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ABSTRACT: In 2020, the Covid-19 pandemic resulted in a
worldwide challenge without an evident solution. Many persons
and authorities involved befriended the value of available data and
established expertise to make decisions under time pressure. This
omnipresent example is used to illustrate the decision-making
procedure in biopharmaceutical manufacturing. This commentary
addresses important challenges and opportunities to support risk
management in biomanufacturing through a process-centered
digitalization approach combining two vital worldsformalized
engineering fundamentals and data empowerment through customized machine learning. With many enabling technologies already
available and first success stories reported, it will depend on the interaction of different groups of stakeholders how and when the
huge potential of the discussed technologies will be broadly and systematically realized.

1. THE PROBLEM: DECISION MAKING UNDER
UNCERTAINTY

In 2020, the world was shocked by the Covid-19 pandemic. In
many countries a large number of restrictive measures have been
introduced in order to reduce the rate and extent of the
outbreak. The pandemic has spread in a characteristic sequence
from Asia to Europe and then to the rest of the world. The
introduced country-specific interventions strongly vary in their
severity and timeline across different, even neighboring
countries. During such a “lockdown” phase,1 which in this
case usually lasted over more than twomonths, a major goal is to
monitor the situation and to collect sufficient data.2 In the era of
digitalization and globalization, several organizations have been
able to measure trends based on a daily updated display of
available worldwide information.3,4 This has been essential to
plan next steps, while reducing risks for the health system such as
operative or capacity bottlenecks. Despite different governmen-
tal strategies to address the problem, all of them strongly rely on
the concept of social distancing, the adherence to which is
difficult to monitor and control across society. Such limited
control is often present when trying to solve a problem, which is
relatively new as well as subject to many potentially influential
factors, with some of them difficult to quantify or to predict.
During the Covid-19 crisis, it has become broadly evident how
essential the availability of data is for decision-making for
complex problems, and how unstable such decision processes
can become when the data are biased by uncertainty and lack of
prior expertise.5

Although with a different complexity and effect on society, the
biopharmaceutical industry faces an analogous uncertainty-
driven environment on a daily basis in their workstream.6 The
biopharmaceutical sector is a dominantly growing branch of the
pharma industry7 with prominent blockbuster therapeutic
protein products such as Humira (adalimumab) and Rituxan
(rituximab).8 This industry uses as one of the principle unit
operations a biotechnological process based on a living organism
to produce highly specific drugs targeting, for example, cancer,
autoimmune, and orphan diseases. These bioprocesses are
complicated to control and require many cycles of usually quite
long experimental investigations. Hence, this industry is driven
by two opposing objectives: ensuring high drug quality and
safety to patients, while competitively reducing time to market
and process development and manufacturing costs.9 Hundreds
of potentially influential factors in the production process can be
taken into account and many tens of them are being broadly
monitored and controlled.10 The main engineering chal-
lenges9,11−13 are to (1) robustly control the behavior of the
living organism involved in the process, (2) efficiently align the
often heterogeneous data generated across different process
units and scales, (3) include all available prior know-how and
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experience into the decision process, (4) reduce human errors
and introduced inconsistency, and (5) enable an automated and
adaptive procedure to assess the critical process characteristics.
This commentary takes the Covid-19 pandemic as an

illustrative example of decision making under uncertainty
based on a daily increasing number of available data and
know-how. This example will be used throughout the
commentary to portray the decision making challenges in the
biopharmaceutical industry with the key goals to reflect on the
potential of different digital data- and knowledge-driven
solutions to support mastering the path toward the standards
of industry 4.0.

2. THE BREAD AND BUTTER: DATA AND EXPERIENCE

Complex problems can be solved efficiently through the support
of relevant data and/or through sufficient experience in dealing
with similar problems. In both cases, it is essential to evaluate
how close prior data and knowledge are to the problem to be
solved and how trustworthy these are. In the Covid-19 pandemic
strong biases are introduced on the data due to the long
incubation time of the virus resulting in a delayed symptomatic
response and appearance in the database, inconsistencies in the
fatality definitions, and incomplete testing across the population,
among others.14,15 This uncertainty is coupled to a lack of
governmental and social experience of dealing with pandemics
of such broad magnitude.14 Also, the contribution from the
scientific community is yet very heterogeneous in focus and
suggestions.16 Therefore, data is used as relative trending
method, while experience is gradually building up within and
across countries.
In biopharma, the situation is usually much better as there is

less uncertainty on the acquired data and available prior
experience on developing or operating similar biopharmaceut-
ical processes. Nonetheless, the level of uncertainty can be
expected considerably larger compared to the closely related
small-molecule pharma and general chemistry sectors. Figure 1
presents the landscape of different data (in red) and expertise (in
yellow) available in bioprocessing together with the duration to
generate these and a tendency of their utilization importance for
decision making.
In the very heterogeneous field of data sources in

bioprocessing one important group is the information defined
or available before the start of the process (or a certain unit
operation) such as the designed set points (experimental design
in development or process design space in manufacturing), from
here on referred to as Z variables. These variables are essential to
define an optimal and robust operation strategy for the process,
whereby meta data (e.g., information on operator, devices, site

specifications) and rawmaterial information are often taken into
account significantly less compared to the other variables. The
variables labeled with a preceding X are dynamic process
measurements through different sensors (online) or offline
analytics. These are essential to monitor the process and provide
a basis for control. Unlike variable-specific sensors such as pH,
information from spectroscopes (e.g., Raman or NIR) has to be
linked to the variable of interest through a regression method,
which requires additional work to be calibrated. In particular, the
profiles of selected characteristic variables for each unit
operation are always considered in the decision process, while
the inclusion of all other sensor data depends on its importance
for process control and direct availability from the historian, that
is, the possibility to directly align all available dynamic data
sources, which often is not the case. Finally, the variables
quantifying the product quality are labeled with a Y symbol.
These are essential to characterize the process outcome and
interconnect different unit operations, for example, the
impurities produced upstream in the bioreactor to the
purification procedure in the following downstream operations.
These variables often require a complex analytical procedure
over many hours to days. Eventually, after many days to few
weeks, the first data sets can be obtained for a unit operation and,
within months, also the information on several development
cycles as well as several unit operations can be available. After
many months to several years, a complete development activity
toward the manufacturing scale can be obtained.
In development and manufacturing, many professionals are

involved, who had to go through a long learning procedure of
hands-on experience in the lab, working on multiple scales and
for the production of different molecules, possibly utilizing
different biological organisms, operation strategies and devices.
Such expertise for the complex underlying processes is built
throughout several years. Similarly, also the modeling experts
capable of formalizing certain mechanistic process behavior
and/or statistically deriving process interrelationships (chemo-
metrics) require training of manymonths to a few years, with the
generation of a new predictive model potentially lasting for
several months. All such expertise is usually linked to individuals
and is not available in a generalized format to other team
members. Because of significant time pressure in development
and risk mitigation pressure in manufacturing, decisions are
often made on an ad hoc basis involving expert meetings where
all readily available data, analysis results, and experience sources
are taken into account without ensuring consideration of all
possible available information hidden in the databases or inside
the potential of (not automatedly retrained or connected)
predictive models.

Figure 1. Time to generate different kinds of data (labeled according to definitions in Figure 3), analyses, and expertise versus their importance for
decision making in bioprocessing.
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3. THE MULTITALENT: HYBRID MODELING

Hybrid modeling pursues the goal to synergistically combine
available data and know-how as highlighted in the graphical
abstract figure. Thereby, the know-how is provided as the
fundamental backbone based on formalizing central process
characteristics (e.g., mass balances) and interrelationships (e.g.,
characteristic ratios or dimensionless numbers) in broadly valid
model equations. As explained in detail by von Stosch et al.17

and Narayanan et al.,18 the available data is then used to fine-
tune the model parameters to the considered use case and to
flexibly adapt to different scenarios. Figure 2 compares the
concept of hybrid modeling to the two standard modeling
approaches,19 namely purely data-driven (statistical) and purely
knowledge-driven (mechanistic) approaches.

On the side of assessing the process behavior by a process
expert perspective, one could either rely on statistical methods,
which require a lot of data to support decision making or on
deterministic methods, which can only be formalized if a large
part of the behavior is well understood. The first approach is
strictly limited by the amount of available data due to the large
labor cost of each data point produced combined with the
complexity of the data.12,20 The latter is limited by the generally
available understanding of the complex unit operations as well as
the availability of an expert for each of them.11,12 Therefore, a
solution based on combining the formalization of the central
know-how with the flexible learning of the unknown remainder
from the available data breaks the need for either large data sets
or the continuous involvement of a process expert in order to
reliably withdraw important decision support. From the
perspective of the decision making stakeholders such
algorithmic solution provides a trustworthy decision base with
less effort, that is, less time and labor to conduct experiments to
create the central know-how and less labor time of an expert to
correctly structure that information for the decision making
perspective. Figure 3 supports the explanation of the central role
of hybrid modeling in improving trustworthiness and decision
support in process design and failure detection.
Standard design of experiments methods21,22 try to explain

the product information (Y) based on the design process factors
(Z) with a so-called “black-box” approach, that is, without
specifically integrating mechanistic process information or the
dynamic process information (X). Taking simplistically the
Covid-19 example, this could be interpreted as trying to
understand how certain imposed restrictions affect the final
lethality of the period under these restrictions without
anticipating all the trackable society behavior in the meantime.

The X information therefore bears a central possibility to better
understand characteristic dynamic scenarios and patterns, which
might result in a different final outcome Y. Hybrid modeling
enables a simulation, based on the integrated know-how, of how
for given initial conditions Z a process could evolve. In the
second step this predicted evolution is linked based on a
historical model23 to the final product quality Y. Hence, while
retaining the general goal of finding the optimal conditions Z to
reach the target outcome Yoptimal, this procedure supplements a
lot of certainty on the final outcome compared to the black-box
approach, based on a knowledge-supported, projected archi-
tecture of possible bridges between process start and end. In the
absence of long-standing experience in the problem field, such
dynamic progression can be also simulated based on simple, yet
effective dynamic interrelationships or based on stochastic
approaches, which are both also being utilized in modeling the
Covid-19 pandemic.1,24,25

In the past few years, hybrid modeling has become
increasingly popular in the bioprocessing domain leading to be
considered a main new direction.26 Hybrid modeling, in the
context of therapeutic protein manufacturing models, demon-
strated its enabling potential in applications such as monitoring
and forecasting,27,28 control,29,30 optimization,31,32 and also in
downstream processing.33

4. THE AMBASSADOR: TRANSFER LEARNING
Despite real-world problems seldom existing in isolation,
heterogeneity is often a governing factor in finding a solution.
This means that despite the availability of some prior data and/
or know-how, their alignment is complex due to structural or
phenomenological differences. The characteristic sequence of
the Covid-19 pandemic spread provides countries affected at
later stages the possibility to learn from the data from the
previously affected ones. Such learning is obviously limited as
countries strongly vary in organization and capacity of their
health system, population size and density, and geographical
location, etc. Nonetheless, certain effects such as characteristic
symptoms, contagiousness, risk groups, lethality, etc. could be
identified even without or with limited data available. Human
beings possess a powerful cognitive ability for such knowledge
transfer, while traditional optimization solvers usually lack such
ability in their search strategy.34 In machine learning such a
concept is described as transfer learning,35 where one “generic”
part of the model, usually the first layers of a convolutional
neural net, is learnt from generally available data and then the
data of a specific system is used to fine-tune the model to that
specific use case.36

Figure 2. Comparison of data-driven (statistical), knowledge-driven
(deterministic), and hybrid models in two perspectives: (A) data and
expertise required to generate predictive model; (B) effort required and
general limitation to create reliable decision support.

Figure 3. Enabling possibility of hybrid modeling to learn process
dynamics and support forecast of final product quality. Such a two-step
procedure enables complete simulation of process and product quality
based on different process designs and optimizing the design space to
reach optimal product quality.
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In many engineering sectors including biopharmaceutical
processes, process development or operations, teams are
exposed to new entities such as new cell lines to be used in
the bioprocess, new column material for purification or
abnormal effects such as unusual levels or profiles of character-
istic process variables in the manufacturing plant. Often, such
situations must be managed under time pressure, and decisions
are made on the readily available data and best educated guesses
by experts. It is an infrequent practice to rigorously include any
similar data and know-how from previous activities directly into
the decision process due to often severe levels of heterogeneity,
which can be a result of (partially) different utilized devices,
scales, and materials as well as differently structured or
quantified data.37 A smart digital solution enabling an automatic
leverage of available prior information from heterogeneous
sources by reliably deducing the transferrable know-how could
enable a tremendous breakthrough for supporting complex
decision making in biopharma manufacturing.38

The general structure of hybrid models is quite attractive to
apply such transfer learning concept in small data environments,
where the mechanistic backbone accounts for major generic
effects while the machine learning part enables fine-tuning based
on the limited available data, for instance to a specific molecule.
In process development such an approach capitalizes strongly on
all available information from previous development activities.
This could not only support pharma companies, but particularly
also customer manufacturing organizations (CMOs) the
business model of which scales even more with delivering on
time, and which are exposed to a large level of diversity. Of
course, a beneficial implementation of broadly applicable
transfer learning must go through a rigorous digitalization and
integration of all data archives,39 which requires a tremendous
preparation and investment.40 Other industries such as finance
have demonstrated the impact and potential of such digital
transformation.41 Although hybrid modeling has not been
reported in direct connection with transfer learning in
biomanufacturing, several transfer use cases based on data-
driven techniques have been already conducted to further
explore and adapt model-supported transfer learning in
biopharma. Examples include extrapolation from low to high
performing conditions with hybrid models,18 cross-scale
prediction, and cross-molecule prediction withmultivariate42−44

and with adaptive machine learning techniques.45

5. THE CRYSTAL BALL: DIGITAL TWINS
It goes without saying that, in a situation such as the Covid-19
pandemic, a trustworthy forecast of the near future would be
priceless. Thereby, one has to comment that it is not only the
knowledge of the future evolution that counts but also the
underlying understanding on its relation to the introduced
regulations. This understanding is vital to make a solid decision
among many potential alternatives.
Hence, taking the definitions in Figure 3, at each point of time

one would like to understand how changes in Z affect the
process outcome Y, and which combination of Z is optimal to
reach the desired outcome Yoptimal. While this theoretically
represents a classical optimization problem, in the process
development lab and on the manufacturing floor, the different
teams require a practically relevant representation of such a
solution which is connected as much as possible to their daily
workstream and mindset as well as associated decision making
process. The possibility to simulate different future scenarios
and compare the results must therefore be presented in a visually

comprehensible, tangible, manageable, and transferrable form.
Figure 4 presents the added value generated by different levels of
technological complexity and integration of digital solutions in
biopharmaceutical manufacturing.

As highlighted in Figure 4, even further value can be created
not only if the potential of hybrid modeling and transfer learning
is assessable through a practically designed digital twin but also if
such a digital twin is directly connected to the process and
becomes an active stakeholder of the decision making process.46

Being set up in real-time connection to all data generating
devices, all accessible and consistently learning models, and the
process control layer, such a digital twin can not only provide
predictive-model based real-time alerts, but also automatically
take actions based on optimization across different scenarios.47

While at the process development level, such digital twin-based
controls could be used for efficient process design, at the
manufacturing level, predictive quality and predictive manu-
facturing are likely to be the central applications. It is important
to highlight that such digital twins should be realized across all
interconnected unit operations, to enable communication,
scheduling, and optimization across the entire plant.48 Another
very important application in bioprocessing is smart operations
of parallel high-throughput experimental systems. Here such
digital twins can efficiently learn across all of the ongoing
operations and reduce (in real-time) the redundant information,
while consistently redesigning the experiments to provide
further knowledge.49,50 In such cases, experimental systems
and digital twins must actively collaborate on simultaneously
improving process understanding as well as the process itself.

6. A COMPLEX LIAISON: SMART DIGITAL SOLUTIONS
AND REGULATED INDUSTRIES

If human health or even survival is affected by the decision
process, such decisions must be accurately documented,
validated, and surveilled. In biopharmaceutical manufacturing,
health authorities impose stringent regulations on the process
design to ensure consistent product quality. Thereby,
regulations such as the quality guidelines by the International
Council for Harmonisation of Technical Requirements for
Pharmaceuticals for Human Use51 also actively incentivize the
utilization of model-based solutions to support understanding
and operation of the complex processes. The smart digital
solution-enabled stabilization of decisions through robust
learning from previous know-how and data should be positively
embraced by drug producers as well as health authorities.
However, in manufacturing operations which are based on

Figure 4. Added value and solution concepts achievable at different
levels of digital transformation in the biopharmaceutical process
industry.
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decisions either actively introduced or supported by such
models, a detailed assessment of these smart digital solutions is
required. This will inevitably result in a critical confrontation of
smart manufacturing procedures and smart humans.52 It can be
expected that a growing number of companies will increasingly
utilize advanced predictive solutions besides the commonly
utilized, static multivariate techniques, which given their linear
nature are much simpler to validate for Good Manufacturing
Practice (GMP) utility. This experience will very likely provide
more clarity on the limits of complexity which can be introduced
into such smart digital solutions to ensure transparency and
trackability for health authorities, but also on the general filing
procedure of a highly interconnected, digital-twin-supervised
manufacturing facility.
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