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Objective: Automated speech recognition (ASR) systems have become increasingly

sophisticated, accurate, and deployable on many digital devices, including on a

smartphone. This pilot study aims to examine the speech recognition performance

of ASR apps using audiological speech tests. In addition, we compare ASR speech

recognition performance to normal hearing and hearing impaired listeners and evaluate

if standard clinical audiological tests are a meaningful and quick measure of the

performance of ASR apps.

Methods: Four apps have been tested on a smartphone, respectively AVA, Earfy,

Live Transcribe, and Speechy. The Dutch audiological speech tests performed were

speech audiometry in quiet (Dutch CNC-test), Digits-in-Noise (DIN)-test with steady-state

speech-shaped noise, sentences in quiet and in averaged long-term speech-shaped

spectrum noise (Plomp-test). For comparison, the app’s ability to transcribe a spoken

dialogue (Dutch and English) was tested.

Results: All apps scored at least 50% phonemes correct on the Dutch CNC-test for

a conversational speech intensity level (65 dB SPL) and achieved 90–100% phoneme

recognition at higher intensity levels. On the DIN-test, AVA and Live Transcribe had the

lowest (best) signal-to-noise ratio +8 dB. The lowest signal-to-noise measured with the

Plomp-test was +8 to 9 dB for Earfy (Android) and Live Transcribe (Android). Overall, the

word error rate for the dialogue in English (19–34%) was lower (better) than for the Dutch

dialogue (25–66%).

Conclusion: The performance of the apps was limited on audiological tests that provide

little linguistic context or use low signal to noise levels. For Dutch audiological speech

tests in quiet, ASR apps performed similarly to a person with a moderate hearing loss. In

noise, the ASR apps performed more poorly than most profoundly deaf people using a

hearing aid or cochlear implant. Adding new performance metrics including the semantic

difference as a function of SNR and reverberation time could help to monitor and further

improve ASR performance.

Keywords: automated speech audiometry, (automatic speech recognition), automated speech recognition, (ASR),

evaluation metric, hearing impairment, speech-to-text, voice-to-text technology
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INTRODUCTION

Automated Speech Recognition (ASR) has become increasingly
sophisticated and accurate as a result of advances in deep
learning, cloud computing, and the availability of large training
sets (1, 2). The software converts speech into text using artificial
intelligence models that have been trained on vast collections
of speech containing millions of words. ASR software is widely
available on most digital devices, including smartphones, tablets,
or laptops. It is primarily used for voice commands (e.g., hey
Siri!), at the workplace to create transcripts, or in class for taking
notes. Recently, ASR has become available in online meetings
(e.g., Microsoft teams) and video recordings (e.g., Google’s
Youtube) to provide automated captions. Also, several ASR-
based speech-to-text apps have been developed for the hearing
impaired and deaf, providing live captioning of conversations (2,
3), showing the potential of automation and artificial intelligence

for hearing healthcare (4, 5). Early in 2020, we were confronted in
our clinic with questions from patients related to the use of ASR
apps for daily communication. These questions were especially
common among patients with severe to profound hearing loss
who visited our outpatient clinic to assess if they were eligible for
a Cochlear Implant. Also, patients who had experienced sudden
deafness, but had not yet been fitted with hearing aids, made
use of an ASR app during their appointments. There was no or
little experimental information at the time about the performance

and usability of the ASR apps for hearing impaired persons
beyond what was shared by developers. Nor did we have clear
criteria for which groups of patients we might suggest the ASR
apps to.

Background
Since 2017, several ASR systems have claimed speech recognition
performance close to that of normally hearing humans (1, 2).
The most common metric to express ASR performance, used to

underpin these claims, is the word error rate (WER). WER is
calculated by adding the number of missing, wrong, and inserted
words and dividing this by the total number of words (6). A
lower WER score means better performance. The performance
of ASR will be best for speech similar to the speech on which it
was trained (7). It is therefore important to understand for what
specific task an ASR is designed and how it is evaluated. Typically
ASRs are evaluated on well-studied large (>100 h) collections
of speech, referred to as a corpus. The SwitchBoard corpus and
CallHome corpus are well-known collections of conversational
phone calls (8), whereas Librispeech is a corpus comprising
speech from public domain audiobooks. The SwitchBoard corpus
consists of conversations over the phone between strangers
about a given topic (9). The CallHome corpus consists of more
informal conversations between friends and family (8). None
of these corpora are ideal for use in acoustically challenging
environments. The SwitchBoard and CallHome were collected
under low noise and low reverberation conditions (9), and a large
portion of the Librispeech corpus has undergone noise removal
and volume normalization (10).

In order to obtain estimates of human speech recognition
performance that could be used for comparison with ASR,

some researchers have determined the WER among professional
transcribers of speech from the SwitchBoard and CallHome
corpora. Saon et al. (1) estimated the lowest (best) achievable
WER, 5.1% for SwitchBoard and 6.8% for CallHome, based on
the best score taken from three professional speech transcribers
after a quality check by a fourth speech transcriber. Xiong et al.
(2) on the other hand, followed more realistic industry standard
procedures, which are similar to how speech is processed by
ASR. The reported WERs were 5.9% for SwitchBoard, and 11.3%
for CallHome.

For some commonly-used ASR systems, WERs of 5.1%
(Microsoft) and 5.5% (IBM) have been reported using the
SwitchBoard corpus (11), which is close to the performance of
normal hearing professionals reported above (1, 2). Benchmark
results of widely used ASR systems tested on the same corpora
are not available to our knowledge. Google reported a WER of
4.9%, but used a non-public corpus (11). Koenecke et al. (7)
compared the performance of ASR systems fromAmazon, Apple,
Google, IBM, and Microsoft to transcribe structured interviews
using two recent developed corpora (CORAAL and AAVE).
However, transcribing a structured interview is a very different
task than transcribing a conversation in real-time in acoustically
challenging environments. More ecologically valid tasks are
needed that take into account the effects of noise, reverberation,
talker accent, and slang, for instance, to provide a realistic
estimate of ASR performance when used for conversations in
daily life under various acoustic conditions.

ASR for Hearing Impaired Listeners
For people with hearing impairments, there are specific user
needs to consider when developing ASR apps. For example,
these listeners might use both speechreading (12) and text
reading of the ASR transcript from a screen. Speechreading
conveys important non-verbal cues and nuances not included
in a transcript and may enhance speech-in-noise abilities
(13). However, without careful design, reading a transcript
may interfere with someone’s speechreading ability. Speaker
identification cues [e.g., by color coding each speaker a feature
in AVA (14)] may also direct the reader to the face of an active
talker. Other design ideas include the notification of critical
environmental sounds [a feature incorporated in Live Transcribe
(15)], feedback to the speaker of their intelligibility of the ASR, or
feedback to the speaker by making the transcript readable from
two sides (e.g., mirrored) so that both the speaker and the listener
can check the results [incorporated in Earfy (16)].

The settings where an ASR is used may also differ between
individuals with impaired or normal hearing. For example, the
settings where people with hearing loss use ASR may be more
often in amore homely atmosphere between familymembers that
might use more colloquial language or slang. That situation may
be similar to closed caption for video series. The most common
complaint of people with hearing loss is the reduced speech
perception in complex listening environments including cocktail
parties, restaurants, in conversations with their doctor, and
family gatherings (15, 16). Adverse acoustic conditions, including
low signal-to-noise, make it difficult for normal hearing listeners
to understand speech and make the speech incomprehensible for
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persons with mild to profound hearing loss (17, 18). Finally, the
speed of translation to accommodate a fluent conversation and
the user interface to make it practical for older users and digitally
less proficient users are factors to consider.

A standardized task that fully captures the skills of humans
to recognize speech does not yet exist, to our knowledge. Such
a task would need to account for factors as background noise,
reverberation, accent, and speech impairment. This is needed to
verify claims that ASR speech recognition performance is close
to humans (1, 2) and should be done using diverse training
datasets (7).

Objective
This pilot study aimed to examine the speech recognition
performance of ASR apps using audiological speech tests. We
normally administer clinical audiology tests in patients from
normal hearing to profound hearing loss to assess speech
recognition.We tested the hypothesis that our clinical tests might
thus provide objective metrics for performance of ASR systems
for people with hearing loss, helping us to determine what range
of hearing losses could benefit from ASR apps. In addition, we
compared ASR results to normal hearing and hearing impaired
listeners and evaluated if standard clinical audiological tests
provide a meaningful and quick measure of the performance of
ASR apps.

METHODS

Four different apps on two smartphones, with various operating
systems, were tested on their ability to transcribe speech. For this
project, the iOS operating apps were tested using an iPhone 6,
and for the Android operating apps, a Samsung A3 was used.
Both smartphone devices are widely used. We decided to select
inexpensive ASR apps (<$10) for a user-license since they would
be most widely used by our patients while the cost for ASR apps
is not reimbursed in the Netherlands. The four apps tested were
Ava and Earfy that both run on iOS and Android, Speechy iOS
only, and Live Transcribe Android only. The tested apps were
chosen by searching on the Internet on November 18th, 2019, for
the best-known speech recognition apps for the hearing impaired
and deaf as well as good reviews on the different app-stores. Also,
the apps needed to be suitable to convert English and Dutch
speech into text.

The apps were evaluated in similar test conditions used to
assess speech reception in human listeners in Dutch Audiology
Centers according to best local clinical practice. The smartphones
were placed one meter in front of a speaker in a sound
treated room compliant with ISO 8253-1 (19). Standard clinical
calibration protocols were used for all speech material. The
microphone of the smartphone was aimed toward the speaker,
which we assumed to be the optimal microphone orientation, at
approximately the height of a listener’s ears to resemble testing
conditions when tested with human listeners (see Figure 1).
The smartphone screen was facing upwards allowing the
experimenter to read the text from the screen. Four different
speech reception tests were performed to evaluate the app’s ability
to convert speech into text.

FIGURE 1 | Set-up of the smartphone in front of the speaker.

First, the apps were tested on speech recognition in quiet
by converting a list of single words into text. The standard
Dutch speech recognition test for this purpose is the Dutch
CNC-test, which consists of phonetically balanced lists of twelve
monosyllabic Dutch words in quiet [CNC-list, “Nederlandse
Vereniging voor Audiologie;” (20)]. The words were played
through a speaker, scored and displayed in a phoneme
recognition score. All words consisted of three phonemes with
a consonant-nucleus-consonant (CNC) structure. The first word
was a test word and was not included in the scoring. A human
observer performed the scoring by reading the word from the
screen and counting the number of correct phonemes. Inserted
phonemes were subtracted from the score according to the
clinical scoring procedure (20). If a displayed word changed
during the test, the final word was scored. A 100% phoneme
recognition score was reached if all 33 phonemes of the 11 words
were correct. Several lists were presented at an intensity level of
45, 55, 65, 75, and 85 dB sound pressure level (SPL) and the
speech recognition as a function of presentation level (known
in human listeners as speech audiogram) is plotted for each app.
For comparison, normal hearing listeners achieve 100% phoneme
recognition at 45 dB SPL (20).

Second, the Plomp-test (Dutch sentences in noise) was
presented (21). The test consists of 13 sentences of 8 to 9
syllables presented in noise with the same averaged long-term
spectrum as speech. A sentence was scored to be either correct,
if the whole sentence was correctly presented on the screen,
or incorrect, which was according to the conventional scoring
procedure in clinical practice (22). The speech recognition
threshold (SRT) in noise was defined as the signal-to-noise
ratio (SNR) expressed in dB where on average 50% of the time
the sentences were transcribed correctly, following the adaptive
procedure described by Plomp and Mimpen (20, 21). The test
was first performed without noise to obtain the SRT in quiet.
Afterward, the masking noise level was set 15–20 dB above the
SRT of the apps in the quiet situation, which was 70 dB SPL
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for all apps, to determine the speech reception threshold (SRT)
in noise.

Third, a DIN-test (Digits-in-Noise) was performed. Digit
triplets (e.g., 1 2 5) were presented in long-term average speech-
spectrum noise via a 1-up, 1-down adaptive SNR procedure.
SRT was expressed in dB SNR, where a listener can on average
recognize 50% of the digit triplets correctly. A test series consisted
of 24 triplets. The first four triples were not used to determine the
test outcome. The noise level was set at a fixed level of 60 dB with
an initial positive SNR of 6 dB. The stepsize to adjust the level of
the triplets was 2 dB. The DIN-test has a measurement error in
humans of 0.7 dB (23).

Fourth, a fragment of dialogue in Dutch and English at
72.2 dB(A) was presented through the speaker to recreate a
more realistic listening setting. The Dutch dialogue was an
introduction video of the Radboudumc with a female voice,
talking clearly and at a normal pace (https://www.youtube.
com/watch?v=zBJBD1-ePRw). For the English dialogue, part
of an advanced English tutorial was played. In this video, a
conversation could be heard between a male and female voice
(https://www.youtube.com/watch?v=JtMgw2rCYSo&t=1s). The
Dutch dialogue consisted of 256 words, while the English
dialogue consisted of 248 words. After the whole dialogue was
played, scoring was performed on the transcript outputted by
the app. The number of missing, wrong, and inserted words was
counted and expressed in the WER.

In the end, a test-retest was performed to provide insight into
the accuracy of the apps. All apps were retested on the CNC-test.
The test-retest reliability on the CNC-test was visually assessed
using a Bland-Altman graph. The best scoring app on the DIN-
and Plomp-test, one for iOS and one for Android, was retested for
both speech-in-noise tests. The Root-Mean-Square-Difference
(RMSD) was calculated for these results. No retest was performed
for the dialogue.

RESULTS

The results for all apps on the Dutch CNC-test (words in quiet)
are shown in Figure 2. Speech recognition as a function of
presentation level was determined per app by interpolating a
line using logistic regression on all available-data points (test
and retest measurements). A 100% phoneme recognition was
reached around 80 dB SPL for all apps except Earfy. Earfy (iOS
and Android) scored 90% words correctly around 90 dB SPL.
The shape of the app’s “speech audiogram” curves look similar
to the s-shaped psychometric curve of normal hearing listeners
determined by Bronkhorst et al. (24) in 20 normal hearing
university students. However, all app’s SRT were between 50 and
60 dB SPL, which is 25 to 35 dB poorer than normal hearing
listeners who have a SRT around 25 dB SPL (20).

The speech-in-noise results are shown in Figures 3, 4. All
apps score a signal-to-noise ratio (SNR) higher than +8 dB
on the DIN- and Plomp-test. Live transcribe (Android), and
AVA (Android, iOS) achieved the best results on the DIN-test.
Earfy on Android performed better than on iOS. Live Transcribe
(Android) and AVA (iOS) achieved the best result using the

FIGURE 2 | Speech recognition as a function of presentation level (in human

listeners known as speech audiogram) of all ASR apps tested on an Android

and iOS smartphone. The plotted lines are interpolated using a logistic

function through the measured test-retest data-points. Left side, results of the

Android apps, right side, results of the iOS apps.

FIGURE 3 | Digit in noise results expressed in SNR per app. A lower score is

better. The error bars represent the standard deviation of the response of the

app within a single list of triplets.

Plomp-test. There was a notable difference between the operating
systems for AVA and Earfy when measured with the Plomp-test.

In Figure 5, the WER scores for both the Dutch and English
dialogue are shown. Overall, the dialogue in English (WER 19–
34%) was more correctly converted into words than the Dutch
(WER 25-66%) dialogue. Speechy (iOS) had best matching result
for English and Dutch (WER of 19 and 20%). Earfy (iOS) showed
the greatest difference between English and Dutch (WER of 19
and 66%).

The test-retest reliability of the CNC-test can be seen in
Figure 6. Visual inspection of the Bland-Altman plot for the
CNC-test-test did not show signs of any systematic bias in the
relationships between differences and averages. The test-retest
comparison of the CNC-test showed three outliers. Earfy for
iOS exhibited large differences between the measurements at 70
and 90 dB and Live transcribe (Android) had a large difference
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FIGURE 4 | Sentences in noise results expressed in SNR per app. A lower

score is better. The error bars represent the standard deviation of the response

of the app within a single list of sentences.

FIGURE 5 | Word error rate in percentage of the dialogue in English and Dutch

for the different apps.

between measurements at 50 dB. The test-retest reliability on the
DIN- and Plomp-tests was assessed for one Android and one iOS
app. The test-retest difference expressed in RMSD on the DIN-
test was 0.4 dB iOS Ava and 0.8 dB Android Live Transcribe,
which we regard as acceptable since in normal hearing listeners
tested monaurally using headphones, 90% of measurements are
within 1.4 dB (measurement error is 0.70 dB) for a single list on
the DIN-test (23). The RMSD on the Plomp-test was 0.6 dB iOS
Ava and 2.0 dB for Android Live Transcribe.

DISCUSSION

Main Results
None of the ASR apps achieved performance close to normal
hearing listeners on audiological tests. In quiet, ASR apps
performed similarly to listeners with a moderate hearing loss.
When transcribing speech-in-noise, the ASR apps performed
in the performance range of CI recipients. Sentences-in-noise
provided a quick test to assess ASR performance since that test

material provided more linguistic cues than digits-in-noise or
lists of CNC words.

Performance Compared to Human
Listeners
The performance of the ASR apps on speech-in-quiet tests seems
comparable to listeners with a moderate conductive hearing loss
(30–35 dB threshold shift), which is known as disabling for
certain activities in daily life (25). In comparison, Dingemanse
and Goedegebure (26) found a mean score of 82% in 50 adult
unilateral CI-recipients on the Dutch CNC-test tested in free field
at 65 dB SPL, which is the level of conversational speech. This
performance may be an overestimation for the average CI user
since they excluded participants with a CNC-score below 60%.
Kaandorp et al. (27) determined a mean score in free field at 65
dB SPL of 95% while using their preferred device in 24 hearing
aid users with a moderate to severe hearing loss and 80% in 24
CI recipients. Only for speech at high-intensity levels, well above
the level of conversational speech, do the apps achieve 90 to 100%
speech reception. The poor performance at low speech intensity
levels may be caused by hardware limitations, as discussed below
in the section on hardware. The ASR may score lower due to the
lack of contextual information provided in the test. The CNC-
test was developed as an auditory test that requires little linguistic
skill. The listener can only use the consonant-nucleus-consonant
structure and the fact that the lists contain only familiar existing
words. The alternative of using nonsense words, or nonsense
sentences, would probably further deteriorate ASR performance
while being a valid test for assessing auditory function with a
lower effect of language skills by the subject (28). Most ASR are
trained on sentences of realistic conversations (8). The strength
of (deep learning) ASR is based on using contextual information
from a natural language processing model (29). That contextual
information is not available in word testing.

The performance of the ASR apps on the Digits-in-Noise test
was very limited compared to humans. Normal hearing listeners
achieve on the DIN-test, monaurally using headphones, an SNR
of−8.8 dB (23). CI recipients rated on the same criteria as normal
hearing listeners, typically achieve DIN scores ranging from +3
to−6 dB. For instance, Kaandorp et al. (27) found an average SNR
of −1.8 (±2.7) dB in a group of 18 adult unilateral CI recipients
in free field test conditions. The ASR is at a disadvantage because
in the DIN-test, contextual information is lacking and the priors
for the ASR and human are not the same. When doing a digits-
in-noise test, a human will only report digits. For the ASR it
is not a 10-class problem but a problem with several thousand
alternatives. The apps tend to construct sentences rather than
separate numbers. For conversations where it is important to
catch a number, such as the price of an item, the DIN-test might
be a useful measure.

The performance of ASR apps on sentences in noise (Plomp-
test) was very limited and much poorer than in people with a
moderate hearing loss (21). Normal hearing listeners have an
SRT at an SNR of −8 to −10 dB (21), while the best ASR apps
achieved+8 dB scores. Kaandorp et al. (27) found amean SRT on
Dutch Sentences in noise by scoring keywords of +2.1 dB for 24
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FIGURE 6 | Bland-Altman plot to display the test-retest reliability of the CNC-test.

hearing aid users (tested on their preferred ear) with moderate to
severe hearing loss and+8.0 dB for 24 unilateral CI recipients. In
CI-recipients, evaluation of speech-in-noise is often performed
scoring keywords, instead of full sentences as used in the original
procedure by Plomp and Mimpen (20, 21). In another study,
Kaandorp et al. (30) found a significant difference of 1.0 dB in
favor of a keyword scoring procedure compared to scoring full
sentences. However, this 1.0 dB keyword effect does not account
for the large difference between the app’s performance and the
performance of hearing aid users in noise. On the Plomp-test,
which provides more linguistic information than the CNC- and
DIN-test, the app’s performance is far below that of the majority
of hearing impaired listeners and similar to the range of outcomes
in CI-recipients.

Sentences with and without noise (Plomp-test) could be
considered as a performance metric for ASR apps in difficult
listening conditions. Possibly with more natural sentences to
provide even more linguistic cues. Testing through a loudspeaker
has the advantage that it takes the effect of room acoustics into
account, making the test condition more realistic. Instead of a
sound booth, a room with more representative acoustics for daily
situations (e.g., the reverberation time of a classroom or using
babble noise instead of speech-shaped noise) would provide even
more representative results. The current scoring procedure of
the Plomp-test, based on fully correct sentences, leads to very
high SNRs that may underestimate the practical value of ASR
for hearing impaired persons. For instance, if an ASR in a
conversation under noisy conditions provides keywords, it may
already benefit the person with hearing impairment. One could
easily adopt the Plomp-test by determining the WER score on
a fixed SNR level to simulate above example. Or alternatively,
accept a higher number of mistakes (compared to none) in

the adaptive test by using keywords (30). Besides audiological
test outcomes, the systematically collected feedback by groups
of users (e.g., a focus group) would be very helpful to further
improve the accessibility and usability of ASR apps for hearing
impaired listeners.

In longer dialogues, all tested apps provided a running English
transcript with aWER around 19–34%. This roughly corresponds
to 60–80% correct word (∼1-WER) scores and this is in the
same range as for persons with profound hearing loss who use
a cochlear implant (31) and better than hearing aid users with a
profound hearing loss (32). For these groups, the use of the ASR
apps tested here would likely provide benefits.

Hardware and Platform Variability
A possible explanation for the poor performance at low levels
could be the smartphone’s microphone gain settings and limited
dynamic range rendering soft sounds undetectable (33). We
chose a microphone orientation, directing it to the speaker
that we assumed was optimal for the task. However, we did
not check the directionality of the built-in microphones. In
actual use, the microphone orientation could be suboptimal, for
instance, if a listener positions the device such that it enables
better reading of the transcript from the screen. Also in group
settings, the user will likely put the device flat on a table and
thus not always point the microphone to the talker. We did
not investigate the effect of suboptimal microphone orientation.
Another explanation for the level dependence in quiet could be
pre-processing. Most ASR systems usually normalize the input
(34). Potentially the ASR systems classify soft sounds as non-
speech or not of interest.

In English, there is not much difference between the
apps or between the operating platforms. Therefore, we
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do not expect differences in the Dutch version to stem
from hardware differences between the smartphones (e.g.,
microphone sensitivity) but from the implementation of the
Dutch language in the specific app or the used training
data. The difference between iOS and Android was only
visible in Dutch. In Dutch, Earfy (iOS) and Ava (iOS) score
significantly poorer.

There was no consistent difference favoring either iOS or
Android versions of the apps. Earfy performed better on
Android, while AVA performed better on iOS. For prospective
users, the performance of the app depends on language, and may
depend on the platform.

Limitations
The administered tests did not include the effect of accents or
speech impairments [e.g., deaf speech; (7, 35)]. The displayed
transcripts changed during the dialogue, and the transcript was
evaluated at the end of the dialogue instead of in real-time. When
reading the transcript in real-time, the performance of the speech
recognition apps might be better or worse due to the changing
words in real-time to construct a logical sentence.

When measuring performance in noise, an adaptive SNR
procedure was used. The effect of noise could bemore extensively
studied by evaluating ASR by determining theWord Recognition
Score (the convention in the field of audiology) or the Word
Error Rate (the convention in the field of ASR research) on
several fixed SNR levels (e.g.,−5, 0, +5 and +10 dB SNR) that
correspond to realistic listening conditions for people using a
hearing aid (36). For ecological valid measures, the effect of
different fluctuating noise maskers should be considered (37,
38). Babble-noise or traffic noise is much more realistic than
(artificial) steady-state speech-shaped noise. In the end, the
performance of the ASR must be robust enough that users will
put their trust in these apps even in formal situations such as a
conversation with their doctor or audiologist.

In this study, only (audiological) speech-to-text performance
of the apps was measured. The usability, processing speed, effect
on speechreading, and readability of the transcript were not
evaluated. Other researchers looked into requirements for speed
and user interface and concluded that those are important factors
to improve usability (39). We expect that an increasing number
of ASR apps will adhere to accessibility guidelines to improve
usability for the elderly and people with disabilities as promoted
by the Web Accessibility Initiative (40).

The number of apps tested in this study is limited. We did
not perform a standardized procedures for literature review (e.g.,
PRISMA) to find and include ASR apps for this pilot study. In
English, more appsmay be available than inDutch andwe did not
include expensive state-of-the-art (professional) ASR systems.

Other factors to consider not included in this pilot study are
the distance between speaker and listener, especially in these
times of social distancing and the effect of face masks on a
speaker’s voice and intelligibility (41). Feedback about voice
quality could help the speaker adopt a more intelligible speaker
style. The errors made by the ASR may be complementary
or redundant to the errors made by persons with hearing
loss. We did not study the error patterns. A potential way to

determine the complementary effect of ASR could be to evaluate
speech-recognition in noise using an audiovisual presentation
mode, instead of the audio-only mode that was used in this
study, in three distinct aided conditions. (1) participants with
hearing loss aided with hearing aid or CI. (2) participants
with hearing loss aided with hearing aid or CI and using an
ASR app, (3) performance by the ASR app only. Studying the
difference between these conditions reveals the added benefit
and may penalize ASR systems not designed for simultaneous
speechreading and text reading.

Metrics to Evaluate Personalized ASR
Performance
Instead of the quick audiological tests we performed here, a
more conventional and elaborate evaluation method would be
to record several hours of conversations with hearing impaired
users (including realistic lexicon and acoustics) via a smartphone
while the screen is oriented such that the user can read
the transcript. Subsequently, one could create transcripts of
the recordings by human transcribers as ground truth, pass
the recordings through several ASR apps and determine a
performance rating based on WER and other automated metrics
such as the semantic distance between the ASR transcript and
ground truth (42).

ASR may benefit from domain-specific evaluation tools and
have domain-specific applications. For instance, Miner et al.
(43) developed a metric based on symptom-focused language in
psychotherapy. A domain-specific, or even person-specific factor
is that prelingually deaf people often have a speech impairment,
leading to lower comprehensibility both for normal hearing
listeners who are not accustomed to deaf speech and for ASR
apps that are not specifically trained on deaf speech. Fortunately,
generic ASR models can be used as a pre-trained model that
subsequently is trained on a particular task including a-typical
speech, accents, or acoustic conditions without incurring the
cost of training a full model (44). Recently, researchers from
Google started a project, called Parrotron, to create personalized
models which could better convert deaf speech than generic
ASR systems. WER dropped from 89.2% for the generic ASR
to 32.7% for the finetuned ASR for a single prelingually deaf
subject (35). In addition, the Parrotron system can synthesize
the speech of a speech impaired person (i.e., voice conversion)
to make the speech sound more natural and comprehensible to
the untrained ear.

Metrics as, for example, the WER (SNR, RT), or semantic
difference (SNR, RT), as functions of signal-to-noise ratio and
reverberation time (RT) can provide more ecologically valid
estimates of the benefits ASR apps could provide in daily life.
Representative SNR values could include −5, +10, +30 (quiet)
dB SNR. For ecological valid measures, realistic fluctuating noise
maskers should be used (37, 38). Reverberation times typically
encountered in daily life to consider are 0, 0.5, and 2.5 s, which
corresponds to ideal, classroom (45), and church (46) room
acoustics. Presenting the ASR performance using theWER (SNR,
RT) reduces the need to study the characteristic of the corpus on
which the ASR was trained and or evaluated.

Frontiers in Digital Health | www.frontiersin.org 7 February 2022 | Volume 4 | Article 806076

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Pragt et al. Evaluation of ASR Apps

Future Benefits for Audiologists
ASR apps can provide benefits in conversations between patients
and their audiologists (47). In addition, ASR technology, when
further developed, can play a role in computational approaches
to audiology (4). For instance, if personalized ASR apps further
develop so that atypical speech is better captured, and if ASR
achieves normal hearing performance on audiology tests it may
provide another use case: patients could perform self-testing
(i.e., automated speech audiometry) by repeating the speech
they hear to an ASR system trained on their particular voice
replacing or enhancing the task of the professional in the
audiology center (48). Manual calculation of complex evaluation
metrics is not suitable in clinical settings given the excessive time
required and may lead to inter-rater variability (49). Automated
speech audiometry using algorithms to score performance can
be a valuable complement to automated pure-tone threshold
audiometry (50). For example, Venail et al. (48) validated a
semi-automatic speech procedure using customized word-lists,
in part provided by the subject to include familiar words. The
customized word-lists were recorded with the subject’s own voice
to incorporate personalized acoustic and articulatory parameters.
Speech recognition was evaluated on the customized word-
list using an algorithm to determine automatically the number
of correctly repeated phonemes. In addition, the use of ASR
could open venues to improved (automated) scoring methods
in audiology tests. Ratnanather et al. (51) demonstrated how
one can automate the alignment of phonemes based on the
minimum edit distance between the source speech and the
utterances of the subject in real time. Visualizing this alignment
may provide insights to clinicians about what phonological errors
are made.

A factor of variability in rating procedures is that in many
speech-in-noise tests, the test is made easier for CI recipients
by only scoring correct keywords rather than full sentences
(28, 30). Although scoring keywords makes the test accessible to
a larger population, it reduces the discriminative power between
higher- and lower-educated native listeners (30). An ASR could
facilitate an automated scoring procedure that differentiates
between errors. For instance, using semantic difference between
the ASR transcript and ground truth, errors that lead to
semantically similar sentences are weighted favorably, leading
to a better outcome metric in terms of how well hearing
impaired persons can participate in a conversation under
adverse circumstances.

CONCLUSION

None of the ASR apps achieved performance close to normal
hearing listeners on audiological tests. No app stood out from
the others on performance level. On audiological speech tests in
quiet, ASR apps performed similarly to listeners with a moderate
hearing loss. When transcribing speech-in-noise, the ASR apps
performed in the performance range of CI recipients. Sentences-
in-noise provided a quick test to assess ASR performance.
Additional performance measures are needed to evaluate ASR
apps. Besides the speech material, also type of noise and
the presentation mode audio-only vs. audiovisual need to be
considered. Adding new performance metrics including the
semantic difference as a function of SNR and reverberation time
can help to monitor and further improve ASR performance.
Clinicians can use benchmarks based on such metrics to counsel
prospective users and may benefit from automated procedures.
Several hearing impaired listeners, especially CI recipients, report
that they benefit from the apps in certain situations (47), which is
in accordance with the results of converting a dialogue into text
and may stem from complementary error patterns of ASR not
investigated here. Personalized ASR could increase the number
of listeners enjoying the benefits of ASR.
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