The minimum
value was 0.99204.

4.2. Error Analysis. There are several indicators for
evaluating the GPR-FNN prediction results. Commonly used
technical indicators for error analysis include the mean square
error, root mean square error, mean absolute error, SMAPE,
MSRE, and MAPE. Among them, mean square error, root mean
square error, and mean absolute error are absolute errors, and
SMAPE, MSRE, and MAPE are relative errors. In this study,
relative error was used as a technical indicator to discuss the
deviation between the GPR-FNN prediction and the exper-
imental results. The definitions of SMAPE, MSRE, and MAPE
are expressed in eqs 8−10, respectively. By definition, MSRE is
the square of the relative error. The main difference between
SMAPE and MAPE is in the denominator, where SMAPE takes
the average of the absolute values of the prediction and
experiment as the denominator and MAPE takes the absolute
value of the experiment as the denominator.

The relative error was calculated from the experimental and
predicted data, as shown in Figure 5. As shown in the figure, all
statistical errors were less than 6.5%; among them, the MAPE of
CA50, BSFC, BTE, CO, CO2, THC, NOx, and soot were 4.051,
1.606, 1.934, 5.692, 3.334, 5.861, 5.668, and 4.87%, respectively.
The MAPE of THC was the largest at 5.861%, and the MAPE of
BSFC was the smallest at 1.606%, whereas both SMAPE and
MSRE were less than 1.5%.
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Table 4. Software Parameter Configurations

MATLAB parameter configurations

kernel function squared exponential function
prediction method nearly complete independence
evaluation method accurate GPR fitting
transfer function logarithmic sigmoid (logsig)
maximum number of iterations 1 × 106

Table 5. Comprehensive R-Values

output training validation test all

CA50 0.99474 0.98634 0.98326 0.99204
BSFC 0.99738 0.99569 0.99211 0.99608
BTE 0.99676 0.99406 0.98874 0.99549
CO 0.99862 0.98683 0.99197 0.99566
CO2 0.99613 0.98818 0.99236 0.99444
THC 0.99511 0.99444 0.99069 0.99421
NOx 0.99253 0.98814 0.99065 0.99245
soot 0.99554 0.99394 0.99440 0.99511
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Figure 4. Corresponding relationship between experimental data and predicted data: (a) CA50, (b) BSFC, (c) BTE, (d) CO, (e) CO2, (f) THC, (g)
NOx, (h) FSN.
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where y represents the actual value; ŷ represents the predicted
value; and n represents the total number of samples.

5. VALIDATION OF GPR-FNN PREDICTION RESULTS
Because the establishment of the GPR-FNN model is similar to
the black-box operation,49 to observe the difference between the
prediction and the test results easily, this paper mainly discusses
the engine performance, emissions, and different NGSRs of the
engine under the operating conditions of 1420 rpm, 800 N. m, a
DIP of 1400 bar (65%−90%), and a DIT between −12° CA
ATDC and −3° CA ATDC. To compare the GPR-FNN
prediction results with the corresponding test data for CA50,
BSFC, BTE, CO, CO2, THC, NOx, and soot, contour maps were
used, which show the relationship between engine performance
and emissions, NGSR, and DIT, as shown in Figures 6−13,
respectively.

As shown in Figure 6, if NGSR remained constant, CA50 was
delayed as the injection advance angle decreases. Under the
same DIT conditions, with an increase in NGSR, CA50 showed

a trend of advancing first and then delaying. When the NGSR
was 90% and DIT was −4° CA ATDC, CA50 was delayed by 9°
CA ATDC, which had an adverse effect on combustion. In
addition, when NGSR was lower than 80%, the relationship
between CA50 and DIT was linear. When NGSR was greater
than 85%, the combustion speed decreased, and CA50 was
further delayed at the same DIT value. For CA50, the main
difference between the experimental and the predicted results
was in the NGSR between 70% and 75%. When the DIT was
earlier than −10° CA ATDC, the predicted CA50 was earlier
than the experimental data.

As shown in Figure 7, in the case of a small NGSR (less than
70%), the BSFC decreased with an increase in the DIT. When
the NGSR was 65% and DIT was −4° CA ATDC, the BSFC was
the smallest, approximately 215 g/kW·h. As observed from
Figure 8, the BTE was the largest at this point; therefore, the fuel
economy was the best at this point. In the case of a larger DIT
(greater than −6° CA ATDC), the BSFC exhibited two
maximum points with an increase in the NGSR, and the
corresponding NGSR values were 75 and 90%. By comparing
the test results with the prediction results, it was found that the
main differences were the following: (1) the GPR-FNN
predicted values were too large when the NGSR and injection
advance angle were small. (2) When DIT was −9° CA ATDC,
the NGSR was between 83 and 87%, which indicates a low
prediction value.

As observed from Figure 8, when the NGSR was unchanged,
the BTE increased with the increase in the DIT, and when the
DIT was unchanged, the BTE decreased with the increase in the
NGSR. In the case of a small NGSR (65%) and a small injection
advance angle (4° CA ATDC), the BTE was the largest, and the
engine exhibited good fuel economy. In the case of a large NGSR
and a large injection advance angle (12° CA ATDC), the fuel
economy was poor.

As observed from Figure 9, when the DIT was unchanged, the
CO emissions first showed a rapidly decreasing trend;
subsequently, it showed an increasing trend, and finally, it
showed a decreasing trend with an increase in the NGSR. In the
case of a large NGSR (greater than 70%), the DIT had little
effect on CO emissions. Under a small NGSR, CO emissions

Figure 5. Error variations.

Figure 6. Comparison of CA50 predicted by GPR-FNN with experimental data: (a) experimental result; (b) predicted result.
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decreased with an increase in DIT. When the NGSR was 65%
and the NGSR was −12° CA ATDC, the CO emission was the
highest at 540 ppm. When the NGSR was 73%, the CO emission
was the lowest at 210 ppm.

As observed from Figure 10, when the DIT was unchanged,
the CO2 emissions decreased with an increase in the NGSR.
When the NGSR was 90% and DIT was −4° CA ATDC, the
amount of CO2 emission was the smallest at approximately
58,500 ppm. When the NGSR was less than 68%, the DIT was
between −11° CA ATDC and − 4° CA ATDC, and the amount
of CO2 emission was the largest at approximately 67,000 ppm.
With an increase in the NGSR, the main reasons for the decrease
in CO2 are as follows: first, the C/H of NG is lower, and the CO2
produced by NG combustion is less; second, the injection
advance angle is smaller, the diesel used for piloting is less, and
the cylinder temperature is higher. Therefore, CO could not be
completely converted into CO2. Comparing the test results with
the predicted results, it was found that the predicted CO2

emission value was slightly small, and the relative error was
within 2%.

As observed from Figure 11, by keeping the injection time
unchanged, the THC emission first decreased and then
increased with an increase in the NGSR, and the lowest THC
emission was 575 ppm when the NGSR was approximately 72%.
When the NGSR was less than 76%, the THC emission
decreased with a decrease in the injection advance angle,
whereas when the NGSR was greater than 76%, the fuel
injection advance angle had little effect on the THC emission.
When the NGSR was greater than 75%, the THC emissions
increased with an increase in the NGSR. The main reasons can
be attributed to the following two points: first, the main
component of NG is CH4, and therefore, the amount of THC in
the emission increases. Second is the high compressibility of
NG; therefore, when a large amount of NG is compressed into
the combustion-chamber gap, it does not participate in
combustion and causes the main THC emissions. In the case
of THC, the main difference between the experimental and the

Figure 7. Comparison of BSFC predicted by GPR-FNN with experimental data: (a) experimental result; (b) predicted result.

Figure 8. Comparison of BTE predicted by GPR-FNN with experimental data: (a) experimental result; (b) predicted result.
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predicted results was that the NGSR was approximately 78%.
When the DIT was earlier than −10° CA ATDC, the predicted
THC emissions were smaller than that of the experiments.

The three main factors affecting NOx emissions are high
temperature, oxygen enrichment, and high-temperature dura-
tion. As observed from Figure 12, when the NGSR remained
constant, the NOx emissions decreased with a decrease in the
injection advance angle. The main reason is that with a decrease
in the DIT, the amount of diesel fuel ignited decreases, such that
the energy released by the premixed combustion of diesel and
NG is low, resulting in a low combustion temperature in the
cylinder. At the same injection time, the NOx emissions first
remained constant and then decreased with an increase in the
NGSR, and when the NGSR was greater than 80%, it exhibited a
linear relationship with the NGSR. Combined with Figure 6, the
main reason is that when the NGSR was greater than 80%, the
CA50 was delayed, and the high-temperature duration was
reduced. A comparison showed that the experimental results

were consistent with the predicted results, and the relative error
between the two was within 1%.

As shown in Figure 13, by keeping the NGSR constant, the
soot emission increased with a decrease in the injection advance
angle. Compared to Figure 12, the trend of the soot emission
was opposite to that of the NOx emission,50 which shows a trade-
off between soot and NOx. When the NGSR was greater than
73% and the DIT was −4° CA ATDC, the soot emission was the
highest at approximately 0.306 FSN, and when the NGSR was
less than 77% and the DIT was −12° CA ATDC, the soot
emission was the lowest at approximately 0.112 FSN. In the case
of soot emission, the main difference between the test and the
predicted results was that the NGSR was approximately 85%,
and the soot emissions obtained from the test results were
higher.

From the above analyses, it can be observed that the GPR-
FNN prediction results are highly accurate.

Figure 9. Comparison of CO predicted by GPR-FNN with experimental data: (a) experimental result; (b) predicted result.

Figure 10. Comparison of CO2 predicted by GPR-FNN with experimental data: (a) experimental result; (b) predicted result.
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Figure 11. Comparison of THC predicted by GPR-FNN with experimental data: (a) experimental result; (b) predicted result.

Figure 12. Comparison of NOx predicted by GPR-FNN with experimental data: (a) experimental result; (b) predicted result.

Figure 13. Comparison of soot predicted by GPR-FNN with the experimental data: (a) experimental result; (b) predicted result.
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6. CONCLUSIONS
In this study, a GPR-FNN model was developed to predict the
performance and emission performance of a six-cylinder heavy-
duty diesel/NG dual-fuel engine. Considering the engine speed,
torque, NGSR, DIP, and DIT as input parameters, this study
constructed a GPR-FNN model for predicting the CA50, BSFC,
BTE, CO, CO2, THC, NOx, and soot emissions. The proposed
GPR-FNN model was evaluated using relative error and
performance metrics and was validated experimentally. The
main findings of this study are as follows:

(1) Pearson correlation analysis was performed on the input
and output parameters, and it was concluded that for the
performance of the engine, the DIT is an important factor.
The NGSR and DIP are relatively unimportant for the fuel
economy, and for the emission characteristics, the DIT
exerts less influence.

(2) A GPR-FNN engine performance and emission pre-
diction model was established. Overall, the GPR-FNN
prediction values had high accuracy, with the R-value
between 0.99204 (CA50) and 0.99608 (BSFC), MAPE
between 1.606 (BSFC) and 5.861% (THC), and both
SMAPE and MSRE values being less than 1.5%.

(3) The GPR-FNN prediction model was verified exper-
imentally, and it was found that the predicted results were
close to the test results. This shows that the GPR-FNN
can accurately predict the diesel/NG dual-fuel engine
performance and emissions.
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■ NOMENCLATURE
GPR-FNN coupled Gaussian process regression and feedback

neural network algorithm
NG natural gas
CA50 crank angle corresponding of 50% heat release
BSFC brake specific fuel consumption

BTE brake thermal efficiency
CO carbon monoxide
CO2 carbon dioxide
THC total unburned hydrocarbon
NOx oxides of nitrogen
R regression correlation coefficients
R2 coefficient of determination
RAAE relative average absolute error
MAPE mean absolute percentage error
MSRE mean square relative error
SMAPE symmetric mean absolute percentage error
ATDC after top dead center
NGSR natural gas substitution rate
DIP diesel injection pressure
DIT diesel injection timing
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