
animals

Article

Application of Genomic Data for Reliability Improvement of
Pig Breeding Value Estimates

Ekaterina Melnikova 1,* , Artem Kabanov 1, Sergey Nikitin 1 , Maria Somova 1, Sergey Kharitonov 1,
Petr Otradnov 1, Olga Kostyunina 1, Tatiana Karpushkina 1, Elena Martynova 2, Aleksander Sermyagin 1

and Natalia Zinovieva 1

����������
�������

Citation: Melnikova, E.; Kabanov, A.;

Nikitin, S.; Somova, M.; Kharitonov,

S.; Otradnov, P.; Kostyunina, O.;

Karpushkina, T.; Martynova, E.;

Sermyagin, A.; et al. Application

of Genomic Data for Reliability

Improvement of Pig Breeding Value

Estimates. Animals 2021, 11, 1557.

https://doi.org/10.3390/ani11061557

Academic Editor: Shogo Tsuruta

Received: 30 April 2021

Accepted: 22 May 2021

Published: 27 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitzy Estate, Podolsk District, Moscow Region,
142132 Podolsk, Russia; akabanov@vij.ru (A.K.); snikitin@vij.ru (S.N.); somova-mm@yandex.ru (M.S.);
kharitonovsn@vij.ru (S.K.); deriteronard@gmail.com (P.O.); kostolan@yandex.ru (O.K.);
tati.kriz@gmail.com (T.K.); alex_sermyagin85@mail.ru (A.S.); n_zinovieva@mail.ru (N.Z.)

2 Center of Life Sciences, Skolkovo Institute of Science and Technology, 3, ul. Nobelya, 143026 Moscow, Russia;
elenamartynovaster@gmail.com

* Correspondence: melnikovaee@vij.ru; Tel.: +7-916-758-83-78

Simple Summary: Selection of pigs in Russia is carried out within the framework of separate large
holdings. Such a system does not allow for the use of sufficiently large amounts of data (on all
individuals of the breed) to obtain the most reliable breeding value estimates. This problem is
especially relevant for low-inherited reproduction traits (for example, prolificacy), which are the
main ones for maternal pig breeds. In this regard, our study considered the possibility of improving
the accuracy of the breeding value assessment of Large White pigs (replacement pigs, sows and
boars) through the use of genomic data obtained on a high-density hybridization chip.

Abstract: Replacement pigs’ genomic prediction for reproduction (total number and born alive
piglets in the first parity), meat, fatness and growth traits (muscle depth, days to 100 kg and backfat
thickness over 6–7 rib) was tested using single-step genomic best linear unbiased prediction ssGBLUP
methodology. These traits were selected as the most economically significant and different in terms
of heritability. The heritability for meat, fatness and growth traits varied from 0.17 to 0.39 and for
reproduction traits from 0.12 to 0.14. We confirm from our data that ssGBLUP is the most appropriate
method of genomic evaluation. The validation of genomic predictions was performed by calculating
the correlation between preliminary GEBV (based on pedigree and genomic data only) with high
reliable conventional estimates (EBV) (based on pedigree, own phenotype and offspring records) of
validating animals. Validation datasets include 151 and 110 individuals for reproduction, meat and
fattening traits, respectively. The level of correlation (r) between EBV and GEBV scores varied from
+0.44 to +0.55 for meat and fatness traits, and from +0.75 to +0.77 for reproduction traits. Average
breeding value (EBV) of group selected on genomic evaluation basis exceeded the group selected on
parental average estimates by 22, 24 and 66% for muscle depth, days to 100 kg and backfat thickness
over 6–7 rib, respectively. Prediction based on SNP markers data and parental estimates showed
a significant increase in the reliability of low heritable reproduction traits (about 40%), which is
equivalent to including information about 10 additional descendants for sows and 20 additional
descendants for boars in the evaluation dataset.

Keywords: pigs; estimated breeding value; genomic prediction; genomic evaluation; ssGBLUP;
reliability of genomic prediction

1. Introduction

The inclusion of genomic data in animal evaluation procedure provides undeniable
advantages in comparison with traditional methods, which use information about animal
relationships and productivity results only [1,2]. The first of them is the earlier selection of
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candidates due to the differentiation of siblings’ breeding value estimates before obtaining
their own phenotypic data, which is one of the most pressing issues in pig breeding [3]. So,
the selection of boars in most cases is carried out after receiving their own productivity
results of meat, fattening and growth traits. This assessment is calculated after the selection
candidates reach a live weight of 100 kg (on average after 150–170 days of life). In this
case, the use of genomic prediction (genomic breeding value, GEBV) as a selection criterion
would significantly reduce the cost of raising additional replacement individuals.

The second element is to increase the accuracy of animals’ breeding value estimates of
traits with low heritability, such as reproduction traits (sow productivity). In pig breeding,
selection programs for improving animals of maternal breeds are mainly focused on
genetic changes in the population based on the characteristics of reproduction (prolificacy).
Estimates of animals (both boars and sows) for these traits, even with offspring data, have
a relatively low level of reliability. This is a limiting factor that reduces the effectiveness of
breeding program. Thus, the additional use of genomic data is intended to increase the
accuracy of breeding value estimates by these traits, thereby making the selection criteria
more objective [3–5].

The accuracy of GEBV depends on some main parameters, in particular the level of
linkage disequilibrium (LD) between markers and quantitative trait loci (QTL); the accumu-
lated data size of production records; the quality of pedigree and phenotype measurements;
the number of genotyped animals; trait heritability; the actual distribution of QTL effects;
and the optimality of the statistical model [4,6–9]. Implementation of genomic selection
to livestock breeding practice gives rise to a large number of difficult issues. The list of
such issues includes: addition of genomic information in the national genetic assessment
system, expanding the reference subpopulation, the management of long-term genetic
progress and inbreeding based on genomic data, and problems related to performing
calculations [8,10,11].

Currently, a number of approaches have been developed to calculate genomic breeding
value estimates: GBLUP (with the inverse of the convenient relationship matrix replaced by
the inverse of the genomic relationship matrix G−1) [7,8], Bayesian methods (using different
genetic variances for each SNP, or assuming that some SNPs have effects following a t-
distribution and others have zero effects, or assuming that some SNPs have zero effects and
others to follow a normal distribution and etc.) [1,9,12,13] and ssGBLUP (using the H matrix
which combines the A matrix derived from pedigree and G matrix from genomic data) [14].
Each of these methods has its own advantages and assumptions. However, one of the
most proven, convenient and reliable methods is the ssGBLUP method, which provides the
use of the entire accumulated volume of animal data in a single procedure [15]. The main
advantage of ssGBLUP in comparison with GBLUP is that it allows EBV assessment of both
genotyped and non-genotyped animals in a single procedure through hybrid matrix usage
(combining probabilistic and genomic relationships) as a covariance structure in a mixed
model [14,16,17]. Song H. et al. [18] obtained genomic estimates of Yorkshire pigs using
GBLUP, Bayesian mixed model (BayesR) and ssGBLUP. For reproduction and growth traits,
ssGBLUP showed higher accuracy than GBLUP and BayesR. In addition, the ssGBLUP
method has a lower bias of the estimates.

At the same time, the ssGBLUP is not inferior to multi-stage methods in accuracy
of estimates obtained. The method allows for more complex models to be applied and
also automatically defines weights of all sources of information for the final breeding
value [16,19]. The advantages of the ssGBLUP method are also noted by many authors
regarding the genomic evaluation in different species [17,19–22].

Selection in pig breeding in the Russian Federation is built within the framework
of separate large agricultural holdings with a closed cycle of genetic resources reproduc-
tion. In this regard, the organization of purebred populations’ pig breeding is based on
the main traits of phenotypes data collection, the individual breeding value assessment,
selection of individuals in breeding groups and future generation parents’ selection. The
overall effectiveness of the entire system depends on the accuracy of each of these elements.
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The inclusion of genomic evaluation in the system implies additional costs incurred by
the business. In this regard, there are a number of questions about the economic feasi-
bility of implementing such a method [23,24]. Since genomic prediction is an addition
to the conventional assessment of breeding value, it is necessary to plan in advance the
payback period of obtaining animals’ genomic data (sample collection, genotyping and
data processing) and reference population size needed for sufficient assessment accuracy
and effectiveness of genomic prediction for traits due to reference population size. It is
necessary to optimize the pig breeding program, taking into account the annual cost of
genotyping a part of the herd and estimating profit from reducing the cost of raising by
decreasing of selection candidates’ number [25]. This is especially important because of
breeding stock maintaining and growing cost increase [26]. When using genomic selection
of young animals (pedigree- and genomic data- based GEBV), the tested traits should have
high economic value. According to Tribout et al. (2013) and Lillehammer et al. (2011), the
potential improvements provided by genomic data application, especially for reproduction
traits and maternal effects, significantly outweigh the benefits of increasing phenotypic
datasets for these indicators [3,5].

An important practical stage in genomic selection implementation is the validation
of genomic predictions based on correlation and regression analysis with highly reliable
breeding value estimates [27] or adjusted phenotypes [18]. A high level of estimates correla-
tion indicates the consistency of the genomic prediction, and the proximity of the regression
coefficient to unity shows the absence of estimates bias (inflation).

Possibilities of the genomic data application for the needs of livestock breeding are
also associated with a number of areas. These are the development of low-density SNP
chips (less than 3000 markers) [28], which can significantly reduce the genotyping cost
per animal; the preliminary analysis and selection of QTLs causing the majority of trait’s
genetic variation [13,29,30]; and the development of methods allowing the use of a large
number of genotyped animals’ genomic data [19,31].

The objectives of our study are to test the ssGBLUP approach for genomic prediction
of replacement pigs’ main selection traits breeding values in two different productivity
aspects. The first is to assess the genomic data contribution to reliability improvement of
low-heritable reproduction traits’ EBV (total number and number of born alive piglets
on litter in the first parity). The second is to determine the effectiveness of replacement
animals’ genomic selection by meat and fattening traits (muscle depth, days to 100 kg and
backfat thickness over 6–7 rib).

2. Materials and Methods
2.1. Phenotypes

Data about Large White pigs’ phenotypic measurements of meat, growth and repro-
duction traits were used. The information about individuals born between 2015 and 2020
was included in the data sets. The assessment was performed in terms of meat and fatness
productivity according to the following characteristics: backfat thickness over 6–7 ribs (BF1,
mm), muscle depth (MD, mm) and days to 100 kg (Age, days). The following reproductive
qualities were taken into account: the number of all piglets born (TNB), and the number of
piglets born alive (NBA) based on the results of the first farrowing.

The data set on meat and growth traits had 41,941 records, of which 5445 were boars
and 36,496 were sows. The reproduction data set comprised 9433 records of first sow
farrowing (Table 1).

2.2. Genotypes

A high-density GGP Porcine HD hybridization chip (Illumina/Neogen, Lincoln, NE,
USA) with 70,000 SNPs for all major pig breeds (an average interval between markers of
~42 kb, 20 key causative mutations) was used for boars and sows genotyping. Genome-
wide genotyping data was presented in the form of 1483 individual genotypes from the
GenomeStudio 2 software (Illumina Inc., San Diego, CA, USA).
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Table 1. The descriptive statistics of the whole dataset.

Trait Mean SD Range N Number of
Farms (herds)

Number of
FYCG-Classes

Average Number of
Record in FYCG-Class

TNB 13.91 3.77 1 to 26
9433

5

333 28.3
NBA 13.20 3.61 0 to 23

BF1 16.23 3.57 6 to 29

41,941 467 89.8MD 59.89 6.46 41 to 81

Age 154.86 9.17 109 to 193

SD—standard deviation; N—number of records, FYCG—class «farm-year-contemporary group»; TNB—number of all piglets born at
the first farrowing, NBA—number of piglets born alive at the first farrowing, BF1—backfat thickness over 6–7 ribs, MD—muscle depth,
Age—days to 100 kg.

The following were excluded from genomic data: SNPs with an accuracy (GC Score,
GT Score) less than 0.2; animal records with a genotype absence rate of more than 10%;
SNP markers absent in more than 10% of genotyped animals; SNP markers with a mi-
nor allele frequency of less than 5%; SNP markers deviating from the Hardy-Weinberg
equilibrium, with the threshold p-value set to 10−6; and animal records with Mendelian
errors in allele inheritance. The presence of such errors is treated as errors in the records of
animals’ pedigree.

2.3. Statistical Analyses and Evaluation

Statistical processing of phenotypic data was carried out using the STATISTICA
10 package. Pedigree records were analyzed using the CFC software package [32]. Primary
processing and conversion of genomic data were carried out using an integrated develop-
ment environment (IDE) RStudio for the R programming language. Genomic data from
the final report format were converted into “. ped” and “. map” files for further processing
in the PLINK software package [33]. The estimates of individuals’ breeding value (EBV,
GEBV) were calculated using BLUP AM and ssGBLUP methodology with BLUPF90 soft-
ware package [34]; the genetic variance and traits’ covariance were estimated using the
restricted maximum likelihood method in the REMLF90 software [35]. In matrix notation,
the mixed linear model for genetic predictions on the BLUP AM is:

y = Xb + Za + e,

where y is the vector of phenotype observations on trait (TNB, NBA, BF1, MD and Age100);
b—vector of fixed effects («farm-year—contemporary group» by date of measurement;
«sex of the animal»; «weight of the animal»—for meat, fatness and growth traits; «farm-
year—contemporary group» by farrow date—for reproduction traits); a—vector of random
animal effect; e—vector of random residual effect; X, Z—incidence matrices relating records
to fixed and random effects, respectively.

The fixed effects significance on the variability of the dependent variable was evalu-
ated on exact Fisher criterion basis. Models with other sets of random effects (for example,
with an additional service sire effect for reproduction traits) were tested with the Akaike
criterion, resulting in optimal models usage in the study.

Calculation of genomic relationship matrix G was carried out in BLUPF90 package
using a linear method proposed by VanRaden [6]. To overcome problem with inversion
of matrix G for genotyped animals, G matrix was modified as G = α G + β A22, where the
coefficients α = 0.95 and β = 0.05 (by default in BLUPF90 package). To reduce bias in GEBV,
we use the default in BLUPF90 procedure where

diagA22 = diagG, o f f diagA22 = o f f diagG.

In the ssGBLUP model, the relationship matrix (A−1) is replaced by H−1, which uses
both pedigree and genomic information [14]. The fixed and random effects in the ssGBLUP
model are exactly the same as those in the BLUP AM model. H matrix is a relationship
matrix with H−1 constructed as [16]:
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H−1 = A−1 +

[
0 0
0 τG−1 − ωA−1

22

]
,

where A is the pedigree-based relationship matrix for both genotyped and non-genotyped
animals, A22

−1 is the inverse of a pedigree-based relationship matrix for genotyped animals
only, G is the genomic relationship matrix adjusted to the same scale as A22 and τ = ω = 1
(by default) [15].

The reliabilities of EBV(GEBV) were calculated according to standard error, as follows:

Rel = 1 − PEV/varA,

where PEV is the prediction error variance and varA is the additive genetic variance.

3. Results

The reference group of individuals, information about which formed the genomic
database, was represented by 1194 individuals, born in 2015–2019, with information on
46,277 SNP markers. The structure of the pedigree data of the studied population of pigs
and the reference group of genotyped individuals is shown in Table 2.

Table 2. The structure of the pedigrees of the analyzed groups of individuals.

Indicator Study Population Reference Group

Total number of individuals 43,085 1518

Number of inbred individuals 531 0

Number of boar sires 186 83

Number of boar offspring 41,941 924

Number of dams, heads 5640 518

Number of dam offspring 41,941 924

Number of individuals with offspring 5826 601

Number of individuals without offspring 37,259 917

Number of full sibling groups 8951 203

Number of generations 6 3

Average inbreeding coefficient 0.00022 0.00000

3.1. Datasets for Validating Genomic Estimates

The validation dataset for reproduction traits was constructed from whole dataset
(WD) without validating animals’ records. Validating animals were ones with the esti-
mates reliability (RelEBV) that exceeded the average level for the entire studied population
(Rel > 0.36). The group of validating animals included 3 boars (mean Rel = 0.59) and
148 sows (mean Rel = 0.41). For those, phenotypic information was excluded from the
phenotypic datasets (for sows), and information on the relationship between validating
animals and their offspring (189 boar offspring and 548 sow offspring) was removed from
the pedigree. On the formed set basis (partial dataset for reproduction traits (PDrepr)),
the validating animals’ breeding value was estimated using the ssGBLUP method with
information on 1194 genotyped animals (reference group).

Validation of genomic assessments for meat and fattening qualities was carried out
similar to described procedure. For this, partial dataset (PDmeat) was formed, in which
110 animals (10 boars and 100 sows) were selected, the reliability of the EBV estimates (Rel)
exceeded the threshold value of 0.8 (for boars, the average Rel = 0.82, the number offspring
718; for sows the average Rel = 0.83, the number of offspring 2966). The phenotypic records
of these individuals were removed from the dataset, and the relationships between the
validated animals and their offspring were set to null in the pedigree.
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Thus, for validating animals, some estimates were obtained from a whole (WD) and
partial (PD) data sets: parental average (PAPD), genomic prediction based on pedigree and
genotype (GEBVPD), genetic estimates on pedigree, own phenotype and offspring record
(EBVWD) and genomic EBV based on all available information (GEBVWD).

In the study, we evaluated the variance components (additive and residual variances
by traits) and compared their values, calculated using only pedigree data and combined
information about the relationship of individuals (pedigree + genomic data) (Table 3).

Table 3. Components of variance without and with genomic information.

Trait
Values

Additive Variance Residual Variance Heritability

BLUP AM

TNB 1.83 11.49 0.14

NBA 1.51 10.75 0.12

BF1 3.18 4.93 0.39

MD 3.26 15.37 0.17

Age 16.64 34.61 0.32

ssGBLUP

TNB 1.69 11.61 0.13

NBA 1.40 10.82 0.11

BF1 3.34 4.87 0.41

MD 3.47 15.26 0.18

Age 17.07 34.62 0.33
TNB—number of all piglets born at the first farrowing, NBA—number of piglets born alive at the first farrowing,
BF1—backfat thickness over 6–7 ribs, MD—muscle depth, and age—days to 100 kg.

The analysis shows a slight shift in the indicators of variances and heritability coeffi-
cients by traits (from 2 to 8%). Such results characterize, on the one hand, the relatively low
contribution of genomic data to the clarification of the relationship between all individuals
(the share of genotyped individuals in the total sample is about 3% for meat and 12% for
reproduction traits), taken into account when calculating estimates. On the other hand,
this indicates an adequate level of consistency between the values in the probabilistic rela-
tionship matrix (matrix A) and the matrix that considers the already realized relationship
(matrix H) between individuals. This provides the basis for using genomic data in assessing
(re-evaluating) and predicting the breeding values of individuals in the study sample.

The analysis of inbreeding coefficients calculated on pedigree data and pedigree-
genomic information (diagonal elements matrix A and matrix H) indicates that the proba-
bilistic values are refined by including information about the genome. All values of the
matrix A diagonal elements were equal to 1 (outbred animals), the average value of the
diagonal elements = 1; for the matrix G (genomic relationship matrix), these values ranged
from 0.83 to 1.31 with an average of 0.97.

3.2. Validation of Genomic Estimates of Breeding Value

To test the effectiveness of genomic data in refining the young animals’ prediction
of breeding value without phenotype and offspring data, the estimates obtained by the
ssGBLUP method were compared with the final EBVWD and GEBVWD values obtained
from all available information sources.

One of the genomic estimates’ reliability criterion is their correlation with high reli-
able estimates of breeding value [27]. The “consistency” values of these indicators for the
validated animals are shown in Table 4.



Animals 2021, 11, 1557 7 of 14

Table 4. Correlation coefficients of final genomic and genetic estimates (EBVWD, GEBVWD) with
preliminary predictions (PAPD, GEBVPD) of the validated animals.

Trait
EBVWD GEBVWD

PAPD GEBVPD PAPD GEBVPD

TNB +0.80 +0.75 +0.74 +0.89

NBA +0.82 +0.77 +0.76 +0.90

BF1 +0.56 +0.55 +0.51 +0.76

MD +0.61 +0.54 +0.56 +0.77

Age +0.39 +0.51 +0.38 +0.60
TNB—number of all piglets born at the first farrowing, NBA—number of piglets born alive at the first farrowing,
BF1—backfat thickness over 6–7 ribs, MD—muscle depth, age—days to 100 kg; EBVWD, GEBVWD—final genetic
and genomic estimates (based on whole dataset), PAPD, and GEBVPD—pedigree-based only and pedigree plus
genomic data predictions (based on partial dataset).

Thus, for the samples of validating animals, relatively high indicators of comparability
of estimates were obtained using “whole data” on the one hand and pedigree and genome
data on the other hand (partial data), which provides a reason to assume the consistency of
the obtained GEBVPD and GEBVWD values.

The final estimates (EBVWD, GEBVWD) are a kind of reference, because they have the
highest reliability. Correlation between pairs of estimates EBVWD and PAPD had higher values
(r = + 0.39 . . . + 0.82) than correlation between EBVWD and GEBVPD (r = + 0.51 . . . + 0.77)
for all traits. That is, the pedigree-based prediction is more accurate with respect to
the final genetic estimates compared to genomic predictions. However, pedigree-based
scores are worse at predicting the final genomic values compared to genomic predictions.
At the same time, the genomic estimates conformity (GEBVPD and GEBVWD) is higher
(r = +0.60 . . . +0.90) than the pedigree-genetic estimates conformity (PAPD and EBVWD)
(r = +0.39 . . . +0.82). Thus, higher correlation coefficients of genomic estimates (prelimi-
nary and final) in comparison with genetic ones indicate the superiority of the former.
This is also confirmed by the highest level of confidence in the relationship between these
estimates, which will be shown below.

Correlation between predictions and final estimates for meat and fattening qualities
had a lower level than for reproduction traits. It is important to note that the genomic
estimates obtained on partial and whole datasets are consistent at medium (for meat traits)
and high levels (for reproduction traits), which allows one to count on an acceptable level
of animal selection efficiency based on the GEBVPD.

Of particular interest is the measure of changes in estimates (regression) EBVWD and
GEBVWD depending on the predictions’ growth (PAPD, GEBVPD). In some studies [27], the
regression of high reliable EBV to GEBV is considered as “inflation” (loss of significance,
bias) (Figure 1a,b).

The inflation was defined by regression with the final high reliable estimates (EBVWD,
GEBVWD) on the preliminary predictions (PAPD, GEBVPD) and final genomic (GEBVWD)
estimates (Table 5). Thus, regression coefficients (b) based on parent averages were the
highest for TNB and NBA traits (brepr = 1.03 . . . 1.06), confirming the significant contribu-
tion of kinship relationships to the final assessment of individuals based on the BLUP AM
procedure. At the same time, these indicators for meat qualities varied within the limits of
bmeat = 0.54 . . . 0.93. The determination coefficients (R2) that characterize the prediction
reliability [2] were at a relatively low level and varied within 0.16 . . . 0.67. The lowest
values of the coefficients (b and R2) were obtained by analyzing the GEBVPD estimates:
brepr = 0.59 . . . 0.71 (for reproduction traits) and bmeat = 0.50 . . . 0.65 (for meat and growth
traits); R2 varied between 0.17 and 0.57.
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BF1 +0.83 (R2 = 0.32) +0.60 (R2 = 0.30) +0.76 (R2 = 0.26) +0.88 (R2 = 0.58)

MD +0.93 (R2 = 0.37) +0.65 (R2 = 0.30) +0.86 (R2 = 0.31) +0.93 (R2 = 0.59)

Age +0.54 (R2 = 0.15) +0.50 (R2 = 0.17) +0.53 (R2 = 0.15) +0.73 (R2 = 0.36)
TNB—number of all piglets born at the first farrowing, NBA—number of piglets born alive at the first farrowing,
BF1—backfat thickness over 6–7 ribs, MD—muscle depth, age—days to 100 kg; EBVWD, GEBVWD—final genetic
and genomic estimates (based on whole dataset), PAPD, and GEBVPD—pedigree-based only and pedigree plus
genomic data predictions (based on partial dataset).

The determination coefficient (R2) characterizes prediction reliability [2]. Relatively
low values of R2 were obtained by analyzing the regression of both final estimates on PAPD:
R2

repr = 0.55 . . . 0.67 (for reproduction traits), R2
meat = 0.15 . . . 0.37 (for meat and growth

traits) and conventional EBVWD on GEBVPD: R2
repr = 0.48 . . . 0.57 (for reproduction traits),

R2
meat = 0.17 . . . 0.30 (for meat and growth traits). Similar to the correlation coefficients,

the determination coefficients’ highest values were for GEBVPD and GEBVWD for all traits
(R2 = 0.36 . . . 0.81).

Thus, the results show that preliminary genomic estimates have the greatest predictive
power (reliability) in relation to the final genomic breeding values. Inclusion of genomic
data increases the animals’ breeding value accuracy and sustainability in comparison to
the conventional estimates (BLUP AM). Correlations between final genetic and genomic es-
timates (EBVWD, GEBVWD) by traits were: +0.94, +0.91 and +0.93 for BF1, MD and Age100,
respectively, and +0.89 for both TNB and NBA. The change in the final estimates due to the
inclusion of genomic data was more noticeable for low-inherited reproduction traits. In this
regard, the reliability of the final genomic breeding value estimates is particular important.

3.3. Improving the Accuracy of Breeding Value Estimates

Improving the accuracy of breeding value estimates is particularly relevant for repro-
duction indicators because reproduction traits have a relatively low heritability and can
be measured exclusively on female individuals. Thus, in the study population, according
to the TNB and NBA traits, the reliabilities of both dam and boar estimates were quite
low (Table 6). The pedigree-based prediction has a confidence level of 0.26% for sows. The
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obtained EBV of boars was based solely on their offspring records, that is, on the results of
their daughters’ first farrowing. The average reliability of their estimates obtained using
the BLUP AM methodology in the presence of 1 to 50 first-time farrowing daughters is
0.26%. Sires are proven (Rel > 0.70) if there are at least 50 descendants. An estimate based
on 200 offspring data allows for the estimation of boars with a Rel > 0.80, while adding
genomic data to this number of daughter records raises this figure to 0.90.

Table 6. Reliability of predicted EBV/GEBV depending on the type of data included in the calculation *.

Reliability of Estimates Based on Data
Traits

BF1 MD Age TNB NBA

Sires

PA (parent average EBV) 0.43 0.38 0.42 - -

GEBV (pedigree + genomic data) 0.56 0.49 0.55 - -

EBV 1 (pedigree + own phenotype) 0.57 0.44 0.54 - -

EBV 2 (EBV 1 + offspring records), n < N* 0.72 0.59 0.69 - -

EBV 3 (EBV 1 + offspring records) n > N* 0.93 0.87 0.92 - -

EBV4 (less than 50 offspring records) - - - 0.26 0.25

EBV5 (less than 50 offspring records + genomic data) - - - 0.45 0.44

EBV6 (more than 50 offspring records) - - - 0.77 0.75

EBV7 (more than 50 offspring records + genomic data) - - - 0.78 0.76

Dams

PA (parent average EBV) 0.40 0.35 0.39 0.26 0.25

GEBV (pedigree + genomic data) 0.59 0.51 0.58 0.37 0.36

EBV 1 (pedigree + own phenotype) 0.57 0.44 0.53 0.35 0.33

EBV 2 (EBV 1 + offspring records), n < N * 0.64 0.50 0.60 0.38 0.37

EBV 3 (EBV 1 + offspring records) n > N * 0.76 0.61 0.73 0.50 0.48

Note: *—n is the actual number of offspring, N is the threshold value for the number of offspring, for boars N = 50, for sows N = 10;
TNB—number of all piglets born at the first farrowing, NBA—number of piglets born alive at the first farrowing, BF1—backfat thickness
over 6–7 ribs, MD—muscle depth, and age—days to 100 kg.

For sows, the genomic data inclusion in the calculation (even before the first farrowing
data is obtained) increases the reliability of the estimation. The reliability of the estimates
surpasses of the assessment by pedigree + own phenotype, allowing animals to get values
comparable to the assessment results based on three sources of information (pedigree, own
phenotype, offspring records (from 1 to 10)).

For meat and fattening indicators, the reliability of estimates for pedigree and genome
is at the level of estimates for pedigree and own phenotype.

3.4. Selection of Individuals Based on Genomic Prediction

The main advantage of genomic prediction over pedigree estimation is the ability to
differentiate the breeding value of complete siblings. Scores based on the parent averages
will be the same for all descendants from the same parent pair. At the same time, genomic
prediction allows one to select the most promising animals guided by the total value of
the SNP effects-provided correction. Thus, when forming a group of replacement young
animals, even before weaning piglets in the same litters, piglet leaders can be identified,
characterized by the most desirable indicators of GEBV. In this case, the element of genomic
assessment of meat and fattening qualities allows one to reduce the cost of raising all
piglets from one litter to 100 kg (even before obtaining their phenotype information) via
the most promising individuals’ early selection in the herd replacement groups.
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To be certain of animals’ selection based on genomic estimates’ (GEBV) implementa-
tion superiority in comparison with the selection by parental averages (PA), the average
means of the groups’ formed on these criteria were compared. The intensity of selection
was 50%, that is, for each of the criteria, the animals were selected according to their excess
over the average value for the entire group. The results are presented in Table 7.

Table 7. Average breeding value (EBV) of groups formed based on PA and GEBV (by groups of
validating animals).

Trait
Average EBV of Groups Formed on the Basis of *

PAPD (Parent Average EBV) GEBVPD (Pedigree + Genomic Data)

BF1 −0.23 −0.39

MD +0.34 +0.45

Age −1.28 −1.59

TNB +0.57 +0.53

NBA +0.57 +0.51
* TNB—number of all piglets born at the first farrowing, NBA—number of piglets born alive at the first farrowing,
BF1—backfat thickness over 6–7 ribs, MD—muscle depth, age—days to 100 kg; for the BF1 and age traits, negative
ratings are preferred, which characterize lower values.

The average EBV analysis for groups of individuals indicates a greater efficiency of
selection based on genomic estimates for meat and fattening qualities. The superiority of
the group formed by GEBV is 66%, 22% and 24% in terms of “fat thickness over 6–7 thoracic
vertebrae”, “muscle depth” and “days to 100 kg”, respectively. Simultaneously, the selec-
tion of the characteristics of reproduction in terms of efficiency did not have significant
differences when using PA and GEBV estimates as a criterion. In our opinion, this is due to
the low heritability and repeatability of both breeding value estimates for these traits (PA
and GEBV).

4. Discussion

Genomic selection significantly changes the entire system of animal breeding. How-
ever, the accuracy of genomic selection itself is determined by many factors, such as the size
of the reference population, the density of markers, the heritability of the trait, the effective
population size, and the distribution of QTL effects [36,37]. Achieving acceptable genomic
prediction accuracy for replacement of young individuals requires the creation of a large
reference population of genotyped animals with phenotypic records. This is especially
relevant for evaluating traits with low heritability, which in our study are represented by
reproduction traits.

Thus, since the development of the theoretical basis and the creation of the first
reference groups of genotyped animals, an impressive amount of data on the genotyped
individuals has been accumulated. Creating a reference population problem was described
by H. Song et al., 2017 [18]. They considered the effectiveness of using a mixed reference
population based on three samples of the Yorkshire pig breed, and it was proved that
the inclusion in the reference population of individuals that are not related or weakly
related genetically to the candidates for selection is impractical, since it increases the bias of
estimates and reduces their accuracy. In the Ostersen et al. (2016) study on three pig breeds,
the selection core group members from total number of genotyped animals were compared
(using algorithm for proven and young animals in ssGBLUP procedure) [19]. The authors
identified the most optimal criteria for the creation of core group that resulted in more
accurate EBV. As a reference group, our study used purebred individuals of a Large White
breed (1194 heads) of one breeding organization (5 farms) born between 2015 and 2018.
The reference group included parents and full and half-siblings, for which the values of
genomic predictions were later determined.
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Several studies are devoted to calculating the most accurate (objective) genomic
relationship matrix [13,14,16,38,39]. Thus, S. Forni et al. (2011) compared different methods
of relationship matrix construction. The authors concluded that distortions in genomic
predictions might be associated with an incorrect weighting of polygenic and genomic
components. Using pedigree-genome relationship matrix (used in the ssGBLUP procedure)
allows one to take this limitation into account [39]. In this regard, in our work, the ssGBLUP
procedure was used without additional relationship matrix adjustment (H). The minimum
and maximum values of the diagonal elements of the matrix A (pedigree matrix) were 1,
and the average value of the diagonal elements = 1; for the matrix G (genomic relationship
matrix), these values ranged from 0.83 to 1.31, and the average value was 0.97.

Heritability coefficient estimates by traits, calculated using pedigree and genomic data,
in our study were in the range of 2–8%. Similar values of both the levels of heritability and
their limits of change due to the inclusion of information about genomes were obtained in
the studies of J. Hidalgo et al. (2020) [40]. Changes in heritability of fecundity depending
on the type of information about relationships based on genomic data (pedigree) were
0.09–0.06 (0.08–0.09), and growth traits in pigs were 35.10–16.50 (32.50–23.70). This fact
allowed the authors to assume that in populations undergoing genomic selection, the
variance components estimated without genomic information may be biased [40]. However,
the authors noted that the decrease in genetic variance observed over time under the
influence of directed selection is reflected in both heritability indicators obtained using
pedigrees alone and including genomic information in a similar way (based on trend
analysis). The study of S. Forni et al. (2011) also noted a slight change in the litter size
additive and residual variance (by 1–3%) when calculation was performed on pedigree data
only and with genome information. The authors concluded that the estimates of additive
genetic variance with pedigrees or joint pedigree-genomic relationships are similar when
the differences between the average diagonal and average non-diagonal elements in the
matrix G (developed on genomic data) are similar to those in matrix A (calculated on
pedigree data) [39].

In the Veerkamp et al. (2016) study on Holsten-Friesian cattle, a comparison of the
genomic relationship matrices’ (GRM) (full sequence data and preselected SNP from
genome-wide association) usage effectiveness analysis was made. The authors found
that when selected variants were used, accuracy of genomic predictions decreased and
the proportion of total variance explained was considerably smaller [29]. At the same
time, Fragomeni et al. (2017) on simulated data concluded that using weighted genomic
relationship matrix in single-step GBLUP procedure can account for causative quantitative
trait nucleotides (QTN) and accuracy of genomic breeding values increased from 0.49 to
0.99 [30].

For the population we studied, the refinement of the variance estimates was quite
low for all the analyzed traits, which may be due to the limited genotyped reference group
of individuals and a slight change in the indicators (relative to the entire data set) of the
relationship based on genomic data. Therefore, the change was 8% for the reproduction
traits and 3–6% for the meat and fatness traits.

There are currently two main ways for accuracy of genomic prediction’s determining:
cross-validation and verification based on high-precision estimates of breeding value.
Cross-validation is performed on multiple evaluation of genomic predictions obtained
with “n” subsets of data formed from the complete set and correlates these predictions
with the observed values (adjusted phenotypes). The second verification option involves
obtaining genomic estimates for animals with high accuracy of conventional EBV [37]. In
our study, the second variant of genomic prediction’s validation was used. It confirmed
an acceptable level of correlation between final EBVWD and GEBVPD scores (r varied from
+0.51 to +0.55 for meat and fattening qualities, and from +0.75 to +0.77 for reproduction
traits). Regression coefficients (bias index) ranged from 0.50 to 0.65 for meat and fattening
qualities and from 0.59 to 0.71 for reproduction traits. Similar values of the accuracy and
bias of genomic estimates were obtained in the study of Song et al. (2017). Accuracy for
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the backfat thickness was +0.49, for days to 100 kg varied from +0.49 to +0.53, and for
the reproduction traits from +0.53 to +0.59; unbiasedness for meat and fattening qualities
varied from 0.65 to 0.88 and for the reproduction traits from 0.78 to 1.00.

It is worth noting that the correlation between final genetic and genomic breeding
value estimates was significantly higher for traits with relatively high heritability over
low-heritable traits (from +0.91 to +0.94 vs. +0.89). This indicates a greater contribution
of genomic data to estimates for low-heritable traits with a limited number of phenotypic
observations. In our opinion, the higher correlation between preliminary and final GEBV
for all traits in study (from +0.60 to +0.90) compared to PA final EBV correlation (from +0.39
to +0.82) suggests the use of genomic data for predicting the breeding value of individuals.
This assumption is also supported by the higher reliability of the genomic prediction (R2

varied from 0.36 to 0.81) versus the pedigree prediction (from 0.15 to 0.67).
If a selection trait has low heritability, this significantly hinders genetic progress, both

through the conventional selection and genomic selection [41]. To achieve high accuracy
for such traits, a larger number of animals with genotypes and phenotypes is required [3,4].
This was confirmed in our study for the reproduction traits. The inclusion of genomic
data in the calculation of breeding value for TNB and NBA increases the reliability of
the pedigree prediction for sows by 10.50 and 10.90%, respectively. For boars, the use of
information about SNP markers increases the prediction’s reliability for a limited number
of descendants (less than 50) almost twice (from 0.26 to 0.45 for TNB and from 0.25 to
0.44 for NBA). With an increase in the number of farrowed daughters, genomic data’s
contribution to the accuracy of estimates decreases.

However, for indicators of meat and fatness traits, the superiority of genomic estimates
as a selection criterion compared with parental averages is obvious, which is consistent
with W. M. Muir (2007) research [4].

According to VanRaden (2008), calculations performed on simulated data showed
that young animals’ reliability could be more than 60% versus 32% of the parent average
value [6]. In the study of Knol E. F. et al. (2016), an increase in the accuracy of estimates was
noted by 50% for piglet mortality before weaning (with very low heritability, h2 = 0.05) and
the number of teats (with high heritability, h2 = 0.40) due to the use of genomic data [42]. In
our study, the increase in the reliability of genomic estimates (Rel, %) in comparison with
the pedigree-based estimates was 38% for the reproduction traits (from 0.26 to 0.36 for the
number of all born piglets and from 0.25 to 0.35 for the number of live-born piglets) and
41–44% for meat, growth and fatness qualities (from 0.40 to 0.58 for BF1, from 0.36 to 0.50
for MD, and from 0.39 to 0.56 for Age to 100). Such a significant increase in the accuracy of
genomic estimates of reproduction reveals the advantage of using genomic data for boars’
evaluation in the presence of a delimited (less than 50 heads) number of descendants. For
meat and fatness traits, an increase in the prediction accuracy (pedigree with genotype) was
revealed in comparison with the assessment for parents, comparable to the receipt of 4, 13
and 7 descendants included in the assessment. As for the reproduction traits, this indicator
was about 20 additional descendants in the evaluation of boars and about 10 descendants
in the evaluation of sows. This confirms the relatively higher weight of genomic data in the
evaluation of low-inherited traits. So, in the study of Knol et al. (2016), the accuracy gain
on a low-inheritance binary trait was estimated at 100 additional descendants.

5. Conclusions

Preliminary genomic estimates (based on pedigree and genomic data) are more rele-
vant predictions of final genomic breeding value estimates for pigs by reproduction, meat,
fatness and growth traits compared to pedigree-based predictions, which is confirmed by
higher accuracy (correlation) and reliability (determination). Genomic estimates are supe-
rior to pedigree-based estimates in terms of reliability and therefore are better criteria for
the selection of replacement young animals. Genomic data usage in the animal evaluation
on reproduction traits is comparable to the presence of 10 to 20 additional descendants in
the evaluation dataset.
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