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Abstract
Development of drug responsive biomarkers from pre-clinical data is a critical step in drug

discovery, as it enables patient stratification in clinical trial design. Such translational bio-

markers can be validated in early clinical trial phases and utilized as a patient inclusion

parameter in later stage trials. Here we present a study on building accurate and selective

drug sensitivity models for Erlotinib or Sorafenib from pre-clinical in vitro data, followed by

validation of individual models on corresponding treatment arms from patient data gener-

ated in the BATTLE clinical trial. A Partial Least Squares Regression (PLSR) based model-

ing framework was designed and implemented, using a special splitting strategy and

canonical pathways to capture robust information for model building. Erlotinib and Sorafenib

predictive models could be used to identify a sub-group of patients that respond better to

the corresponding treatment, and these models are specific to the corresponding drugs.

The model derived signature genes reflect each drug’s known mechanism of action. Also,

the models predict each drug’s potential cancer indications consistent with clinical trial

results from a selection of globally normalized GEO expression datasets.

Introduction
It is well known that many cancer drugs are effective only in a subset of cancer patients, and
selection of drug responsive biomarkers is crucial to find the right patients for the right drug.
Also, early identification of biomarkers that can select sensitive and resistant patient subpopu-
lations is particularly important in order to be able to test biomarker hypotheses in early clini-
cal drug development and utilize those biomarkers during later clinical development to stratify
patients into appropriate treatment arms. This will facilitate the development of companion
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diagnostic tests along with novel treatments. Therefore, it is ideal to discover drug response
biomarkers prior to clinical trials using pre-clinical data sets, for example, by in vitro cell line
screening of drug sensitivity.

Numerous studies of in vitro drug sensitivity screens [1–3] coupled with genomic/genetic
profiling data have been conducted on the NCI60 cell line panel [4–11]. As the NCI-60 panel
was of a limited size and tumor-type variety, more comprehensive and diverse cell line panels
have been developed. Recently, two very large cell line panel studies were reported with several
hundred cancer cell lines tested on dozens of oncology drugs [12, 13]. Powered by the compre-
hensive molecular characterization of the cancer cell lines in these panels and the drugs’ known
mechanisms of action; both studies identified important candidate biomarkers for drug sensi-
tivity [12, 13]. However, these studies did not directly generate drug sensitivity predictive mod-
els, nor did they validate the biomarkers on independent data sets obtained from treated
patients where outcome of treatment was known.

Although there are a few successful examples of predictive gene expression signatures to
predict disease prognosis, for example the 70-gene MammaPrint signature [14] and the
16-gene OncotypeDX test [15] for breast cancer, few highly reproducible gene expression sig-
natures to select patients for appropriate drug treatment have been translated into useful clini-
cal tests. This can be attributed to a wide number of factors, such as disease heterogeneity,
robustness of selected features, and dealing with different molecular profiling platforms. Spe-
cially, inappropriate selection of modeling approaches employed during the discovery phase
may also play a role. A recent FDA-led initiative [16] evaluated various gene expression model-
ing methods for predicting clinical endpoints (MAQCII: MicroArray Quality Contol II). In the
project, 36 independent teams analyzed six microarray data sets to generate predictive models
for classifying a sample with one of 13 endpoints. Using independent testing data, the study
found that the biology of the end-point is the main performance-associated factor. Thus, 36
independent teams made poor predictions on complex end-points such as overall cancer sur-
vival and chemically-induced carcinogenesis [16].

The poor model performance could be improved if more appropriate modeling approaches
for the complex clinical endpoints of interest were used. For instance, poor prediction of overall
survival for Multiple Myeloma patients in the MAQCII study could be partly due to applying
an arbitrary survival cutoff (24 month) for patients [16]. Both gene expression and overall sur-
vival in the Multiple Myeloma case are continuous variables, therefore one can build a regres-
sion-based prediction model. In fact, when an univariate Cox regression approach is used, it
identifies a gene expression signature that significantly predicts a “high-risk” subgroup of
patients [17]. This signature was later validated on several independent studies and on different
regression-based approaches [18–21], highlighting the advantage of a regression approach
without predefined class memberships.

In order to generate translational drug-sensitive models, e.g. building predictive models
using cancer cell line data that can be used to predict patient response in clinical trials, more
detailed considerations are needed along the model building/testing process. For example, as
observed from the MAQC II study, a simple application of t-test for feature selection is not suf-
ficient [16]. Instead, a resampling approach to gain robustness on feature selection is appropri-
ate. Another frequent topic to address is that to build/test translational drug-sensitivity
signatures, one often needs to normalize datasets generated from different profiling platforms.
There are some well-accepted normalization approaches being developed [22, 23], and one
needs to select the right method based on the individual projects with special considerations of
the datasets.

In the current work, a combination of novel statistical and functional feature selection
approaches were used to build in vitro gene transcription based predictive models, for Erlotinib
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and Sorafenib response using a 240 cancer cell line panel (OncoPanel: http://www.
Eurofinspanlabs.com). IC50 values were used as dependent variables and gene expression data
from untreated cells was used as independent variables to build the predictive models. A Partial
Least Squares Regression (PLSR) modeling approach was utilized because it can effectively
handle a high number of independent variables with minimal demands on sample size [24–
26]. Importantly, a special splitting strategy was implemented to capture consensus features in
the training dataset, followed by a pathway-based filtering step to highly reduce the signature
gene set without losing model performance. In the present study, performance of the functional
signature was validated to predict Erlotinib or Sorafenib patients’ response and linked it to pro-
gression free survival (PFS) in lung cancer patients from the BATTLE clinical trial [27]. The in
vitro-derived predictive models demonstrated significant in vivo accuracy, were mechanisti-
cally linked to the drugs’mechanism of action and were highly drug-specific.

Results

A PLSR-based modeling framework to build predictive models for drug
sensitivities
The main goal of this study was to test whether drug sensitivity models derived from cell line
data could be used to predict patient response to the drug. The whole cell line panel was used
as the training dataset, and evaluation of the model performance was carried out using gene
expression data generated from tumor samples of patients treated with the same drug. No
information from the testing dataset was used in training the drug sensitivity predictive
models.

Erlotinib was selected as a case study target as it has clear mechanism of action as an EGFR
inhibitor, and because molecular data sets coupled with patient response to treatment are pub-
licly available (the MD Anderson BATTLE clinic trial). A 240 tumor cell line panel (Oncopa-
nel) was used to identify cell lines that were sensitive or resistant to Erlotinib treatment (using
the median IC50 value as a cutoff if the IC50 distribution is normal-like, or using a data driven
cutoff value if the IC50 distribution follows a bi-model distribution). The Oncopanel contains
cancer cell lines covering a variety of cancer indications (S1 Fig). For each drug against each
cell line in the panel, a cell proliferation assay was conducted using 10 doses of Erlotinib
(3-fold dilution) and IC50 values were generated. For model building on drug sensitivity, base-
line gene expression was used as the independent variable and IC50 as the dependent variable.

A PLSR model workflow was developed and an Erlotinib sensitivity model was trained
using OncoPanel data (Fig 1). The key steps shown on the left include multiple steps of data
reduction, feature selection, a special splitting strategy to capture consistent features across the
dataset, selection of least-overlapping top models, calculation of consensus genes weights fol-
lowed by selection of the core signature gene set, and ontology enrichment filtering to obtain
the pathway-based PLSR model (Fig 1A).

Data reduction. First, an RMA normalization of the baseline gene expression of the Onco-
Panel cell lines was conducted. Next, an intensity cutoff of 40% of the whole genome to remove
genes with low intensities was applied. Third, a variance cutoff of 1 to keep genes with the high-
est variability of expression among the panel cell lines was applied. This data reduction step
narrowed down the number of probesets by an order of magnitude from 54,675 to 3,787.

Feature selection. Feature selection was conducted on the 3787 probesets based on corre-
lation between gene expression level and drug response (log2(IC50)) for all cell lines. For each
probeset, permutation testing was run by randomly assigning a response sign to the cell lines
panel. After Fisher's transformation (f = 0.5 � ln ((1+r) / (1-r), where r is the correlation coeffi-
cient on each permutation), the permutation resulted in f-values that follow a normal
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distribution and a raw p-value of each gene was calculated based on the fitted mean and stan-
dard deviation from the permutation data. An adjusted p-value was calculated using Benja-
mini-Hochberg control of false discovery rate [28]. Feature probesets had to pass a raw p-value
cutoff of 0.01. Then, the highest intensity probesets were selected as representative for each
gene; typically these were also the highest variance probesets for the gene. As a result, 485
genes were selected and used as the input gene set for PLSR model training.

A splitting strategy to capture consensus features in the training dataset. In order to
select the top-performing models that also capture consensus features in the dataset, a special
splitting approach was developed. First, a “balanced split” was conducted to divide the data
into training (70%) and balance validation (30%) subsets: we first equally divided the cell lines
into three groups by IC50 values, then conducted random splits on each group to get training
and validation subsets. When merging the training and validation subsets from these three
groups, both training and validation subsets having some sensitive and some resistant cell lines
(termed “balanced split”) were generated. The training subset was then further divided into
random training (60% of training) and random validation (40% of the training) subsets. Over-
all, the training set was divided into three parts: random training (42%), random validation
(28%) and balance validation (30%) subsets (Fig 1B). Hundreds of thousands of splits were

Fig 1. PLSRmodeling workflow applied on 183 cancer cell lines on OncoPanel. (A). Flow chart on the model building and testing steps. (B). A specially
designed splitting strategy divides the training dataset into random training, random validation and balance validation subsets. (C). Representative example
of random validation and balance validation. Red points were top performing models on 1000 random splits on this balanced split, based on both AUC and
correlation measures. (D). AUC and correlation cutoff selection for the core PLSRmodel.

doi:10.1371/journal.pone.0130700.g001
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generated, then the top models were selected by comparing model performance on both ran-
dom validation and balance validation results.

Identifying the not-significant-overlapping models. The best models were selected
based on multiple parameters, using both random validation and balance validation results
(Fig 1C). The selection criteria were as follows: 1. the models should have good performance
on random validation on both correlation and Area Under Curve (AUC) measures (red spots
in Fig 1C). The correlation is defined as Pearson correlation between experimental and pre-
dicted IC50s. The AUC measure uses a data-driven cutoff to divide cell lines into sensitive- and
resistant-groups using experimental IC50s, and use a series of cutoffs on predicted IC50s to
define predicted sensitive- and resistant groups, to generate the Receiver Operating Character-
istic (ROC) curve and calculate AUC values. In this sense, although a regression-based model-
ing framework was built, some classification measures to help select top models were still used;
2. Among all splits, a correlated AUC and correlation measures on random validation (Fig 1C-
left panel) were preferred; 3. Balance validation (from balanced split) should have much more
narrow performance distribution than the random validation (Fig 1C-right panel); 4. The
model performance in balance validation (Fig 1C-right panel) should not be inferior to random
validation (Fig 1C-left panel), which may indicate over-fitting on the random training and ran-
dom validation; 5. The models should have relatively high performance among all splits in bal-
ance validation, when comparing the distribution on Fig 1C right versus Fig 1C left panels.

Five top balance split resulted model sets (each contains 1000 random splits) were selected
based on all five criteria out of 150 initial balance split model sets. Then, one top model with
best correlation between predicted and experimental IC50 in balance validation set was selected
as a top model in each of the top five model sets, resulting in 5 top models from
150�1000 = 150000 total splits. Pairwise overlapping scores among these models were then cal-
culated (the overlapping score was defined as Jaccard similarity index), on the real random
training cell line sets as well as generated an overlapping score distribution on randomly select
two sets with the same size of cell lines as in the random training (a permutation test). In order
to remove top models that were significantly overlapping to each other, a 90% quantile cutoff
on pairwise overlapping scores was used as a significant overlapping cutoff.

Calculating consensus genes weights and selecting the core signature gene set. There
are multiple potential ways to identify key biomarker genes from a single training/testing data-
set, for example, several sparse PLSR approaches were developed by Chun and Keles [29, 30],
Lê Cao et al.[31, 32], and Witten and co-workers [33], which can effectively perform internal
variable selections. On the other hand, since a key goal in the current work is to capture con-
sensus information among a pan-cancer panel of cell lines, we chose to use a forward selection
procedure to identify consistent gene weights among not-significantly overlapping top models.
After ranking models by the split strategy described above, genes’ consensus weights were cal-
culated using the Singular Value Decomposition method (SVD) [34] to summarize genes’ load-
ing values from each top model. Then, genes’ loading values from each top model were
compared against genes’ consensus weightings, as well as all pairwise comparisons of genes’
loadings between each pair of top models (S2 Fig). An individual top model that showed the
highest similarity to the consensus weightings was selected as a representative model for later
steps.

Starting from the five highest weighted genes and adding one gene at a time, the representa-
tive PLSR model was retrained/retested by increasing signature gene size one at a time (a for-
ward selection approach). The core PLSR model was identified as an early plateau point on the
model performance curves on both AUC and correlation measures (Fig 1D). The resulting
core PLSR model contained 191 genes.
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Generation of a pathway-based “functional” PLSR model. A subset of the core PLSR
model as the pathway-based PLSR model was selected using the functional analysis platform
MetaCore (Thomson Reuters) [35]. The 191 genes of the core model were subjected to enrich-
ment analysis in the canonical pathway maps ontology. The 51 genes situated on statistically
significant (p-value<0.01) pathway maps were selected as the pathway-based classifier and
retested on the same OncoPanel cell lines. Importantly, the EGFR ligand (NRG1) was among
the signature genes, which is consistent with the fact that Erlotinib is an anti-EGFR compound.

In the 51-gene signature (S1 Table), 22 genes correlated positively and 29 genes negatively
with IC50 data. Further the genes were referred to as resistance-specific and sensitivity-specific,
correspondingly. In order to understand how the Erlotinib signature genes are related to the
biology of drug mechanism of action, we connected the corresponding functional signatures
genes into molecular networks, using data on canonical pathways and interactions from Meta-
Core (Thomson Reuters) as network building blocks (Fig 2; please see S3 Fig and S1 Text for
details). The networks contained genes, whose variants are significantly associated with the
corresponding drug response. Specifically, EGFR mutations and amplifications of PI3KA class
A are associated with sensitivity and K-Ras mutations with resistance to Erlotinib (Fig 2A,
please, see S3 Table and S2 Text for details). This is consistent with the results from the BAT-
TLE study, where EGFR mutations were associated with better response to Erlotinib [27].

Fig 2. Causal network to depict functional relations between sensitivity-specific and resistance-specific signature genes. The network was
reconstructed from canonical signaling pathways regulated by signature genes and a signature specific direct interaction network. Sensitivity-specific
signature genes are highlighted with blue thermometers, resistance-specific genes with red thermometers.

doi:10.1371/journal.pone.0130700.g002
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Building a Sorafenib sensitivity model
To test for drug-specificity of the Erlotinib PLSR model, a predictive model to Sorafenib was
built using data from Oncopanel cell lines treated with Sorafenib to generate IC50 values as
well as the same baseline gene expression data and modeling framework as for Erlotinib.
Therefore, the data reduction is the same for both Erlotinib and Sorafenib and the models are
directly comparable.

Unlike Erlotinib’s IC50 distribution (S5 Fig(A)), the Sorafenib IC50 values follow a normal-
like distribution (S5 Fig(B), upper panel). To better separate Sorafenib sensitive vs resistant
cases, the middle one-third of the cell line panel was removed before the model training process
(S5 Fig(B), lower panel). Even with this filtering, it was still more difficult to identify a good
predictive Sorafenib model compared to Erlotinib. An example of the random validation and
balance validation performance of the Sorafenib model (S6 Fig) demonstrates it does not per-
form as well as the Erlotinib models (Fig 1C). For Sorafenib predictive model building, 903 fea-
ture genes were identified, with 550 core model genes, and eventually 113 genes for the final
pathway signature (S2 Table).

A network of Sorafenib signature genes was generated using protein-protein interactions
and canonical pathway information (Fig 2B, please see S1 Text and S4 Fig for details). The net-
works contained genes with variants significantly associated with the corresponding drug
response. The genes positively correlated with IC50s and associated with resistance, tend to
populate signaling pathways parallel or cross-talking to the drug target signaling pathway
(Fig 2). Activation of parallel pathways by overexpression or mutations conveys the common
resistance mechanism for Sorafenib. One of the Sorafenib-resistance pathways, EGFR signal-
ing, is represented by 4 overexpressed ligands. Moreover, different genetic events in EGFR sig-
naling are associated with Sorafenib resistance among OncoPanel cell lines (S3 Table and S2
Text for details). Importantly, EGFR mutations were associated with worse response to Sorafe-
nib in the BATTLE study.

Testing model performance of Erlotinib and Sorafenib predictive models
using the BATTLE clinical trial as an independent testing dataset
The BATTLE clinical trial data was used as an independent testing dataset, to evaluate the per-
formance of the OncoPanel cell line data derived drug sensitivity models. In this Phase II clini-
cal trial [27], subsets of 255 NSCLC patients were treated with either Erlotinib, Vandetanib,
Sorafenib or Erlotinib + bexaroten combination. Among the 255 patients, there were 131
patients with tumor samples sufficient for molecular profiling and clinically evaluable
(GSE33072). Among them, data from 25 patients in the Erlotinib arm and 39 patients in the
Sorafenib arm was usable for PLSR model testing.

The baseline tumor gene expression data in patients was generated using the Affymetrix
HG Gene 1.0 ST array, which is a different platform than the U133plus2 array used in the
OncoPanel experiments. To address the issue of platform incompatibility, the Affymetrix
“U133PlusVsHuGene_BestMatch” file was used to identify matching probesets between
U133plus2 and HG Gene 1.0 ST arrays, then a quantile normalization of the BATTLE data
against OncoPanel gene expression was performed. All 51 genes from the Erlotinib functional
pathway-based model were present in the BATTLE dataset, as well as all 113 Sorafenib signa-
ture genes.

The cutoffs of Erlotinib or Sorafenib predicted scores were data-driven by re-predicting
IC50s on the Oncopanel cell lines, using the corresponding drug sensitivity models (S7 Fig).
The distribution of Sorafenib predicted IC values do not have a clear separation point, so a
somewhat arbitrary cutoff of 2 was selected. This happens to be the same boundary value for
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experimental IC50s after removing the middle one-third cell lines for Sorafenib predictive
model training, providing some supporting evidence on selecting this cutoff. Since the BAT-
TLE patients’ baseline gene expression was normalized against the OncoPanel gene expression
using the whole genome, the cutoffs defined from the OncoPanel dataset were applied to the
BATTLE dataset.

The patients’ PFS cutoffs for Erlotinib and Sorafenib were selected at 2.4 and 4.2 months
based on their PFS distributions, respectively (S8 Fig). We are aware that these cutoff value
selections are somewhat arbitrary, since the Erlotinib or Sorafinib arm in the BATTLE clinical
trials has small patient numbers (25 and 39 patients for Erlotinib and Sorafenib arms, respec-
tively). However, as shown as red horizontal lines in S8 Fig and Fig 3, these cutoffs showed rea-
sonable PFS separation on patients treated by Erlotinib or Sorafenib, respectively.

Fig 3. PLSRmodels performance in predicting Erlotinib-treated patient survival in the BATTLE trial. A. Erlotinib model predicting Erlotinib treated
patients; B. Sorafenib model predicting Sorafenib treated patients; C. Erlotinib model predicting Sorafenib treated patients; and D. Sorafenib model predicting
Erlotinib treated patients. TP: true positive; FP: false positive; TN: true negative; FN: false negative; PPV: positive predictive value.

doi:10.1371/journal.pone.0130700.g003
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Erlotinib model predicts Erlotinib response. As shown in Fig 3A, the Erlotinib model
built from the OncoPanel Erlotinib screen data (IC50s) predicted response for the Erlotinib
treated patients reasonably well. The Erlotinib model performance for accuracy, sensitivity,
specificity, positive predictive value, and negative predictive value are 84%, 63%, 94%, 83% and
84%, respectively.

Sorafenib model predicts Sorafinib response. Similarly, the Sorafenib model built from
OncoPanel Sorafenib screen data (IC50s) can predict drug response for the 39 Sorafenib
treated patients (Fig 3B). The Sorafenib model performance for accuracy, sensitivity, specific-
ity, positive predictive value, and negative predictive value are 79%, 89%, 77%, 53% and 96%,
respectively.

Erlotinib model does not predict Sorafenib response. The Erlotinib model was further
tested to predict the response of Sorafenib treated patients. For these heavily pre-treated
patients in the BATTLE clinical trial, both the PFS and model-predicted scores suggested that
the majority of the patients are not Erlotinib sensitive. The overall accuracy of the Erlotinb
model in predicting Sorafenib treatment outcome was 64% (Fig 3C). Interestingly, the Erlotinib
model predicted four patients in the Sorafenib treated arm to be Erlotinib sensitive but none of
them was actually sensitive to Sorafenib treatment, which corresponds to a positive predictive
value of 0%. In comparison, when the Erlotinib model was used to predict Erlotinib treated
patients’ response, the positive predictive value was 83%.

Sorafenib model does not predict Erlotinib response. The Sorafenib model failed to pre-
dict the BATTLE Erlotinib treated patients’ response, with a positive predictive value of 14%
and an overall accuracy of 48% (Fig 3D). It is worth noting that even in the case of using the
Sorafenib model to predict Sorafenib treated patients’ response, the positive predictive value
was only 53% (much lower than that of the Erlotinb model’s 83%). On the other hand, the Sor-
afenib’s model had a very high negative predictive value at 96%, so that the overall model accu-
racy was 79% (still slightly lower than Erlotinib model’s 84%).

Putting together, the Erlotinib or Sorafenib models trained from Oncopanel data can be
used to predict patients’ response upon corresponding treatments. However, the models per-
formed poorly in cross-evaluation (i.e. Sorafenib signature for predicting Erlotinib response
and vice versa). This suggests that both the Erlotinib and the Sorafenib models are drug
specific.

Using Erlotinib and Sorafenib drug sensitivity models to predict
progression free survival (PFS) in the BATTLE clinical trial
Another way to assess cell line data derived drug sensitivity models was to test the models for
their ability to predict PFS. Patients in the BATTLE clinical trial were assigned to a marker pos-
itive (drug sensitive) or a marker negative (drug resistant) sub-group based on the correspond-
ing PLSR drug predicted sensitivity scores, then marker +/- patient groups were compared
based on the clinical output (PFS).

When the Erlotinib model is used to stratify BATTLE patients in the Erlotinib arms, the
median PFS for the model-predicted Erlotinib-sensitive patient group was 3.84 month while
the PFS for model-predicted Erlotinib-resistant patients was 1.84 month, corresponding to a p-
value of 0.09 and Hazard ratio of 0.43 (95% CI, 0.16 to 1.14, Fig 4A). The median PFS for all
the patients in the BATTLE trial was 1.90 month, suggesting that the Erlotinib model, indeed,
selected the patient group with twice as long survival. However, the survival difference between
model-predicted Erlotinib sensitive vs resistant groups is not statistical significant (p-value at
0.09 and 95% CI of Hazard ratio at 0.16 to 1.14). Since all the patients in the Erlotinb treatment
arm were EGFR wild-type, it was not possible to assess the Erlotinib models ability to predict
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outcome relative to the EGFR mutation biomarker. On the other hand, the current gene
expression based biomarker works reasonably well on separating Erltonib sensitive versus
resistant patients.

When using the Sorafenib model to predict PFS of BATTLE patients in the Sorafenib arm,
the model identified marker-sensitive group had a survival benefit of 2.66 months (PFS) over
the marker-resistant group (Fig 4B), with a p-value of 0.006 and a Hazard-ratio of 0.32 (95%
CI, 0.15 to 0.72). The median PFS survival was 4.53 and 1.87 months, for marker-sensitive and
marker-resistant groups, respectively.

Importantly, the signatures were drug-specific and did not predict across arms. The Erloti-
nib predictive model failed to separate marker-sensitive vs. marker-resistant groups for Sorafe-
nib treatment arm and vice versa, suggesting that the predictive models are drug specific
(Fig 4C and 4D).

Fig 4. Survival analysis on biomarker identified treatment sensitive/resistant sub-groups. A. Using the Erlotinib model to stratify Erlotinib treated
patients; B. Using Sorafenib model to stratify Sorafenib treated patients; C. Using Erlotinib model to stratify Sorafenib treated patients; and D. Using
Sorafenib model to stratify Erlotinib treated patients.

doi:10.1371/journal.pone.0130700.g004
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Applying drug sensitive models to predict percentage of drug sensitive
samples in different cancer indications
After the Erlotinib and Sorafenib sensitivity models were tested using the BATTLE clinical trial
data, they were further used to predict patients’ tumor samples from gene expression data in
the public domain. The percentage of predicted Erlotinib or Sorafenib sensitive samples were
generated based on cancer indications, and a higher percentage of predicted drug sensitivity
for a cancer type was considered as a potential indication that the drug may work well on treat-
ing that type of cancer.

An internal data repository was built based on the tranSMART translational medicine plat-
form [36] using data from public GEO datasets. As GEO microarray datasets are not uniformly
processed, various methods were proposed to remove batch effects among studies (please see
Lazar’s recent review [22] for more information). We choose the fRMA approach [37] for glob-
ally normalizing GEO datasets for two reasons: (1). fRMA uses a “frozen” reference set that
makes it very easy to incrementally normalize new datasets; (2). fRMA uses the same approach
as in RMA that is used for single dataset normalization. After global normalization, samples in
the GEO datasets can be merged into cancer indications (see Materials & Methods for details).
In total, 484 GEO studies with 16096 samples were normalized on Affymetrix microarray plat-
form U133plus2 and merged into various cancer indications.

Extensive manual curation and text mining were performed to standardize metadata on
patient and clinic features. For the purpose of applying the drug sensitivity models on patients’
cancer samples, our quality control contains the following aspects: (1). Remove cell line data;
(2). Remove normal tissue samples; (3). In some solid tumor studies, the samples were actually
collected from blood or saliva—we also removed data from these studies. After these quality
control steps, the resulting 11331 samples was categorized into various cancer indications.

Each sample’s baseline gene expression was used to predict its potential Erlotinib or Sorafe-
nib response, and percentage of predicted drug sensitive samples were calculated upon
each cancer indication. Overall, differential pattern of drug sensitive indications is generally
consistent with clinical trials outcomes for Erlotinib and Sorafenib, respectively (Table 1).
Lung cancer was predicted to have 15.81% of Erlotinib sensitive samples, which is
consistent with the fact that Erlotinib was approved to treat lung cancer patients. On the other
hand, kidney cancer was predicted to have 0.46% of Erlotinib sensitive samples, which is con-
sistent with a recent Erlotinib Phase III clinical trial that showed single agent Erlotinib treat-
ment failed to show benefits for kidney cancer patients. For Sorafenib, 31.76% and 24.77% of
kidney and liver cancer samples were predicted to be Sorafenib sensitive, respectively (Table 1),
which are consistent with FDA approval of Sorafenib on treating kidney and liver cancer
patients.

Several interesting predictions on other cancer types were also observed. For example,
94.05% of head & neck samples were predicted to be Erlotinib sensitive. Interestingly, there are
a number of ongoing Erlotinib trials for this cancer type (http://www.clinicaltrials.gov/). In
addition, Sorafenib model predictions suggested there are a high percentage of drug
sensitive samples in bone cancer and haematopoietic neoplasms (Table 1). There were 5.64%
and 6.47% of breast cancer samples predicted to be sensitive to Erlotinib or Sarafenib
treatment, respectively. Given the high total number of breast cancer patients, these sub-popu-
lation of patients may still be clinical meaningful. On the other hand, colorectal or pancreatic
cancer was predicted to have very low percentage of Erlotinib or Sorafenib sensitive cases
(Table 1).
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Discussion

Key features of the modeling framework reported in this work
Using cell line derived drug sensitivity models to predict patients’ response. Systematic

differences between expression patterns in human tumors and in vitro tumor cell line models
[38, 39] contributes to uncertainty of predictive performance of signatures generated from one
source of samples (cell lines) and applied to another source (primary tumors). This issue was
addressed in a number of previous cell line based signature generation studies. For example, in
one NCI-60 study, the “co-expression extrapolation” (COXEN) algorithm was developed for
selecting the few genes expressed in sync between cell lines and primary tumors [3]; both
tumor and cell lines expression patterns were used for deriving a multi-gene predictor. One
potential limitation for the COXEN algorithm was its feature selection approach: clustering
analysis was conducted on both preclinical and clinical data to select input genes for model
training [3]. In contrast, our model was built entirely on cell line panel data, so the BATTLE
clinical dataset can be used as an independent testing dataset.

Recently, Blumenschein and coworkers identified a Sorafenib sensitivity signature from 68
NSCLC cell lines, then applied the signature to retrospectively stratify Sorafenib sensitive
patients in the BATTLE clinical trial [40]. Our Sorafenib sensitivity model has similar perfor-
mance in predicting patients’ response to Sorafenib. However, we built our model using a mix-
ture of cancer cell types instead of NSCLC cell lines only. As a result, our Sorafenib model was
further applied to predict potential Sorafenib sensitive cancer indications (Table 1), which was
consistent with FDA approved Sorafenib indications.

A specially designed splitting strategy to help us identify consensus information for pre-
dictive model building. It was reasoned that if one can identify the consensus information
within a training dataset, the resulting predictive model should be robust and have high predic-
tive power. An important feature of our approach is a specially designed splitting strategy (divi-
sion on random training, random validation and balance validation sample subsets), which

Table 1. Predicted percentage of Erlotinib and Sorafenib sensitive samples for some cancer indications fromGene Expression Omnibus
datasets.

Cancer Type Number of samples Pred. Erlotinib Sen. percentage Pred. Sorafenib Sen. percentage

FDA approved Erlotinib or Sorafenib indications:

Lung Cancer 329 15.81 0.61

Liver Cancer 85 0.00 31.76

Kidney Cancer 218 0.46 24.77

Additional indications:

Head and Neck Cancer 168 94.05 12.50

Bladder Cancer 102 41.18 3.92

Acute lymphoblastic leukemia 516 4.26 64.73

Diffuse Large B-Cell Lymphoma 816 2.45 30.51

Acute myeloid leukemia 1118 0.45 15.74

Multiple myeloma 596 0 27.01

Bone Cancer 88 0.00 29.55

Breast Cancer 1668 5.64 6.47

Colorectal Cancer 948 0.11 0.21

Pancreatic Cancer 75 0.00 1.33

The predictive models were derived from cell line Oncopanel expression data. Patient data normalization is described in the result section.

doi:10.1371/journal.pone.0130700.t001
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creates balance validation subsets as well as random validation subsets. The feature selection
was done on the whole dataset, so that the same feature genes could be used to train and com-
pare models among different splits. This also enabled finding the best model that represented
consensus information among the whole dataset. By identifying minimally overlapping high
score models and calculating consensus weighting among them, the common features in the
training dataset were captured. Besides the Erlotinib and Sorafenib case studies described in
the current work, the method was further validated through our participation in the NCI--
DREAM challenge. The NCI-DREAM challenge was a community effort comprised of 44
teams to predict drug-sensitivity to 28 drugs [41].

Cell line data derived drug sensitivity models that accurately predict
patients’ PFS–a translational medicine case study
A translational medicine case study consisting of generating predictive models of Erlotinib and
Sorafenib sensitivity from a cell line panel dataset, followed by model validation in a clinical
setting is presented. The models predict clear clinical benefits: for example, the Erlotinib drug
sensitivity model separated marker-sensitive and marker-resistant patient groups with the for-
mer demonstrating twice as long survival than the latter (2 months difference with a Hazard
ratio of 0.43, Fig 4A).

The signature gene set comprising the Erlotinib predictive model correctly captured Erloti-
nib’s mechanism of action as an EGFR inhibitor (Fig 2A). Moreover, the reconstructed signal-
ing network for the Erlotinib signature featured several highly expressed growth factors linked
to Erlotinib resistance (Fig 2A, please see S3 Fig and S1 Text for details) [42, 43]. Similarly, the
network built for the Sorafenib signature was also clearly linked to its mechanism of action (Fig
2B, please see S4 Fig and S1 Text for details).

The training and testing datasets and the end-points were different: the models were built
from a 2D in vitro cell line panel with IC50’s representing drug sensitivity and the validation
study was conducted on primary tumors from BATTLE clinical trial patients with progress free
survival (PFS) as the clinical end-point. Moreover, the training data (Oncopanel) covers a mix-
ture of cancer indications, while non-small cell lung cancer (NSCLC) was the only cancer indi-
cation in the BATTLE trial. Also, the signatures were generated on the Affymetrix U133plus2
platform and tested on the data generated on Affymetrix Human Gene 1.0 ST platform.
Despite all these differences, the cell line derived Erlotinib and Sorafenib sensitivity models
predicted BATTLE trial PFS outcomes with high accuracy of 84% and 79%, respectively
(Fig 3).

Given the fact the Erlotinib is an EGFR inhibitor while Sorafenib has multiple tyrosine
kinase receptors as targets, one would expect that model specificity between Erlotinib and Sora-
fenib would be difficult to achieve. Strikingly, the Erlotinib and Sorafenib drug sensitivity mod-
els were drug specific, i.e. the Erlotinib model failed to predict Sorafenib patients’ PFS and vice
versa (Figs 3 and 4).

The drug sensitivity models were used to predict percentage of drug sensitive samples per
cancer indication for a large number of cancer expression datasets in various indications. The
predicted Erlotinib or Sorafenib sensitive cancer indications were generally consistent with
known FDA approvals on Erlotinib or Sorafenib (Table 1). Therefore, it indicates that cell-line
derived models could be used to infer potential drug sensitive cancer indications. To the best of
our knowledge, this is the first report on successful application of a predictive model generated
from a mixture of cancer cell line screen dataset to predict potential drug-sensitive cancer
indications.
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Methods

Baseline gene expression datasets and data preprocess
Among the 240 Eurofin cancer cell lines, baseline gene expression data was downloaded from
170 cell lines from ArrayExpress (E-MTAB-37). The remaining 70 cell lines gene expression
data was purchased from Eurofins (https://www.eurofinspanlabs.com). For testing the Erloti-
nib predictive model, the BATTLE trial patients’ baseline gene expression [27] (GSE33072)
from the GEO database was downloaded. A RMA normalization was done on each dataset sep-
arately, using Affy package from Bioconductor [44].

Since gene expression data was generated from different microarray platforms, it is neces-
sary to normalize them before model training/testing. A “U133PlusVsHuGene_BestMatch” file
was downloaded from Affymetrix website (http://www.affymetrix.com) and was used to iden-
tify good matching probesets in Affymetrix U133plus2 array (for training dataset) and in
Human Gene 1.0 ST array (for testing dataset). Based on the observations from both MAQC II
project [16, 45] and other reports [46, 47], gene expression data from different studies and/or
platforms can be first normalized and then analyzed. In the current work, a quantile-based ref-
erence-RMA normalization approach [47] was used to normalize the testing dataset against
the training dataset.

Compound sensitivity screen data on OncoPanel cancer cell line panel
Erlotinib and Sorafenib sensitivity screen data were purchased from Eurofins (https://www.
eurofinspanlabs.com). There are 213 cell line IC50 data on both Erlotinib and Sorafenib
datasets.

Two-layers of cell line data QC were conducted that reduced the number of cell lines from
213 to 183 before model training and testing. The first layer involved curve-fitting on dose-
response data for each compound. The following criteria were used to QC each compound’s
dose-response curve: (1). Cell lines were removed if there were three or more missing data
points on the dose-response curve; (2). Cell lines were removed if there were four or more data
points with CV> 30%; (3). Cell lines where the dose-response curve displays unusual behavior
(e.g. has a stronger inhibitory effect at lower concentrations then at higher concentrations)
were removed; (4). Cell lines that only demonstrate inhibitory effects at the highest tested con-
centration were removed. The second layer of QC evaluates whether cell line screen results
actually reflect a drug-treatment effect. Clustering analysis was conducted among a group of
internal and standard of care compounds. Compounds that have similar mechanism of action
were clustered together, suggesting that cell line screen data actually reflects real drug-treat-
ment effect and therefore could be possible to identify drug-sensitive predictive models from
cell line data (data not shown).

The PLSR based modeling framework
We designed and implemented a PLSR based modeling framework on drug-sensitivity predic-
tive model building. More details on the PLSR method and its biological applications have
been previously published [24–26]. We selected PLS regression from various regression
approaches based on the following reasons: (1). PLS regression project both independent vari-
ables (gene expression values) and dependent variables (IC50s) in new directions to find maxi-
mum co-variance between these variables, while approaches like PCA analysis only capture
variance in the independent variable space; (2). PLS regression is not subject to the multiple
collinearity issue; (3). PLSR works very well on high number of independent variables vs
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limited number of dependent variables (number of feature genes>> number of samples),
which fits very well with gene signature identification for cell line screens and clinical patient
samples.

In the current work, we use the “pls” package from R (version 3.0.2) for PLS regression. The
loading numbers from first and second PLS components were used to calculate gene weights as
sqrt(PLS1^2 + PLS2^2). The gene weights were used to compare top splitting cases and for-
ward feature selection steps.

Reconstruction of causal network from signature genes
To reveal functional connectivity between the genes from Sorafenib and Erlotinib predictive
models, we reconstructed the causal molecular network by connecting these genes via canoni-
cal molecular pathways. The network was built in several steps.

First, in addition to the predictive models’ genes, we identified “topologically significant”
genes for the signature genes. The algorithm of selection of topologically-significant direct reg-
ulators, or “overconnected” genes, is described in [48] and remote regulators, or “hidden”
nodes, is described in [49, 50].

Next, we selected molecular pathways significantly enriched with both genes of predictive
signature and topologically significant genes using enrichment analysis in the Pathway Maps
ontology in MetaCore (Thomson Reuters).

Finally, the identified enriched molecular pathways were manually combined in the causal
molecular network. The resulting network included both sensitivity (negative correlation of
expression with IC50) and resistance-specific (positive correlation of expression with IC50)
genes. The networks were further populated with direct interactions between proteins
encoded by signature genes. Also, we included genes with genetic alterations correlated with
the drug response phenotype in OncoPanel cancer cell line panel in the reconstructed causal
networks.

Supporting Information
S1 Fig. 183 cancer cell lines were selected to represent both haematopietic and solid tumor
types to build Erlotinib or Sorafenib predictive models.
(TIF)

S2 Fig. Comparing signature gene’s contribution among top not-significantly-overlapped
models. Pairwise comparison was done among top performing models, as well as with the con-
sensus model. The numbers in the lower left part of the figure are PLSR model derived loading
values for individual genes, and the numbers in the top right part of the figure are Pearson cor-
relations between models.
(TIF)

S3 Fig. Reconstructed network derived from Erlotinib signature genes. The network was
reconstructed from canonical signaling pathways regulated by signature genes and signature spe-
cific direct interaction network. Sensitivity-specific signature genes are highlighted with blue
thermometers, resistance-specific genes are red thermometers; topologically significant genes are
highlighted with yellow thermometers. White starts in object images mark groups of proteins.
(TIF)

S4 Fig. Reconstructed network derived from Sorafenib signature genes. The network was
reconstructed from canonical signaling pathways regulated by signature genes and signature
specific direct interaction network. Sensitivity-specific signature genes are highlighted with
blue thermometers, resistance-specific genes are highlighted with red thermometers;
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topologically significant genes are highlighted with yellow thermometers. White starts in object
images mark groups of proteins.
(TIF)

S5 Fig. Erlotinib and Sorafenib IC50 distributions on Oncopanel cancer cell line panel. (A)
Erlotinib IC50 distribution on Oncopanel cancer cell line panel; (B). Sorafenib IC50 distribu-
tion on Oncopanel cancer cell line panel. The top figure was for the whole Ricerca cell line
panel and the bottom figure was after removing data for middle one-third IC50s.
(TIF)

S6 Fig. Representative example of random validation and balance validation on Sorafenib
model training. Red points were top performing models on 1000 random splits on this bal-
anced split, based on both AUC and correlation measures.
(TIF)

S7 Fig. Distribution of PLSR model predicted scores (log2(IC50)) for Erlotinib and Sorafe-
nib. Red vertical line was cutoffs selected to separate drug sensitive vs resistant cases for each
drug.
(TIF)

S8 Fig. Progression Free Survival for patients in Erlotinib or Sorafenib arms of the BAT-
TLE clinical trials. Red vertical line was cutoffs selected to separate patients into responder
and non-responder sub-groups for each drug.
(TIF)

S1 Table. The 51 Erlotinib signature genes. A raw p-value of each gene was calculated during
feature selection step based on the fitted mean and standard deviation from the permutation
data (see Methods in the main text section). Adjusted p-value was calculated using Benjamini-
Hochberg control of false discovery rate.
(DOCX)

S2 Table. The 113 gene Sorafenib signature genes. A raw p-value of each gene was calculated
during feature selection step based on the fitted mean and standard deviation from the permu-
tation data (see Methods in the main text section). Adjusted p-value was calculated using Ben-
jamini-Hochberg control of false discovery rate.
(DOCX)

S3 Table. Association analysis of genetic events and drug response. Pearson’s correlation
coefficient was calculated for a vector of log2(IC50) and a vector of genetic events. Positive
value of correlation for a given gene was interpreted as correlation with resistance. Negative
value can was interpreted as an association with sensitivity. Correlation P-values were calcu-
lated by a permutation test with 1000 shuffles. Fisher’s exact test was used for association analy-
sis between resistance/sensitivity classes and genetic events. “R” stands for resistance, “S”
stands for sensitivity.
(DOCX)

S1 Text. Description of causal models reconstructed from Erlotinib and Sorafenib predic-
tive models. Description and discussion of reconstructed causal models omitted from main
manuscript and shown in S3 and S4 Fig and Fig 2 in the main manuscript section.
(DOCX)
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S2 Text. Association analysis of genetic events. Additional results and methods omitted from
the main manuscript. We provide results of association analysis between genetic events and
drug response supporting major observations in the manuscript.
(DOCX)
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