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In continuum one-dimensional space, a coupled directed continuous time random walk model is proposed, where the random
walker jumps toward one direction and the waiting time between jumps affects the subsequent jump. In the proposed model, the
Laplace-Laplace transform of the probability density function 𝑃(𝑥, 𝑡) of finding the walker at position 𝑥 at time 𝑡 is completely
determined by the Laplace transform of the probability density function 𝜑(𝑡) of the waiting time. In terms of the probability density
function of the waiting time in the Laplace domain, the limit distribution of the random process and the corresponding evolving
equations are derived.

1. Introduction

The continuous time random walk (CTRW) theory, which
was introduced by Montroll and Weiss [1] to study random
walks on a lattice, has been applied successfully inmany fields
(see, e.g., the reviews [2–4] and references therein).

In continuum one-dimensional space, a CTRW process
is generated by a sequence of independent identically dis-
tributed (IID) positive waiting times 𝑇
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, . . ., and a

sequence of IID random jump lengths 𝑋
1
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3
, . . .. Each

waiting time has the same probability density function (PDF)
𝜑(𝑡), 𝑡 ≥ 0, and each jump length has the same PDF 𝜆(𝑥)

(usually chosen to be symmetric 𝜆(𝑥) = 𝜆(−𝑥)). Setting
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, 𝑥(𝑡) = 𝑥
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for 𝑡
𝑛
≤ 𝑡 < 𝑡

𝑛+1
, we get a microscopic

description of the diffusion process [5]. If {𝑋
𝑛
} and {𝑇

𝑛
} are

independent, the CTRW is called decoupled. Otherwise it
is called coupled CTRW [6]. The decoupled CTRW, which
is completely determined by mutually independent random
jump length and random waiting time, has been widely
studied in recent years [3–20].

In some applications it becomes important to consider
coupled CTRW [7, 8]. The coupled CTRW can be described
by the joint PDF 𝜙(𝑥, 𝑡) of jump length and waiting time.
Because 𝜙(𝑥, 𝑡)𝑑𝑥 𝑑𝑡 is the probability of a jump to be in
the interval (𝑥, 𝑥 + 𝑑𝑥) in the time interval (𝑡, 𝑡 + 𝑑𝑡), the
waiting time PDF 𝜑(𝑡) = ∫

+∞

−∞
𝜙(𝑥, 𝑡)𝑑𝑥 and the jump length

PDF 𝜆(𝑥) = ∫
+∞

0
𝜙(𝑥, 𝑡)𝑑𝑡 can be deduced. Some kinds of

couplings and correlations were proposed in [21–25], where
the symmetric jump length PDF is chosen. For the coupled
CTRW, there exist two coupled forms: 𝜙(𝑥, 𝑡) = 𝜆(𝑥)𝜑(𝑡 |

𝑥) and 𝜙(𝑥, 𝑡) = 𝜑(𝑡)𝜆(𝑥 | 𝑡). The first coupled form has
been studied sufficiently in many literatures [8, 21–23]. The
famous model is Lévy walk. Recently, we considered the
second coupled form, discussed the asymptotic behaviors of
the coupled jump probability density function in the Fourier-
Laplace domain, and derived the corresponding fractional
diffusion equations from the given asymptotic behaviors [25].

In this work, we introduce a directed CTRW model
with jump length depending on waiting time (i.e., 𝜙(𝑥, 𝑡) =

𝜑(𝑡)𝜆(𝑥 | 𝑡), 𝑥 > 0, 𝑡 > 0). In our model, the Laplace-Laplace
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transform [26] of 𝑃(𝑥, 𝑡) of finding the walker at position 𝑥

at time 𝑡 is completely determined by the Laplace transform
of 𝜑(𝑡). Generally, CTRW processes can be categorised by the
mean waiting time 𝑇 = ∫

+∞

0
𝑡𝜑(𝑡)𝑑𝑡 being finite or infinite.

Here we find that the long-time limit distributions of the
PDF 𝑃(𝑥, 𝑡) are a Dirac delta function for finite 𝑇 and a
beta-like density for infinite 𝑇, the corresponding evolving
equations are a standard advection equation for finite𝑇 and a
pseudodifferential equation with fractional power of coupled
space and time derivative for infinite 𝑇.

This paper is organized as follows. In Section 2, we
introduce the basic concepts of the coupled CTRW. In
Section 3, a coupled directed CTRW model is introduced.
In Section 4, the limit distributions and the corresponding
evolving equations of the coupled directed CTRWmodel are
derived. The conclusions are given in Section 5.

2. The Coupled Continuous Time
Random Walk

Now we recall briefly the general theory of CTRW [3]. Let
𝜂(𝑥, 𝑡) be the PDF of just having arrived at position𝑥 at time 𝑡.
It can be expressed by 𝜂(𝑥


, 𝑡

) (the PDF of just having arrived

at position 𝑥
 at time 𝑡


< 𝑡) as

𝜂 (𝑥, 𝑡) = ∫
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)
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(1)

Then, the PDF𝑃(𝑥, 𝑡)with the initial condition𝑃(𝑥, 0) = 𝛿(𝑥)

can be described by the following integral equation [3]:

𝑃 (𝑥, 𝑡) = ∫

𝑡

0

𝜂 (𝑥, 𝑡

) 𝜔 (𝑡 − 𝑡


) 𝑑𝑡

, (2)

where 𝜔(𝑡) = 1 − ∫
𝑡

0
𝜑(𝜏)𝑑𝜏 is the probability of not having

made a jump until time 𝑡.
Let 𝑓(𝑘) and 𝑔(𝑠) be the transforms of Fourier and

Laplace of sufficiently well-behaved (generalized) functions
𝑓(𝑥) and 𝑔(𝑡), respectively, defined by

𝑓 (𝑘) = F {𝑓 (𝑥) ; 𝑘} = ∫

+∞

−∞

𝑓 (𝑥) 𝑒
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𝑑𝑥, 𝑘 ∈ 𝑅,

𝑔 (𝑠) = L {𝑔 (𝑡) ; 𝑠} = ∫

+∞

0

𝑔 (𝑡) 𝑒
−𝑠𝑡
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0
.

(3)

After using the Fourier-Laplace transforms and the con-
volution theorems for integral equation (2), one can obtain
the following famous algebraic relation [3]:

̂̃
𝑃 (𝑘, 𝑠) =

1 − 𝜑 (𝑠)

𝑠
⋅

1

1 −
̂̃
𝜙 (𝑘, 𝑠)

. (4)

3. A Coupled Directed CTRW Model

In [23], the author considered a CTRW model with waiting
time depending on the preceding jump length, where the

author supposed that the PDFof thewaiting time is a function
of a preceding jump length. In that model, the author
introduced a natural “physiological” analogy: after making
a jump one needs time to rest and recover. The longer the
jump distance is, the longer the recovery and the waiting time
needed are. This is an interesting hypothetical physiological
example. Motivated by this, we consider a directed CTRW
model with jump length depending on the waiting time and
give an analogue physiological explanation.

A directed CTRW model with jump length depending
on the waiting time can be generated by a sequence of IID
positive waiting times 𝑇

1
, 𝑇
2
, 𝑇
3
, . . ., and a sequence of jumps

𝑋
1
, 𝑋
2
, 𝑋
3
, . . .; each waiting time has the same PDF 𝜑(𝑡),

𝑡 ≥ 0. Every time jump has the same direction and each jump
length has the same conditional PDF 𝜆(𝑥 | 𝑡), 𝑥 ≥ 0, which
is the PDF of the random walker making a jump of length 𝑥

following a waiting time 𝑡.
A natural assumption is that the jump length is propor-

tional to the waiting time. So we can take the simplest jump
length PDF as 𝜆(𝑥 | 𝑡) = 𝛿(𝑥 − V𝑡), V > 0. Without loss of
generality, we take V = 1 in the following discussion. Setting
𝑡
0

= 0, 𝑡
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≤ 𝑡 < 𝑡
𝑛+1

,
we get a directed CTRW process, where the joint PDF 𝜙(𝑥, 𝑡)

can be expressed by 𝜙(𝑥, 𝑡) = 𝜑(𝑡)𝛿(𝑥 − 𝑡). A physiological
explanation can be made as follows: the walker has a random
time for a rest to supplement energy and then makes a jump.
The longer the rest time is, the longer the jump length can
be.

Since the variable 𝑥 takes positive values in proposed
directed CTRWmodel, it is convenient to replace the Fourier
transform for variable 𝑥 in formula (4) with the Laplace
transform (i.e., 𝑓(𝑘) = L{𝑓(𝑥); 𝑘} = ∫

+∞

0
𝑓(𝑥)𝑒

−𝑘𝑥
𝑑𝑥) to

obtain the following Laplace-Laplace relation [26]:
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(6)

(5) is recast into

̃̃
𝑃 (𝑘, 𝑠) =

1 − 𝜑 (𝑠)

𝑠
⋅

1

1 − 𝜑 (𝑠 + 𝑘)
. (7)
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The 𝑛th (𝑛 = 1, 2) moment of 𝑃(𝑥, 𝑡) is given by

⟨𝑥
𝑛
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+∞

0

𝑥
𝑛
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𝑛 𝜕
𝑛

𝜕𝑘𝑛

1

1 − 𝜑 (𝑠 + 𝑘)

𝑘=0

} .

(8)

In the following section, we will study the possible
behaviors of 𝑃(𝑥, 𝑡) and its 𝑛th (𝑛 = 1, 2) moment.

4. The Limit Distributions of
the Coupled Directed CTRW Model

From (7), we can see that the Laplace-Laplace transform
of PDF 𝑃(𝑥, 𝑡) is completely determined by the Laplace
transform of the waiting time PDF 𝜑(𝑡). Usually, the random
waiting time is characterized by its mean value 𝑇. It may be
finite or infinite.

For finite mean waiting time 𝑇, the Laplace transform of
𝜑(𝑡) is of the form

𝜑 (𝑠) = 1 − 𝑠𝑇 + 𝑜 (𝑠) , 𝑠 → 0. (9)

Substituting (9) into (7), in the limit (𝑘, 𝑠) → (0, 0), we
get the asymptotic relation

̃̃
𝑃 (𝑘, 𝑠) ∼

1 − (1 − 𝑠𝑇)

𝑠
⋅

1

1 − (1 − (𝑠 + 𝑘) 𝑇)
=

1

𝑠 + 𝑘
. (10)

After taking the inverse Laplace transforms for (10) about
𝑘 and 𝑠, we have

𝑃 (𝑥, 𝑡) = 𝛿 (𝑥 − 𝑡) . (11)

For long times

⟨𝑥⟩ (𝑡) = 𝑡,

⟨𝑥
2
⟩ (𝑡) = 𝑡

2
.

(12)

From (10), we get

𝑠
̃̃
𝑃 (𝑘, 𝑠) − 1 + 𝑘

̃̃
𝑃 (𝑘, 𝑠) = 0. (13)

Using L{𝜕𝑃(𝑥, 𝑡)/𝜕𝑡; 𝑠} = 𝑠�̃�(𝑥, 𝑠) − 𝑃(𝑥, 0), L{𝜕𝑃(𝑥,

𝑡)/𝜕𝑥; 𝑘} = 𝑘�̃�(𝑘, 𝑡) − 𝑃(0, 𝑡), initial condition 𝑃(𝑥, 0) =

𝛿(𝑥), and natural boundary conditions, we obtain the partial
differential equation

𝜕𝑃 (𝑥, 𝑡)

𝜕𝑡
+

𝜕𝑃 (𝑥, 𝑡)

𝜕𝑥
= 0, (14)

which is the standard advection equation.
In many applications, one needs to consider a long

waiting time (i.e., 𝑇 is infinite); it is natural to generalize (9)
to the following form:

𝜑 (𝑠) = 1 − 𝑠
𝛽
+ 𝑜 (𝑠

𝛽
) , 𝑠 → 0, 0 < 𝛽 ≤ 1. (15)

Inserting (15) into (7), in the limit (𝑘, 𝑠) → (0, 0), we get
the asymptotic relation

̃̃
𝑃 (𝑘, 𝑠) ∼

1 − (1 − 𝑠
𝛽
)

𝑠
⋅

1

1 − (1 − (𝑠 + 𝑘)
𝛽
)

=
𝑠
𝛽−1

(𝑠 + 𝑘)
𝛽
.

(16)

After taking the Laplace inverse transform for (16) about
𝑠, one has

�̃� (𝑘, 𝑡) =
𝑡
−𝛽

Γ (1 − 𝛽)
∗ [𝑒
−𝑘𝑡 𝑡
𝛽−1

Γ (𝛽)
]

= ∫

𝑡

0

𝑒
−𝑘𝜏 𝜏
𝛽−1

(𝑡 − 𝜏)
−𝛽

Γ (𝛽) Γ (1 − 𝛽)
𝑑𝜏,

(17)

where we use the formulas L{𝑡
𝛽−1

; 𝑠} = Γ(𝛽)/𝑠
𝛽 for 𝛽 > 0,

L{𝑒
−𝑎𝑡

𝑔(𝑡); 𝑠} = 𝑔(𝑠 + 𝑎), andL{(𝑓 ∗ 𝑔)(𝑡); 𝑠} = 𝑓(𝑠)𝑔(𝑠).
According to formula (8) and (17), for long times, one gets

⟨𝑥⟩ (𝑡) = 𝛽𝑡,

⟨𝑥
2
⟩ (𝑡) =

𝛽 (𝛽 + 1)

2
𝑡
2
.

(18)

Then taking the Laplace inverse transform for (17) about
𝑘, the following form is obtained:

𝑃 (𝑥, 𝑡) = ∫

𝑡

0

𝛿 (𝑥 − 𝜏)
𝜏
𝛽−1

(𝑡 − 𝜏)
−𝛽

Γ (𝛽) Γ (1 − 𝛽)
𝑑𝜏

=
𝑥
𝛽−1

(𝑡 − 𝑥)
−𝛽

Γ (𝛽) Γ (1 − 𝛽)
,

(19)

which is the density of a random variable 𝑡𝐵, where 𝐵 has a
Beta distribution with parameters 𝛽 and 1 − 𝛽.

From (17), we can also obtain

(𝑠 + 𝑘)
𝛽 ̃̃
𝑃 (𝑘, 𝑠) = 𝑠

𝛽−1
, (20)

which leads to the pseudodifferential equation [27, 28]

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
)

𝛽

𝑃 (𝑥, 𝑡) = 𝛿 (𝑥)
𝑡
−𝛽

Γ (1 − 𝛽)
(21)

with a coupled space-time fractional derivative operator on
the left-hand side.

Equation (21) is useful tomodel flow in porousmedia and
other physical systems characterized by a link between the
waiting time and the jump length.

5. Conclusions

In this work, we introduce a directed CTRW model with
jump lengths depending on waiting times. By the Laplace-
Laplace transform technique, we find that the PDF 𝑃(𝑥, 𝑡)

is determined only by the waiting times PDF 𝜑(𝑡). For
finite and infinite mean waiting time, we deduce the limit
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distributions of 𝑃(𝑥, 𝑡) from the asymptotic behaviors of
𝜑(𝑡) in the Laplace domain, respectively. The corresponding
evolving equations are also derived. For finite mean waiting
time, the limit behavior of the PDF 𝑃(𝑥, 𝑡) is governed by
a standard advection equation. For infinite mean waiting
time, the limit behavior of the PDF 𝑃(𝑥, 𝑡) is governed by
a pseudodifferential equation with coupled space-time frac-
tional derivative. We also calculate the first-order moment
⟨𝑥⟩(𝑡) and the second-order moment ⟨𝑥

2
⟩(𝑡) of 𝑃(𝑥, 𝑡). An

interesting phenomenon is obtained: there exist the relations
⟨𝑥⟩(𝑡) ∼ 𝑡, ⟨𝑥2⟩(𝑡) ∼ 𝑡

2, whether the mean waiting time is
finite or not.
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